Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 24 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220606151504-2.jpeg||height=" 848" width="848"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 ... ... @@ -8,714 +8,643 @@ 8 8 9 9 10 10 11 -= 1. Introduction = 12 12 13 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 14 14 15 -((( 16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 -))) 18 18 19 -((( 20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 21 -))) 14 +**Table of Contents:** 22 22 23 -((( 24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 25 -))) 16 +{{toc/}} 26 26 27 -((( 28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 29 -))) 30 30 31 -((( 32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 -))) 34 34 35 35 36 -[[image:1654503236291-817.png]] 37 37 38 38 39 - [[image:1654503265560-120.png]]23 += 1. Introduction = 40 40 25 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 41 41 42 - 43 -== 1.2 Features == 44 - 45 -* LoRaWAN 1.0.3 Class A 46 -* Ultra low power consumption 47 -* Monitor Soil Moisture 48 -* Monitor Soil Temperature 49 -* Monitor Soil Conductivity 50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 -* AT Commands to change parameters 52 -* Uplink on periodically 53 -* Downlink to change configure 54 -* IP66 Waterproof Enclosure 55 -* 4000mAh or 8500mAh Battery for long term use 56 - 57 -== 1.3 Specification == 58 - 59 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 60 - 61 -[[image:image-20220606162220-5.png]] 62 - 63 - 64 - 65 -== 1.4 Applications == 66 - 67 -* Smart Agriculture 68 - 69 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 70 - 71 - 72 -== 1.5 Firmware Change log == 73 - 74 - 75 -**LSE01 v1.0 :** Release 76 - 77 - 78 - 79 -= 2. Configure LSE01 to connect to LoRaWAN network = 80 - 81 -== 2.1 How it works == 82 - 83 83 ((( 84 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 85 -))) 28 + 86 86 87 -((( 88 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 89 -))) 30 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 90 90 32 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 91 91 34 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 92 92 93 - ==2.2QuickguidetoconnecttoLoRaWANserver(OTAA) ==36 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 94 94 95 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 96 - 97 - 98 -[[image:1654503992078-669.png]] 99 - 100 - 101 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 102 - 103 - 104 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 105 - 106 -Each LSE01 is shipped with a sticker with the default device EUI as below: 107 - 108 -[[image:image-20220606163732-6.jpeg]] 109 - 110 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 111 - 112 -**Add APP EUI in the application** 113 - 114 - 115 -[[image:1654504596150-405.png]] 116 - 117 - 118 - 119 -**Add APP KEY and DEV EUI** 120 - 121 -[[image:1654504683289-357.png]] 122 - 123 - 124 - 125 -**Step 2**: Power on LSE01 126 - 127 - 128 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 129 - 130 -[[image:image-20220606163915-7.png]] 131 - 132 - 133 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 134 - 135 -[[image:1654504778294-788.png]] 136 - 137 - 138 - 139 -== 2.3 Uplink Payload == 140 - 141 -=== 2.3.1 MOD~=0(Default Mode) === 142 - 143 -LSE01 will uplink payload via LoRaWAN with below payload format: 144 - 145 - 146 -Uplink payload includes in total 11 bytes. 147 147 39 +))) 148 148 149 -|((( 150 -**Size** 41 +[[image:1654503236291-817.png]] 151 151 152 -**(bytes)** 153 -)))|**2**|**2**|**2**|**2**|**2**|**1** 154 -|**Value**|[[BAT>>path:#bat]]|((( 155 -Temperature 156 156 157 -(Reserve, Ignore now) 158 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|((( 159 -MOD & Digital Interrupt 44 +[[image:1657245163077-232.png]] 160 160 161 -(Optional) 162 -))) 163 163 164 -[[image:1654504881641-514.png]] 165 165 48 +== 1.2 Features == 166 166 50 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 51 +* Monitor Soil Moisture 52 +* Monitor Soil Temperature 53 +* Monitor Soil Conductivity 54 +* AT Commands to change parameters 55 +* Uplink on periodically 56 +* Downlink to change configure 57 +* IP66 Waterproof Enclosure 58 +* Ultra-Low Power consumption 59 +* AT