Last modified by Mengting Qiu on 2024/04/02 16:44

From version 32.1
edited by Xiaoling
on 2022/06/07 11:15
Change comment: There is no comment for this version
To version 65.12
edited by Xiaoling
on 2022/07/08 15:49
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,8 +3,16 @@
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
7 +
8 +
9 +
10 +
11 +
12 +
13 +
14 +**Table of Contents:**
15 +
8 8  {{toc/}}
9 9  
10 10  
... ... @@ -12,1030 +12,806 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
24 += 1.  Introduction =
18 18  
26 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
27 +
19 19  (((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
29 +
22 22  
23 23  (((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
32 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
25 25  )))
26 26  
27 27  (((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
29 29  )))
30 30  
31 31  (((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
40 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 33  )))
34 34  
35 35  (((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
44 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
37 37  )))
38 38  
47 +
48 +)))
39 39  
40 40  [[image:1654503236291-817.png]]
41 41  
42 42  
43 -[[image:1654503265560-120.png]]
53 +[[image:1657245163077-232.png]]
44 44  
45 45  
46 46  
47 -== 1.2 ​Features ==
57 +== 1.2 ​ Features ==
48 48  
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
59 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
51 51  * Monitor Soil Moisture
52 52  * Monitor Soil Temperature
53 53  * Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 55  * AT Commands to change parameters
56 56  * Uplink on periodically
57 57  * Downlink to change configure
58 58  * IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
67 +* Ultra-Low Power consumption
68 +* AT Commands to change parameters
69 +* Micro SIM card slot for NB-IoT SIM
70 +* 8500mAh Battery for long term use
60 60  
61 -== 1.3 Specification ==
62 62  
63 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
73 +== 1.3  Specification ==
64 64  
65 -[[image:image-20220606162220-5.png]]
66 66  
76 +(% style="color:#037691" %)**Common DC Characteristics:**
67 67  
78 +* Supply Voltage: 2.1v ~~ 3.6v
79 +* Operating Temperature: -40 ~~ 85°C
68 68  
69 -== ​1.4 Applications ==
81 +(% style="color:#037691" %)**NB-IoT Spec:**
70 70  
71 -* Smart Agriculture
83 +* - B1 @H-FDD: 2100MHz
84 +* - B3 @H-FDD: 1800MHz
85 +* - B8 @H-FDD: 900MHz
86 +* - B5 @H-FDD: 850MHz
87 +* - B20 @H-FDD: 800MHz
88 +* - B28 @H-FDD: 700MHz
72 72  
73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
74 -​
90 +Probe(% style="color:#037691" %)** Specification:**
75 75  
76 -== 1.5 Firmware Change log ==
92 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
77 77  
94 +[[image:image-20220708101224-1.png]]
78 78  
79 -**LSE01 v1.0 :**  Release
80 80  
81 81  
98 +== ​1.4  Applications ==
82 82  
83 -= 2. Configure LSE01 to connect to LoRaWAN network =
100 +* Smart Agriculture
84 84  
85 -== 2.1 How it works ==
102 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
103 +​
86 86  
87 -(((
88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
89 -)))
105 +== 1.5  Pin Definitions ==
90 90  
91 -(((
92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
93 -)))
94 94  
108 +[[image:1657246476176-652.png]]
95 95  
96 96  
97 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
98 98  
99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
112 += 2.  Use NSE01 to communicate with IoT Server =
100 100  
114 +== 2.1  How it works ==
101 101  
102 -[[image:1654503992078-669.png]]
103 103  
117 +(((
118 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
119 +)))
104 104  
105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
106 106  
122 +(((
123 +The diagram below shows the working flow in default firmware of NSE01:
124 +)))
107 107  
108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
126 +[[image:image-20220708101605-2.png]]
109 109  
110 -Each LSE01 is shipped with a sticker with the default device EUI as below:
128 +(((
129 +
130 +)))
111 111  
112 -[[image:image-20220606163732-6.jpeg]]
113 113  
114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
115 115  
116 -**Add APP EUI in the application**
134 +== 2.2 Configure the NSE01 ==
117 117  
118 118  
119 -[[image:1654504596150-405.png]]
137 +=== 2.2.1 Test Requirement ===
120 120  
121 121  
140 +(((
141 +To use NSE01 in your city, make sure meet below requirements:
142 +)))
122 122  
123 -**Add APP KEY and DEV EUI**
144 +* Your local operator has already distributed a NB-IoT Network there.
145 +* The local NB-IoT network used the band that NSE01 supports.
146 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
124 124  
125 -[[image:1654504683289-357.png]]
148 +(((
149 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
150 +)))
126 126  
127 127  
153 +[[image:1657249419225-449.png]]
128 128  
129 -**Step 2**: Power on LSE01
130 130  
131 131  
132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
157 +=== 2.2.2 Insert SIM card ===
133 133  
134 -[[image:image-20220606163915-7.png]]
135 -
136 -
137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
138 -
139 -[[image:1654504778294-788.png]]
140 -
141 -
142 -
143 -== 2.3 Uplink Payload ==
144 -
145 -=== 2.3.1 MOD~=0(Default Mode) ===
146 -
147 -LSE01 will uplink payload via LoRaWAN with below payload format: 
148 -
149 -
150 -Uplink payload includes in total 11 bytes.
151 -
152 -
153 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
154 -|=(((
155 -**Size**
156 -
157 -**(bytes)**
158 -)))|=(% style="width: 45px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**
159 -|**Value**|(% style="width:45px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:80px" %)(((
160 160  (((
161 -Temperature
160 +Insert the NB-IoT Card get from your provider.
161 +)))
162 162  
163 163  (((
164 -(Reserve, Ignore now)
165 -)))|(% style="width:80px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:80px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:80px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:80px" %)(((
166 -(((
167 -MOD & Digital Interrupt
168 -
169 -(((
170 -(Optional)
164 +User need to take out the NB-IoT module and insert the SIM card like below:
171 171  )))
172 -)))
173 173  
174 -[[image:1654504881641-514.png]]
175 175  
168 +[[image:1657249468462-536.png]]
176 176  
177 177  
178 -=== 2.3.2 MOD~=1(Original value) ===
179 179  
180 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
172 +=== 2.2.3 Connect USB TTL to NSE01 to configure it ===
181 181  
182 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
183 -|=(((
184 -**Size**
185 -
186 -**(bytes)**
187 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1**
188 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
189 189  (((
190 -Temperature
191 -
192 192  (((
193 -(Reserve, Ignore now)
176 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
194 194  )))
195 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(((
196 -[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)
197 -)))|(((
198 -(((
199 -MOD & Digital Interrupt
200 200  )))
201 201  
202 -(Optional)
203 -)))
204 -)))
205 205  
206 -[[image:1654504907647-967.png]]
181 +**Connection:**
207 207  
183 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
208 208  
185 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
209 209  
210 -=== 2.3.3 Battery Info ===
187 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
211 211  
212 -Check the battery voltage for LSE01.
213 213  
214 -Ex1: 0x0B45 = 2885mV
190 +In the PC, use below serial tool settings:
215 215  
216 -Ex2: 0x0B49 = 2889mV
192 +* Baud:  (% style="color:green" %)**9600**
193 +* Data bits:** (% style="color:green" %)8(%%)**
194 +* Stop bits: (% style="color:green" %)**1**
195 +* Parity:  (% style="color:green" %)**None**
196 +* Flow Control: (% style="color:green" %)**None**
217 217  
218 -
219 -
220 -=== 2.3.4 Soil Moisture ===
221 -
222 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
223 -
224 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
225 -
226 -
227 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
228 -
229 -
230 -
231 -=== 2.3.5 Soil Temperature ===
232 -
233 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
234 -
235 -**Example**:
236 -
237 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
238 -
239 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
240 -
241 -
242 -
243 -=== 2.3.6 Soil Conductivity (EC) ===
244 -
245 245  (((
246 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
199 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
247 247  )))
248 248  
249 -(((
250 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
251 -)))
202 +[[image:image-20220708110657-3.png]]
252 252  
253 253  (((
254 -Generally, the EC value of irrigation water is less than 800uS / cm.
205 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
255 255  )))
256 256  
257 -(((
258 -
259 -)))
260 260  
261 -(((
262 -
263 -)))
264 264  
265 -=== 2.3.7 MOD ===
210 +=== 2.2.4 Use CoAP protocol to uplink data ===
266 266  
267 -Firmware version at least v2.1 supports changing mode.
212 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
268 268  
269 -For example, bytes[10]=90
270 270  
271 -mod=(bytes[10]>>7)&0x01=1.
215 +**Use below commands:**
272 272  
217 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
218 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
219 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
273 273  
274 -**Downlink Command:**
221 +For parameter description, please refer to AT command set
275 275  
276 -If payload = 0x0A00, workmode=0
223 +[[image:1657249793983-486.png]]
277 277  
278 -If** **payload =** **0x0A01, workmode=1
279 279  
226 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
280 280  
228 +[[image:1657249831934-534.png]]
281 281  
282 -=== 2.3.8 ​Decode payload in The Things Network ===
283 283  
284 -While using TTN network, you can add the payload format to decode the payload.