Commands to change parameters 60 +* Micro SIM card slot for NB-IoT SIM 61 +* 8500mAh Battery for long term use 167 167 168 -=== 2.3.2 MOD~=1(Original value) === 169 169 170 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 171 171 172 -|((( 173 -**Size** 174 174 175 -**(bytes)** 176 -)))|**2**|**2**|**2**|**2**|**2**|**1** 177 -|**Value**|[[BAT>>path:#bat]]|((( 178 -Temperature 66 +== 1.3 Specification == 179 179 180 -(Reserve, Ignore now) 181 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|((( 182 -MOD & Digital Interrupt 183 183 184 -(Optional) 185 -))) 69 +(% style="color:#037691" %)**Common DC Characteristics:** 186 186 187 -[[image:1654504907647-967.png]] 71 +* Supply Voltage: 2.1v ~~ 3.6v 72 +* Operating Temperature: -40 ~~ 85°C 188 188 189 189 190 190 191 - ===2.3.3 BatteryInfo===76 +(% style="color:#037691" %)**NB-IoT Spec:** 192 192 193 -Check the battery voltage for LSE01. 78 +* - B1 @H-FDD: 2100MHz 79 +* - B3 @H-FDD: 1800MHz 80 +* - B8 @H-FDD: 900MHz 81 +* - B5 @H-FDD: 850MHz 82 +* - B20 @H-FDD: 800MHz 83 +* - B28 @H-FDD: 700MHz 194 194 195 -Ex1: 0x0B45 = 2885mV 196 196 197 -Ex2: 0x0B49 = 2889mV 198 198 87 +Probe(% style="color:#037691" %)** Specification:** 199 199 89 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 200 200 201 - === 2.3.4 Soil Moisture===91 +[[image:image-20220708101224-1.png]] 202 202 203 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 204 204 205 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 206 206 95 +== 1.4 Applications == 207 207 208 - (%style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**97 +* Smart Agriculture 209 209 99 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 100 + 210 210 102 +== 1.5 Pin Definitions == 211 211 212 -=== 2.3.5 Soil Temperature === 213 213 214 - Get the temperature in the soil. The value rangeof the register is -4000 - +800(Decimal), divide this value by100 to get the temperature in the soil.For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is105 +[[image:1657246476176-652.png]] 215 215 216 -**Example**: 217 217 218 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 219 219 220 - IfpayloadisFF7EH: ((FF7E &0x8000)>>15===1),temp=(FF7E(H)-FFFF(H))/100=-1.29 °C109 += 2. Use NSE01 to communicate with IoT Server = 221 221 111 +== 2.1 How it works == 222 222 223 223 224 -=== 2.3.6 Soil Conductivity (EC) === 225 - 226 226 ((( 227 - Obtain(%style="color:#4f81bd"%)**__solublesaltconcentration__**(%%)insoil or (% style="color:#4f81bd"%)**__soluble ionconcentrationinliquidfertilizer__**(%%)or(% style="color:#4f81bd"%)**__plantingmedium__**(%%). Thevaluerangeftheregister is0 - 20000(Decimal)(Canbegreaterthan20000).115 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 228 228 ))) 229 229 230 -((( 231 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 232 -))) 233 233 234 234 ((( 235 - Generally,theEC valueof irrigationwateris lessthan800uS/ cm.120 +The diagram below shows the working flow in default firmware of NSE01: 236 236 ))) 237 237 238 -((( 239 - 240 -))) 123 +[[image:image-20220708101605-2.png]] 241 241 242 242 ((( 243 243 244 244 ))) 245 245 246 -=== 2.3.7 MOD === 247 247 248 -Firmware version at least v2.1 supports changing mode. 249 249 250 - Forxample,bytes[10]=90131 +== 2.2 Configure the NSE01 == 251 251 252 -mod=(bytes[10]>>7)&0x01=1. 253 253 134 +=== 2.2.1 Test Requirement === 254 254 255 -Downlink Command: 256 256 257 - If payload=0x0A00,workmode=0137 +To use NSE01 in your city, make sure meet below requirements: 258 258 259 -If** **payload =** **0x0A01, workmode=1 139 +* Your local operator has already distributed a NB-IoT Network there. 140 +* The local NB-IoT network used the band that NSE01 supports. 141 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 260 260 143 +((( 144 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 145 +))) 261 261 262 262 263 - ===2.3.8 Decodepayload inThe Things Network ===148 +[[image:1657249419225-449.png]] 264 264 265 -While using TTN network, you can add the payload format to decode the payload. 266 266 267 267 268 - [[image:1654505570700-128.png]]152 +=== 2.2.2 Insert SIM card === 269 269 270 - ThepayloaddecoderfunctionforTTNis here:154 +Insert the NB-IoT Card get from your provider. 