285 285  
232 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
286 286  
287 -[[image:1654505570700-128.png]]
234 +This feature is supported since firmware version v1.0.1
288 288  
289 -The payload decoder function for TTN is here:
290 290  
291 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
237 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
238 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
239 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
292 292  
241 +[[image:1657249864775-321.png]]
293 293  
294 294  
295 -== 2.4 Uplink Interval ==
244 +[[image:1657249930215-289.png]]
296 296  
297 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
298 298  
299 299  
248 +=== 2.2.6 Use MQTT protocol to uplink data ===
300 300  
301 -== 2.5 Downlink Payload ==
250 +This feature is supported since firmware version v110
302 302  
303 -By default, LSE50 prints the downlink payload to console port.
304 304  
305 -[[image:image-20220606165544-8.png]]
253 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
254 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
255 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
256 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
257 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
258 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
259 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
306 306  
261 +[[image:1657249978444-674.png]]
307 307  
308 -**Examples:**
309 309  
264 +[[image:1657249990869-686.png]]
310 310  
311 -* **Set TDC**
312 312  
313 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
267 +(((
268 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
269 +)))
314 314  
315 -Payload:    01 00 00 1E    TDC=30S
316 316  
317 -Payload:    01 00 00 3C    TDC=60S
318 318  
273 +=== 2.2.7 Use TCP protocol to uplink data ===
319 319  
320 -* **Reset**
275 +This feature is supported since firmware version v110
321 321  
322 -If payload = 0x04FF, it will reset the LSE01
323 323  
278 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
279 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
324 324  
325 -* **CFM**
281 +[[image:1657250217799-140.png]]
326 326  
327 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
328 328  
284 +[[image:1657250255956-604.png]]
329 329  
330 330  
331 -== 2.6 ​Show Data in DataCake IoT Server ==
332 332  
333 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
288 +=== 2.2.8 Change Update Interval ===
334 334  
290 +User can use below command to change the (% style="color:green" %)**uplink interval**.
335 335  
336 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
292 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
337 337  
338 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
294 +(((
295 +(% style="color:red" %)**NOTE:**
296 +)))
339 339  
298 +(((
299 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
300 +)))
340 340  
341 -[[image:1654505857935-743.png]]
342 342  
343 343  
344 -[[image:1654505874829-548.png]]
304 +== 2.3  Uplink Payload ==
345 345  
346 -Step 3: Create an account or log in Datacake.
306 +In this mode, uplink payload includes in total 18 bytes
347 347  
348 -Step 4: Search the LSE01 and add DevEUI.
308 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
309 +|=(% style="width: 60px;" %)(((
310 +**Size(bytes)**
311 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
312 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
349 349  
314 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
350 350  
351 -[[image:1654505905236-553.png]]
352 352  
317 +[[image:image-20220708111918-4.png]]
353 353  
354 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
355 355  
356 -[[image:1654505925508-181.png]]
320 +The payload is ASCII string, representative same HEX:
357 357  
322 +0x72403155615900640c7817075e0a8c02f900 where:
358 358  
324 +* Device ID: 0x 724031556159 = 724031556159
325 +* Version: 0x0064=100=1.0.0
359 359  
360 -== 2.7 Frequency Plans ==
327 +* BAT: 0x0c78 = 3192 mV = 3.192V
328 +* Singal: 0x17 = 23
329 +* Soil Moisture: 0x075e= 1886 = 18.86  %
330 +* Soil Temperature:0x0a8c =2700=27 °C
331 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
332 +* Interrupt: 0x00 = 0
361 361  
362 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
363 363  
335 +== 2.4  Payload Explanation and Sensor Interface ==
364 364  
365 -=== 2.7.1 EU863-870 (EU868) ===
366 366  
367 -(% style="color:#037691" %)** Uplink:**
338 +=== 2.4.1  Device ID ===
368 368  
369 -868.1 - SF7BW125 to SF12BW125
340 +By default, the Device ID equal to the last 6 bytes of IMEI.
370 370  
371 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
342 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
372 372  
373 -868.5 - SF7BW125 to SF12BW125
344 +**Example:**
374 374  
375 -867.1 - SF7BW125 to SF12BW125
346 +AT+DEUI=A84041F15612
376 376  
377 -867.3 - SF7BW125 to SF12BW125
348 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
378 378  
379 -867.5 - SF7BW125 to SF12BW125
380 380  
381 -867.7 - SF7BW125 to SF12BW125
382 382  
383 -867.9 - SF7BW125 to SF12BW125
352 +=== 2.4.2  Version Info ===
384 384  
385 -868.8 - FSK
354 +Specify the software version: 0x64=100, means firmware version 1.00.
386 386  
356 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
387 387  
388 -(% style="color:#037691" %)** Downlink:**
389 389  
390 -Uplink channels 1-9 (RX1)
391 391  
392 -869.525 - SF9BW125 (RX2 downlink only)
360 +=== 2.4.3  Battery Info ===
393 393  
362 +(((
363 +Check the battery voltage for LSE01.
364 +)))
394 394  
366 +(((
367 +Ex1: 0x0B45 = 2885mV
368 +)))
395 395  
396 -=== 2.7.2 US902-928(US915) ===
370 +(((
371 +Ex2: 0x0B49 = 2889mV
372 +)))
397 397  
398 -Used in USA, Canada and South America. Default use CHE=2
399 399  
400 -(% style="color:#037691" %)**Uplink:**
401 401  
402 -903.9 - SF7BW125 to SF10BW125
376 +=== 2.4.4  Signal Strength ===
403 403  
404 -904.1 - SF7BW125 to SF10BW125
378 +NB-IoT Network signal Strength.
405 405  
406 -904.3 - SF7BW125 to SF10BW125
380 +**Ex1: 0x1d = 29**
407 407  
408 -904.5 - SF7BW125 to SF10BW125
382 +(% style="color:blue" %)**0**(%%)  -113dBm or less
409 409  
410 -904.7 - SF7BW125 to SF10BW125
384 +(% style="color:blue" %)**1**(%%)  -111dBm
411 411  
412 -904.9 - SF7BW125 to SF10BW125
386 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
413 413  
414 -905.1 - SF7BW125 to SF10BW125
388 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
415 415  
416 -905.3 - SF7BW125 to SF10BW125
390 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
417 417  
418 418  
419 -(% style="color:#037691" %)**Downlink:**
420 420  
421 -923.3 - SF7BW500 to SF12BW500
394 +=== 2.4.5  Soil Moisture ===
422 422  
423 -923.9 - SF7BW500 to SF12BW500
396 +(((
397 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
398 +)))
424 424  
425 -924.5 - SF7BW500 to SF12BW500
400 +(((
401 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
402 +)))
426 426  
427 -925.1 - SF7BW500 to SF12BW500
404 +(((
405 +
406 +)))
428 428  
429 -925.7 - SF7BW500 to SF12BW500
408 +(((
409 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
410 +)))
430 430  
431 -926.3 - SF7BW500 to SF12BW500
432 432  
433 -926.9 - SF7BW500 to SF12BW500
434 434  
435 -927.5 - SF7BW500 to SF12BW500
414 +=== 2.4.6  Soil Temperature ===
436 436  
437 -923.3 - SF12BW500(RX2 downlink only)
416 +(((
417 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
418 +)))
438 438  
420 +(((
421 +**Example**:
422 +)))
439 439  
424 +(((
425 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
426 +)))
440 440  
441 -=== 2.7.3 CN470-510 (CN470) ===
428 +(((
429 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
430 +)))
442 442  
443 -Used in China, Default use CHE=1
444 444  
445 -(% style="color:#037691" %)**Uplink:**
446 446  
447 -486.3 - SF7BW125 to SF12BW125
434 +=== 2.4. Soil Conductivity (EC) ===
448 448  
449 -486.5 - SF7BW125 to SF12BW125
436 +(((
437 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
438 +)))
450 450  
451 -486.7 - SF7BW125 to SF12BW125
440 +(((
441 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
442 +)))
452 452  
453 -486.9 - SF7BW125 to SF12BW125
444 +(((
445 +Generally, the EC value of irrigation water is less than 800uS / cm.
446 +)))
454 454  
455 -487.1 - SF7BW125 to SF12BW125
448 +(((
449 +
450 +)))
456 456  
457 -487.3 - SF7BW125 to SF12BW125
452 +(((
453 +
454 +)))
458 458  
459 -487.5 - SF7BW125 to SF12BW125
456 +=== 2.4. Digital Interrupt ===
460 460  
461 -487.7 - SF7BW125 to SF12BW125
458 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
462 462  
460 +The command is:
463 463  
464 -(% style="color:#037691" %)**Downlink:**
462 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
465 465  
466 -506.7 - SF7BW125 to SF12BW125
467 467  
468 -506.9 - SF7BW125 to SF12BW125
465 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
469 469  
470 -507.1 - SF7BW125 to SF12BW125
471 471  
472 -507.3 - SF7BW125 to SF12BW125
468 +Example:
473 473  
474 -507.5 - SF7BW125 to SF12BW125
470 +0x(00): Normal uplink packet.