271 271 272 - LSE01 TTN Payload Decoder:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]156 +User need to take out the NB-IoT module and insert the SIM card like below: 273 273 274 274 275 - ==2.4Uplink Interval ==159 +[[image:1657249468462-536.png]] 276 276 277 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: 278 278 279 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 280 280 163 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 281 281 165 +((( 166 +((( 167 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 168 +))) 169 +))) 282 282 283 -== 2.5 Downlink Payload == 284 284 285 - By default, LSE50 prints the downlink payloadtoconsole port.172 +**Connection:** 286 286 287 - [[image:image-20220606165544-8.png]]174 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 288 288 176 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 289 289 290 - **Examples:**178 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 291 291 292 292 293 - ***SetTDC**181 +In the PC, use below serial tool settings: 294 294 295 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 183 +* Baud: (% style="color:green" %)**9600** 184 +* Data bits:** (% style="color:green" %)8(%%)** 185 +* Stop bits: (% style="color:green" %)**1** 186 +* Parity: (% style="color:green" %)**None** 187 +* Flow Control: (% style="color:green" %)**None** 296 296 297 -Payload: 01 00 00 1E TDC=30S 189 +((( 190 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 191 +))) 298 298 299 - Payload:1000 3C TDC=60S193 +[[image:image-20220708110657-3.png]] 300 300 195 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 301 301 302 -* **Reset** 303 303 304 -If payload = 0x04FF, it will reset the LSE01 305 305 199 +=== 2.2.4 Use CoAP protocol to uplink data === 306 306 307 - ***CFM**201 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 308 308 309 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 310 310 204 +**Use below commands:** 311 311 206 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 207 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 208 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 312 312 313 - == 2.6 ShowData inDataCakeIoT Server==210 +For parameter description, please refer to AT command set 314 314 315 -[[ DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]]to connect to TTN and see the data in DATACAKE. Below are the steps:212 +[[image:1657249793983-486.png]] 316 316 317 317 318 - **Step1**: Be sure thatyour deviceis programmed andproperlyconnectedtothenetworkat this time.215 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 319 319 320 - **Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add theDATACAKE integration,perform the followingsteps:217 +[[image:1657249831934-534.png]] 321 321 322 322 323 -[[image:1654505857935-743.png]] 324 324 221 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 325 325 326 - [[image:1654505874829-548.png]]223 +This feature is supported since firmware version v1.0.1 327 327 328 -Step 3: Create an account or log in Datacake. 329 329 330 -Step 4: Search the LSE01 and add DevEUI. 226 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 227 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 228 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 331 331 230 +[[image:1657249864775-321.png]] 332 332 333 -[[image:1654505905236-553.png]] 334 334 233 +[[image:1657249930215-289.png]] 335 335 336 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 337 337 338 -[[image:1654505925508-181.png]] 339 339 237 +=== 2.2.6 Use MQTT protocol to uplink data === 340 340 239 +This feature is supported since firmware version v110 341 341 342 -== 2.7 Frequency Plans == 343 343 344 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 242 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 243 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 244 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 245 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 246 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 247 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 248 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 345 345 250 +[[image:1657249978444-674.png]] 346 346 347 -=== 2.7.1 EU863-870 (EU868) === 348 348 349 - (% style="color:#037691" %)** Uplink:**253 +[[image:1657249990869-686.png]] 350 350 351 -868.1 - SF7BW125 to SF12BW125 352 352 353 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 256 +((( 257 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 258 +))) 354 354 355 -868.5 - SF7BW125 to SF12BW125 356 356 357 -867.1 - SF7BW125 to SF12BW125 358 358 359 - 867.3-SF7BW125toSF12BW125262 +=== 2.2.7 Use TCP protocol to uplink data === 360 360 361 - 867.5-SF7BW125toSF12BW125264 +This feature is supported since firmware version v110 362 362 363 -867.7 - SF7BW125 to SF12BW125 364 364 365 -867.9 - SF7BW125 to SF12BW125 267 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 268 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 366 366 367 - 868.8-FSK270 +[[image:1657250217799-140.png]] 368 368 369 369 370 - (% style="color:#037691" %)** Downlink:**273 +[[image:1657250255956-604.png]] 371 371 372 -Uplink channels 1-9 (RX1) 373 373 374 -869.525 - SF9BW125 (RX2 downlink only) 375 375 277 +=== 2.2.8 Change Update Interval === 376 376 279 +User can use below command to change the (% style="color:green" %)**uplink interval**. 377 377 378 -== =2.7.2US902-928(US915)===281 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 379 379 380 -Used in USA, Canada and South America. Default use CHE=2 283 +((( 284 +(% style="color:red" %)**NOTE:** 285 +))) 381 381 382 -(% style="color:#037691" %)**Uplink:** 287 +((( 288 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 289 +))) 383 383 384 -903.9 - SF7BW125 to SF10BW125 385 385 386 -904.1 - SF7BW125 to SF10BW125 387 387 388 - 904.3-SF7BW125 toSF10BW125293 +== 2.3 Uplink Payload == 389 389 390 - 904.5-SF7BW125toSF10BW125295 +In this mode, uplink payload includes in total 18 bytes 391 391 392 -904.7 - SF7BW125 to SF10BW125 297 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 298 +|=(% style="width: 50px;" %)((( 299 +**Size(bytes)** 300 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 301 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 393 393 394 - 904.9-SF7BW125to SF10BW125303 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 395 395 396 -905.1 - SF7BW125 to SF10BW125 397 397 398 - 905.3-SF7BW125 to SF10BW125306 +[[image:image-20220708111918-4.png]] 399 399 400 400 401 - (%style="color:#037691"%)**Downlink:**309 +The payload is ASCII string, representative same HEX: 402 402 403 - 923.3 - SF7BW500to SF12BW500311 +0x72403155615900640c7817075e0a8c02f900 where: 404 404 405 -923.9 - SF7BW500 to SF12BW500 313 +* Device ID: 0x 724031556159 = 724031556159 314 +* Version: 0x0064=100=1.0.0 406 406 407 -924.5 - SF7BW500 to SF12BW500 316 +* BAT: 0x0c78 = 3192 mV = 3.192V 317 +* Singal: 0x17 = 23 318 +* Soil Moisture: 0x075e= 1886 = 18.86 % 319 +* Soil Temperature:0x0a8c =2700=27 °C 320 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 321 +* Interrupt: 0x00 = 0 408 408 409 -925.1 - SF7BW500 to SF12BW500 410 410 411 -925.7 - SF7BW500 to SF12BW500 412 412 413 -926.3 - SF7BW500 to SF12BW500 414 414 415 - 926.9-SF7BW500to SF12BW500326 +== 2.4 Payload Explanation and Sensor Interface == 416 416 417 -927.5 - SF7BW500 to SF12BW500 418 418 419 - 923.3 - SF12BW500(RX2 downlinkonly)329 +=== 2.4.1 Device ID === 420 420 331 +By default, the Device ID equal to the last 6 bytes of IMEI. 421 421 333 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 422 422 423 - === 2.7.3 CN470-510 (CN470) ===335 +**Example:** 424 424 425 - Used in China,Default use CHE=1337 +AT+DEUI=A84041F15612 426 426 427 - (%style="color:#037691"%)**Uplink:**339 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 428 428 429 -486.3 - SF7BW125 to SF12BW125 430 430 431 -486.5 - SF7BW125 to SF12BW125 432 432 433 -4 86.7 - SF7BW125toSF12BW125343 +=== 2.4.2 Version Info === 434 434 435 - 486.9-SF7BW125toSF12BW125345 +Specify the software version: 0x64=100, means firmware version 1.00. 436 436 437 -4 87.1-SF7BW125toSF12BW125347 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 438 438 439 -487.3 - SF7BW125 to SF12BW125 440 440 441 -487.5 - SF7BW125 to SF12BW125 442 442 443 -4 87.7- SF7BW125toSF12BW125351 +=== 2.4.3 Battery Info === 444 444 353 +((( 354 +Check the battery voltage for LSE01. 355 +))) 445 445 446 -(% style="color:#037691" %)**Downlink:** 357 +((( 358 +Ex1: 0x0B45 = 2885mV 359 +))) 447 447 448 -506.7 - SF7BW125 to SF12BW125 361 +((( 362 +Ex2: 0x0B49 = 2889mV 363 +))) 449 449 450 -506.9 - SF7BW125 to SF12BW125 451 451 452 -507.1 - SF7BW125 to SF12BW125 453 453 454 - 507.3-SF7BW125toSF12BW125367 +=== 2.4.4 Signal Strength === 455 455 456 - 507.5-SF7BW125to SF12BW125369 +NB-IoT Network signal Strength. 457 457 458 - 507.7- SF7BW125toSF12BW125371 +**Ex1: 0x1d = 29** 459 459 460 - 507.9-SF7BW125toSF12BW125373 +(% style="color:blue" %)**0**(%%) -113dBm or less 461 461 462 - 508.1-SF7BW125toSF12BW125375 +(% style="color:blue" %)**1**(%%) -111dBm 463 463 464 - 505.3 -SF12BW125(RX2downlink only)377 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 465 465 379 +(% style="color:blue" %)**31** (%%) -51dBm or greater 466 466 381 +(% style="color:blue" %)**99** (%%) Not known or not detectable 467 467 468 -=== 2.7.4 AU915-928(AU915) === 469 469 470 -Default use CHE=2 471 471 472 - (% style="color:#037691"%)**Uplink:**385 +=== 2.4.5 Soil Moisture === 473 473 474 -916.8 - SF7BW125 to SF12BW125 387 +((( 388 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 389 +))) 475 475 476 -917.0 - SF7BW125 to SF12BW125 391 +((( 392 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 393 +))) 477 477 478 -917.2 - SF7BW125 to SF12BW125 395 +((( 396 + 397 +))) 479 479 480 -917.4 - SF7BW125 to SF12BW125 399 +((( 400 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 401 +))) 481 481 482 -917.6 - SF7BW125 to SF12BW125 483 483 484 -917.8 - SF7BW125 to SF12BW125 485 485 486 - 918.0-SF7BW125toSF12BW125405 +=== 2.4.6 Soil Temperature === 487 487 488 -918.2 - SF7BW125 to SF12BW125 407 +((( 408 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 409 +))) 489 489 411 +((( 412 +**Example**: 413 +))) 490 490 491 -(% style="color:#037691" %)**Downlink:** 415 +((( 416 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 417 +))) 492 492 493 -923.3 - SF7BW500 to SF12BW500 419 +((( 420 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 421 +))) 494 494 495 -923.9 - SF7BW500 to SF12BW500 496 496 497 -924.5 - SF7BW500 to SF12BW500 498 498 499 - 925.1-SF7BW500toSF12BW500425 +=== 2.4.7 Soil Conductivity (EC) === 500 500 501 -925.7 - SF7BW500 to SF12BW500 427 +((( 428 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 429 +))) 502 502 503 -926.3 - SF7BW500 to SF12BW500 431 +((( 432 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 433 +))) 504 504 505 -926.9 - SF7BW500 to SF12BW500 435 +((( 436 +Generally, the EC value of irrigation water is less than 800uS / cm. 437 +))) 506 506 507 -927.5 - SF7BW500 to SF12BW500 439 +((( 440 + 441 +))) 508 508 509 -923.3 - SF12BW500(RX2 downlink only) 443 +((( 444 + 445 +))) 510 510 447 +=== 2.4.8 Digital Interrupt === 511 511 449 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 512 512 513 - ===2.7.5AS920-923 & AS923-925 (AS923) ===451 +The command is: 514 514 515 -(% style="color: #037691" %)**DefaultUplinkchannel:**453 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 516 516 517 -923.2 - SF7BW125 to SF10BW125 518 518 519 - 923.4-SF7BW125toSF10BW125456 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 520 520 521 521 522 - (% style="color:#037691" %)**Additional Uplink Channel**:459 +Example: 523 523 524 -( OTAAmode, channeladded by JoinAcceptmessage)461 +0x(00): Normal uplink packet. 525 525 526 -( % style="color:#037691" %)**AS920~~AS923forJapan,Malaysia, Singapore**:463 +0x(01): Interrupt Uplink Packet. 527 527 528 -922.2 - SF7BW125 to SF10BW125 529 529 530 -922.4 - SF7BW125 to SF10BW125 531 531 532 - 922.6- SF7BW125 toSF10BW125467 +=== 2.4.9 +5V Output === 533 533 534 - 922.8 -SF7BW125 toSF10BW125469 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 535 535 536 -923.0 - SF7BW125 to SF10BW125 537 537 538 - 922.0- SF7BW125 toSF10BW125472 +The 5V output time can be controlled by AT Command. 