475 475  
476 -507.7 - SF7BW125 to SF12BW125
472 +0x(01): Interrupt Uplink Packet.
477 477  
478 -507.9 - SF7BW125 to SF12BW125
479 479  
480 -508.1 - SF7BW125 to SF12BW125
481 481  
482 -505.3 - SF12BW125 (RX2 downlink only)
476 +=== 2.4.9  ​+5V Output ===
483 483  
478 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
484 484  
485 485  
486 -=== 2.7.4 AU915-928(AU915) ===
481 +The 5V output time can be controlled by AT Command.
487 487  
488 -Default use CHE=2
483 +(% style="color:blue" %)**AT+5VT=1000**
489 489  
490 -(% style="color:#037691" %)**Uplink:**
485 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
491 491  
492 -916.8 - SF7BW125 to SF12BW125
493 493  
494 -917.0 - SF7BW125 to SF12BW125
495 495  
496 -917.2 - SF7BW125 to SF12BW125
489 +== 2.5  Downlink Payload ==
497 497  
498 -917.4 - SF7BW125 to SF12BW125
491 +By default, NSE01 prints the downlink payload to console port.
499 499  
500 -917.6 - SF7BW125 to SF12BW125
493 +[[image:image-20220708133731-5.png]]
501 501  
502 -917.8 - SF7BW125 to SF12BW125
503 503  
504 -918.0 - SF7BW125 to SF12BW125
496 +(((
497 +(% style="color:blue" %)**Examples:**
498 +)))
505 505  
506 -918.2 - SF7BW125 to SF12BW125
500 +(((
501 +
502 +)))
507 507  
504 +* (((
505 +(% style="color:blue" %)**Set TDC**
506 +)))
508 508  
509 -(% style="color:#037691" %)**Downlink:**
508 +(((
509 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
510 +)))
510 510  
511 -923.3 - SF7BW500 to SF12BW500
512 +(((
513 +Payload:    01 00 00 1E    TDC=30S
514 +)))
512 512  
513 -923.9 - SF7BW500 to SF12BW500
516 +(((
517 +Payload:    01 00 00 3C    TDC=60S
518 +)))
514 514  
515 -924.5 - SF7BW500 to SF12BW500
520 +(((
521 +
522 +)))
516 516  
517 -925.1 - SF7BW500 to SF12BW500
524 +* (((
525 +(% style="color:blue" %)**Reset**
526 +)))
518 518  
519 -925.7 - SF7BW500 to SF12BW500
528 +(((
529 +If payload = 0x04FF, it will reset the NSE01
530 +)))
520 520  
521 -926.3 - SF7BW500 to SF12BW500
522 522  
523 -926.9 - SF7BW500 to SF12BW500
533 +* (% style="color:blue" %)**INTMOD**
524 524  
525 -927.5 - SF7BW500 to SF12BW500
535 +Downlink Payload: 06000003, Set AT+INTMOD=3
526 526  
527 -923.3 - SF12BW500(RX2 downlink only)
528 528  
529 529  
539 +== 2.6  ​LED Indicator ==
530 530  
531 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
541 +(((
542 +The NSE01 has an internal LED which is to show the status of different state.
532 532  
533 -(% style="color:#037691" %)**Default Uplink channel:**
534 534  
535 -923.2 - SF7BW125 to SF10BW125
545 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
546 +* Then the LED will be on for 1 second means device is boot normally.
547 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
548 +* For each uplink probe, LED will be on for 500ms.
549 +)))
536 536  
537 -923.4 - SF7BW125 to SF10BW125
538 538  
539 539  
540 -(% style="color:#037691" %)**Additional Uplink Channel**:
541 541  
542 -(OTAA mode, channel added by JoinAccept message)
554 +== 2.7  Installation in Soil ==
543 543  
544 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
556 +__**Measurement the soil surface**__
545 545  
546 -922.2 - SF7BW125 to SF10BW125
558 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
547 547  
548 -922.4 - SF7BW125 to SF10BW125
560 +[[image:1657259653666-883.png]] ​
549 549  
550 -922.6 - SF7BW125 to SF10BW125
551 551  
552 -922.8 - SF7BW125 to SF10BW125
563 +(((
564 +
553 553  
554 -923.0 - SF7BW125 to SF10BW125
566 +(((
567 +Dig a hole with diameter > 20CM.
568 +)))
555 555  
556 -922.0 - SF7BW125 to SF10BW125
570 +(((
571 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
572 +)))
573 +)))
557 557  
575 +[[image:1654506665940-119.png]]
558 558  
559 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
577 +(((
578 +
579 +)))
560 560  
561 -923.6 - SF7BW125 to SF10BW125
562 562  
563 -923.8 - SF7BW125 to SF10BW125
582 +== 2.8  Firmware Change Log ==
564 564  
565 -924.0 - SF7BW125 to SF10BW125
566 566  
567 -924.2 - SF7BW125 to SF10BW125
585 +Download URL & Firmware Change log
568 568  
569 -924.4 - SF7BW125 to SF10BW125
587 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
570 570  
571 -924.6 - SF7BW125 to SF10BW125
572 572  
590 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
573 573  
574 -(% style="color:#037691" %)** Downlink:**
575 575  
576 -Uplink channels 1-8 (RX1)
577 577  
578 -923.2 - SF10BW125 (RX2)
594 +== 2. Battery Analysis ==
579 579  
596 +=== 2.9.1  ​Battery Type ===
580 580  
581 581  
582 -=== 2.7.6 KR920-923 (KR920) ===
599 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
583 583  
584 -Default channel:
585 585  
586 -922.1 - SF7BW125 to SF12BW125
602 +The battery is designed to last for several years depends on the actually use environment and update interval. 
587 587  
588 -922.3 - SF7BW125 to SF12BW125
589 589  
590 -922.5 - SF7BW125 to SF12BW125
605 +The battery related documents as below:
591 591  
607 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
608 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
609 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
592 592  
593 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
594 -
595 -922.1 - SF7BW125 to SF12BW125
596 -
597 -922.3 - SF7BW125 to SF12BW125
598 -
599 -922.5 - SF7BW125 to SF12BW125
600 -
601 -922.7 - SF7BW125 to SF12BW125
602 -
603 -922.9 - SF7BW125 to SF12BW125
604 -
605 -923.1 - SF7BW125 to SF12BW125
606 -
607 -923.3 - SF7BW125 to SF12BW125
608 -
609 -
610 -(% style="color:#037691" %)**Downlink:**
611 -
612 -Uplink channels 1-7(RX1)
613 -
614 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
615 -
616 -
617 -
618 -=== 2.7.7 IN865-867 (IN865) ===
619 -
620 -(% style="color:#037691" %)** Uplink:**
621 -
622 -865.0625 - SF7BW125 to SF12BW125
623 -
624 -865.4025 - SF7BW125 to SF12BW125
625 -
626 -865.9850 - SF7BW125 to SF12BW125
627 -
628 -
629 -(% style="color:#037691" %) **Downlink:**
630 -
631 -Uplink channels 1-3 (RX1)
632 -
633 -866.550 - SF10BW125 (RX2)
634 -
635 -
636 -
637 -
638 -== 2.8 LED Indicator ==
639 -
640 -The LSE01 has an internal LED which is to show the status of different state.
641 -
642 -* Blink once when device power on.
643 -* Solid ON for 5 seconds once device successful Join the network.
644 -* Blink once when device transmit a packet.
645 -
646 -== 2.9 Installation in Soil ==
647 -
648 -**Measurement the soil surface**
649 -
650 -
651 -[[image:1654506634463-199.png]] ​
652 -
653 653  (((
654 -(((
655 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
612 +[[image:image-20220708140453-6.png]]
656 656  )))
657 -)))
658 658  
659 659  
660 -[[image:1654506665940-119.png]]
661 661  
662 -(((
663 -Dig a hole with diameter > 20CM.
664 -)))
617 +=== 2.9.2  Power consumption Analyze ===
665 665  
666 666  (((
667 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
620 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
668 668  )))
669 669  
670 670  
671 -== 2.10 ​Firmware Change Log ==
672 -
673 673  (((
674 -**Firmware download link:**
625 +Instruction to use as below:
675 675  )))
676 676  
677 677  (((
678 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
629 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
679 679  )))
680 680  
681 -(((
682 -
683 -)))
684 684  
685 685  (((
686 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
634 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
687 687  )))
688 688  
689 -(((
690 -
637 +* (((
638 +Product Model
691 691  )))
692 -
693 -(((
694 -**V1.0.**
640 +* (((
641 +Uplink Interval
695 695  )))
643 +* (((
644 +Working Mode
645 +)))
696 696  
697 697  (((
698 -Release
648 +And the Life expectation in difference case will be shown on the right.
699 699  )))
700 700  
651 +[[image:image-20220708141352-7.jpeg]]
701 701  
702 -== 2.11 ​Battery Analysis ==
703 703  
704 -=== 2.11.1 ​Battery Type ===
705 705  
706 -(((
707 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
708 -)))
655 +=== 2.9.3  ​Battery Note ===
709 709  
710 710  (((
711 -The battery is designed to last for more than 5 years for the LSN50.