539 539 474 +(% style="color:blue" %)**AT+5VT=1000** 540 540 541 - (%style="color:#037691"%)**AS923~~AS925 forBrunei,Cambodia,HongKong,Indonesia,Laos,Taiwan,Thailand,Vietnam**:476 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 542 542 543 -923.6 - SF7BW125 to SF10BW125 544 544 545 -923.8 - SF7BW125 to SF10BW125 546 546 547 - 924.0- SF7BW125toSF10BW125480 +== 2.5 Downlink Payload == 548 548 549 - 924.2-SF7BW125toSF10BW125482 +By default, NSE01 prints the downlink payload to console port. 550 550 551 - 924.4-SF7BW125 to SF10BW125484 +[[image:image-20220708133731-5.png]] 552 552 553 -924.6 - SF7BW125 to SF10BW125 554 554 487 +((( 488 +(% style="color:blue" %)**Examples:** 489 +))) 555 555 556 -(% style="color:#037691" %)** Downlink:** 491 +((( 492 + 493 +))) 557 557 558 -Uplink channels 1-8 (RX1) 495 +* ((( 496 +(% style="color:blue" %)**Set TDC** 497 +))) 559 559 560 -923.2 - SF10BW125 (RX2) 499 +((( 500 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 501 +))) 561 561 503 +((( 504 +Payload: 01 00 00 1E TDC=30S 505 +))) 562 562 507 +((( 508 +Payload: 01 00 00 3C TDC=60S 509 +))) 563 563 564 -=== 2.7.6 KR920-923 (KR920) === 511 +((( 512 + 513 +))) 565 565 566 -Default channel: 515 +* ((( 516 +(% style="color:blue" %)**Reset** 517 +))) 567 567 568 -922.1 - SF7BW125 to SF12BW125 519 +((( 520 +If payload = 0x04FF, it will reset the NSE01 521 +))) 569 569 570 -922.3 - SF7BW125 to SF12BW125 571 571 572 - 922.5-SF7BW125toSF12BW125524 +* (% style="color:blue" %)**INTMOD** 573 573 526 +Downlink Payload: 06000003, Set AT+INTMOD=3 574 574 575 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 576 576 577 -922.1 - SF7BW125 to SF12BW125 578 578 579 - 922.3-SF7BW125toSF12BW125530 +== 2.6 LED Indicator == 580 580 581 -922.5 - SF7BW125 to SF12BW125 532 +((( 533 +The NSE01 has an internal LED which is to show the status of different state. 582 582 583 -922.7 - SF7BW125 to SF12BW125 584 584 585 -922.9 - SF7BW125 to SF12BW125 536 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 537 +* Then the LED will be on for 1 second means device is boot normally. 538 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 539 +* For each uplink probe, LED will be on for 500ms. 540 +))) 586 586 587 -923.1 - SF7BW125 to SF12BW125 588 588 589 -923.3 - SF7BW125 to SF12BW125 590 590 591 591 592 - (%style="color:#037691" %)**Downlink:**545 +== 2.7 Installation in Soil == 593 593 594 - Uplinkchannels1-7(RX1)547 +__**Measurement the soil surface**__ 595 595 596 - 921.9-SF12BW125(RX2downlinkonly;SF12BW125might bechangedSF9BW125)549 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 597 597 551 +[[image:1657259653666-883.png]] 598 598 599 599 600 -=== 2.7.7 IN865-867 (IN865) === 554 +((( 555 + 601 601 602 -(% style="color:#037691" %)** Uplink:** 557 +((( 558 +Dig a hole with diameter > 20CM. 559 +))) 603 603 604 -865.0625 - SF7BW125 to SF12BW125 561 +((( 562 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 563 +))) 564 +))) 605 605 606 - 865.4025SF7BW125 to SF12BW125566 +[[image:1654506665940-119.png]] 607 607 608 -865.9850 - SF7BW125 to SF12BW125 568 +((( 569 + 570 +))) 609 609 610 610 611 - (% style="color:#037691"%)**Downlink:**573 +== 2.8 Firmware Change Log == 612 612 613 -Uplink channels 1-3 (RX1) 614 614 615 - 866.550-SF10BW125(RX2)576 +Download URL & Firmware Change log 616 616 578 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 617 617 618 618 581 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 619 619 620 -== 2.8 LED Indicator == 621 621 622 -The LSE01 has an internal LED which is to show the status of different state. 623 623 624 -* Blink once when device power on. 625 -* Solid ON for 5 seconds once device successful Join the network. 626 -* Blink once when device transmit a packet. 585 +== 2.9 Battery Analysis == 627 627 587 +=== 2.9.1 Battery Type === 628 628 629 -== 2.9 Installation in Soil == 630 630 631 - **Measurement the soil surface**590 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 632 632 633 633 634 - [[image:1654506634463-199.png]]593 +The battery is designed to last for several years depends on the actually use environment and update interval. 635 635 636 -((( 637 -((( 638 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 639 -))) 640 -))) 641 641 596 +The battery related documents as below: 642 642 643 -[[image:1654506665940-119.png]] 598 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 599 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 600 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 644 644 645 645 ((( 646 - Digaholewith diameter >20CM.603 +[[image:image-20220708140453-6.png]] 647 647 ))) 648 648 649 -((( 650 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 651 -))) 652 652 653 653 654 -== 2. 