658 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
712 712  )))
713 713  
714 -(((
715 -(((
716 -The battery-related documents are as below:
717 -)))
718 -)))
719 719  
720 -* (((
721 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
722 -)))
723 -* (((
724 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
725 -)))
726 -* (((
727 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
728 -)))
729 729  
730 - [[image:image-20220606171726-9.png]]
663 +=== 2.9.4  Replace the battery ===
731 731  
732 -
733 -
734 -=== 2.11.2 ​Battery Note ===
735 -
736 736  (((
737 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
666 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
738 738  )))
739 739  
740 740  
741 741  
742 -=== 2.11.3 Replace the battery ===
671 += 3. ​ Access NB-IoT Module =
743 743  
744 744  (((
745 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
674 +Users can directly access the AT command set of the NB-IoT module.
746 746  )))
747 747  
748 748  (((
749 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
678 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
750 750  )))
751 751  
752 -(((
753 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
754 -)))
681 +[[image:1657261278785-153.png]]
755 755  
756 756  
757 757  
758 -= 3. Using the AT Commands =
685 += 4.  Using the AT Commands =
759 759  
760 -== 3.1 Access AT Commands ==
687 +== 4.1  Access AT Commands ==
761 761  
689 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
762 762  
763 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
764 764  
765 -[[image:1654501986557-872.png||height="391" width="800"]]
692 +AT+<CMD>?  : Help on <CMD>
766 766  
694 +AT+<CMD>         : Run <CMD>
767 767  
768 -Or if you have below board, use below connection:
696 +AT+<CMD>=<value> : Set the value
769 769  
698 +AT+<CMD>=?  : Get the value
770 770  
771 -[[image:1654502005655-729.png||height="503" width="801"]]
772 772  
773 -
774 -
775 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
776 -
777 -
778 - [[image:1654502050864-459.png||height="564" width="806"]]
779 -
780 -
781 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
782 -
783 -
784 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
785 -
786 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
787 -
788 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
789 -
790 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
791 -
792 -
793 793  (% style="color:#037691" %)**General Commands**(%%)      
794 794  
795 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
703 +AT  : Attention       
796 796  
797 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
705 +AT?  : Short Help     
798 798  
799 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
707 +ATZ  : MCU Reset    
800 800  
801 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
709 +AT+TDC  : Application Data Transmission Interval
802 802  
711 +AT+CFG  : Print all configurations
803 803  
804 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
713 +AT+CFGMOD           : Working mode selection
805 805  
806 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
715 +AT+INTMOD            : Set the trigger interrupt mode
807 807  
808 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
717 +AT+5VT  : Set extend the time of 5V power  
809 809  
810 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
719 +AT+PRO  : Choose agreement
811 811  
812 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
721 +AT+WEIGRE  : Get weight or set weight to 0
813 813  
814 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
723 +AT+WEIGAP  : Get or Set the GapValue of weight
815 815  
816 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
725 +AT+RXDL  : Extend the sending and receiving time
817 817  
818 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
727 +AT+CNTFAC  : Get or set counting parameters
819 819  
820 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
729 +AT+SERVADDR  : Server Address
821 821  
822 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
823 823  
824 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
732 +(% style="color:#037691" %)**COAP Management**      
825 825  
826 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
734 +AT+URI            : Resource parameters
827 827  
828 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
829 829  
830 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
737 +(% style="color:#037691" %)**UDP Management**
831 831  
832 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
739 +AT+CFM          : Upload confirmation mode (only valid for UDP)
833 833  
834 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
835 835  
836 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
742 +(% style="color:#037691" %)**MQTT Management**
837 837  
744 +AT+CLIENT               : Get or Set MQTT client
838 838  
839 -(% style="color:#037691" %)**LoRa Network Management**
746 +AT+UNAME  : Get or Set MQTT Username
840 840  
841 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
748 +AT+PWD                  : Get or Set MQTT password
842 842  
843 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
750 +AT+PUBTOPI : Get or Set MQTT publish topic
844 844  
845 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
752 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
846 846  
847 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
848 848  
849 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
755 +(% style="color:#037691" %)**Information**          
850 850  
851 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
757 +AT+FDR  : Factory Data Reset
852 852  
853 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
759 +AT+PWOR : Serial Access Password
854 854  
855 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
856 856  
857 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
858 858  
859 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
763 += ​5.  FAQ =
860 860  
861 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
765 +== 5.1 How to Upgrade Firmware ==
862 862  
863 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
864 864  
865 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
866 -
867 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
868 -
869 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
870 -
871 -
872 -(% style="color:#037691" %)**Information** 
873 -
874 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
875 -
876 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
877 -
878 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
879 -
880 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
881 -
882 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
883 -
884 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
885 -
886 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
887 -
888 -
889 -= ​4. FAQ =
890 -
891 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
892 -
893 893  (((
894 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
895 -When downloading the images, choose the required image file for download. ​
769 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
896 896  )))
897 897  
898 898  (((
899 -
773 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
900 900  )))
901 901  
902 902  (((
903 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
777 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
904 904  )))
905 905  
906 -(((
907 -
908 -)))
909 909  
910 -(((
911 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
912 -)))
913 913  
914 -(((
915 -
916 -)))
782 += 6.  Trouble Shooting =
917 917  
918 -(((
919 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
920 -)))
784 +== 6.1  ​Connection problem when uploading firmware ==
921 921  
922 -[[image:image-20220606154726-3.png]]
923 923  
924 -
925 -When you use the TTN network, the US915 frequency bands use are:
926 -
927 -* 903.9 - SF7BW125 to SF10BW125
928 -* 904.1 - SF7BW125 to SF10BW125
929 -* 904.3 - SF7BW125 to SF10BW125
930 -* 904.5 - SF7BW125 to SF10BW125
931 -* 904.7 - SF7BW125 to SF10BW125
932 -* 904.9 - SF7BW125 to SF10BW125
933 -* 905.1 - SF7BW125 to SF10BW125
934 -* 905.3 - SF7BW125 to SF10BW125
935 -* 904.6 - SF8BW500
936 -
787 +(% class="wikigeneratedid" %)
937 937  (((
938 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
789 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
939 939  )))
940 940  
941 -(% class="box infomessage" %)
942 -(((
943 -**AT+CHE=2**
944 -)))
945 945  
946 -(% class="box infomessage" %)
947 -(((
948 -**ATZ**
949 -)))
950 950  
951 -(((
952 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
953 -)))
794 +== 6.2  AT Command input doesn't work ==
954 954  
955 955  (((
956 -
797 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
957 957  )))
958 958  
959 -(((
960 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
961 -)))
962 962  
963 -[[image:image-20220606154825-4.png]]
964 964  
802 += 7. ​ Order Info =
965 965  
966 966  
967 -= 5. Trouble Shooting =
805 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
968 968  
969 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
970 970  
971 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
972 -
973 -
974 -== 5.2 AT Command input doesn’t work ==
975 -
976 -(((
977 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
978 -)))
979 -
980 -
981 -== 5.3 Device rejoin in at the second uplink packet ==
982 -
983 -(% style="color:#4f81bd" %)**Issue describe as below:**
984 -
985 -[[image:1654500909990-784.png]]
986 -
987 -
988 -(% style="color:#4f81bd" %)**Cause for this issue:**
989 -
990 -(((
991 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
992 -)))
993 -
994 -
995 -(% style="color:#4f81bd" %)**Solution: **
996 -
997 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
998 -
999 -[[image:1654500929571-736.png||height="458" width="832"]]
1000 -
1001 -
1002 -= 6. ​Order Info =
1003 -
1004 -
1005 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1006 -
1007 -
1008 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1009 -
1010 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1011 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1012 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1013 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1014 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1015 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1016 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1017 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1018 -
1019 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1020 -
1021 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1022 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1023 -
1024 1024  (% class="wikigeneratedid" %)
1025 1025  (((
1026 1026  
1027 1027  )))
1028 1028  
1029 -= 7. Packing Info =
813 += 8.  Packing Info =
1030 1030  
1031 1031  (((
1032 1032  
1033 1033  
1034 1034  (% style="color:#037691" %)**Package Includes**:
1035 -)))
1036 1036  
1037 -* (((
1038 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
820 +
821 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
822 +* External antenna x 1
1039 1039  )))
1040 1040  
1041 1041  (((
... ... @@ -1042,27 +1042,20 @@
1042 1042  
1043 1043  
1044 1044  (% style="color:#037691" %)**Dimension and weight**:
1045 -)))
1046 1046  
1047 -* (((
1048 -Device Size: cm
830 +
831 +* Size: 195 x 125 x 55 mm
832 +* Weight:   420g
1049 1049  )))
1050 -* (((
1051 -Device Weight: g
1052 -)))
1053 -* (((
1054 -Package Size / pcs : cm
1055 -)))
1056 -* (((
1057 -Weight / pcs : g
1058 1058  
835 +(((
836 +
1059 1059  
838 +
1060 1060  
1061 1061  )))
1062 1062  
1063 -= 8. Support =
842 += 9.  Support =
1064 1064  
1065 1065  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1066 1066  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1067 -
1068 -
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content