10FirmwareChange Log==608 +=== 2.9.2 Power consumption Analyze === 655 655 656 656 ((( 657 - **Firmware download link:**611 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 658 658 ))) 659 659 660 -((( 661 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 662 -))) 663 663 664 664 ((( 665 - 616 +Instruction to use as below: 666 666 ))) 667 667 668 668 ((( 669 - **FirmwareUpgradeMethod: **[[FirmwareUpgrade Instruction>>doc:Main.FirmwareUpgradeInstructionfor STM32 baseucts.WebHome]]620 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 670 670 ))) 671 671 672 -((( 673 - 674 -))) 675 675 676 676 ((( 677 -** V1.0.**625 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 678 678 ))) 679 679 680 -((( 681 -Release 682 -))) 683 - 684 - 685 -== 2.11 Battery Analysis == 686 - 687 -=== 2.11.1 Battery Type === 688 - 689 -((( 690 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 691 -))) 692 - 693 -((( 694 -The battery is designed to last for more than 5 years for the LSN50. 695 -))) 696 - 697 -((( 698 -((( 699 -The battery-related documents are as below: 700 -))) 701 -))) 702 - 703 703 * ((( 704 - [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],629 +Product Model 705 705 ))) 706 706 * ((( 707 - [[Lithium-ThionylChloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],632 +Uplink Interval 708 708 ))) 709 709 * ((( 710 - [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]],[[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]635 +Working Mode 711 711 ))) 712 712 713 - [[image:image-20220606171726-9.png]] 638 +((( 639 +And the Life expectation in difference case will be shown on the right. 640 +))) 714 714 642 +[[image:image-20220708141352-7.jpeg]] 715 715 716 716 717 -=== 2.11.2 Battery Note === 718 718 646 +=== 2.9.3 Battery Note === 647 + 719 719 ((( 720 720 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 721 721 ))) ... ... @@ -722,291 +722,186 @@ 722 722 723 723 724 724 725 -=== 2. 11.3Replace the battery ===654 +=== 2.9.4 Replace the battery === 726 726 727 727 ((( 728 - IfBattery is lower than 2.7v,usershouldreplace the battery ofLSE01.657 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 729 729 ))) 730 730 660 + 661 + 662 += 3. Access NB-IoT Module = 663 + 731 731 ((( 732 - You can changethe battery in the LSE01.The type of battery isnot limitedas longas the outputis between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the maincircuit. If you need to use a battery with lessthan 3.3v, pleaseremovethe D1and shortcut thewopadsofitso therewon’tbe voltage drop between battery andmain board.665 +Users can directly access the AT command set of the NB-IoT module. 733 733 ))) 734 734 735 735 ((( 736 -The defaultbattery packof LSE01 includesa ER18505 plussupercapacitor.Ifusercan’tfind this pack locally, theycan find ER18505orequivalence,whichwillalsoworkinmostcase.The SPC can enlargethebattery lifeforigh frequency use(updateperiod below5minutes)669 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 737 737 ))) 738 738 672 +[[image:1657261278785-153.png]] 739 739 740 740 741 -= 3. Using the AT Commands = 742 742 743 -= =3.1AccessAT Commands ==676 += 4. Using the AT Commands = 744 744 678 +== 4.1 Access AT Commands == 745 745 746 - LSE01supportsATCommandsetn the stock firmware.Youcanuse a USB toTTLadaptertoconnect to LSE01forusing ATcommand,asbelow.680 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 747 747 748 -[[image:1654501986557-872.png]] 749 749 683 +AT+<CMD>? : Help on <CMD> 750 750 751 - Orifyouhavebelowboard,usebelowconnection:685 +AT+<CMD> : Run <CMD> 752 752 687 +AT+<CMD>=<value> : Set the value 753 753 754 - [[image:1654502005655-729.png]]689 +AT+<CMD>=? : Get the value 755 755 756 756 757 - 758 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 759 - 760 - 761 - [[image:1654502050864-459.png]] 762 - 763 - 764 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 765 - 766 - 767 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 768 - 769 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 770 - 771 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 772 - 773 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 774 - 775 - 776 776 (% style="color:#037691" %)**General Commands**(%%) 777 777 778 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention694 +AT : Attention 779 779 780 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help696 +AT? : Short Help 781 781 782 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset698 +ATZ : MCU Reset 783 783 784 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval700 +AT+TDC : Application Data Transmission Interval 785 785 702 +AT+CFG : Print all configurations 786 786 787 - (%style="color:#037691"%)**Keys,IDsand EUIs management**704 +AT+CFGMOD : Working mode selection 788 788 789 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI706 +AT+INTMOD : Set the trigger interrupt mode 790 790 791 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey708 +AT+5VT : Set extend the time of 5V power 792 792 793 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key710 +AT+PRO : Choose agreement 794 794 795 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress712 +AT+WEIGRE : Get weight or set weight to 0 796 796 797 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI714 +AT+WEIGAP : Get or Set the GapValue of weight 798 798 799 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)716 +AT+RXDL : Extend the sending and receiving time 800 800 801 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network718 +AT+CNTFAC : Get or set counting parameters 802 802 803 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode720 +AT+SERVADDR : Server Address 804 804 805 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 806 806 807 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network723 +(% style="color:#037691" %)**COAP Management** 808 808 809 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode725 +AT+URI : Resource parameters 810 810 811 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 812 812 813 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format728 +(% style="color:#037691" %)**UDP Management** 814 814 815 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat730 +AT+CFM : Upload confirmation mode (only valid for UDP) 816 816 817 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 818 818 819 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data733 +(% style="color:#037691" %)**MQTT Management** 820 820 735 +AT+CLIENT : Get or Set MQTT client 821 821 822 - (%style="color:#037691"%)**LoRaNetworkManagement**737 +AT+UNAME : Get or Set MQTT Username 823 823 824 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate739 +AT+PWD : Get or Set MQTT password 825 825 826 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA741 +AT+PUBTOPIC : Get or Set MQTT publish topic 827 827 828 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting743 +AT+SUBTOPIC : Get or Set MQTT subscription topic 829 829 830 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 831 831 832 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink746 +(% style="color:#037691" %)**Information** 833 833 834 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink748 +AT+FDR : Factory Data Reset 835 835 836 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1750 +AT+PWORD : Serial Access Password 837 837 838 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 839 839 840 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 841 841 842 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1754 += 5. FAQ = 843 843 844 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2756 +== 5.1 How to Upgrade Firmware == 845 845 846 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 847 847 848 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 759 +((( 760 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 761 +))) 849 849 850 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 851 - 852 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 853 - 854 - 855 -(% style="color:#037691" %)**Information** 856 - 857 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 858 - 859 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 860 - 861 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 862 - 863 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 864 - 865 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 866 - 867 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 868 - 869 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 870 - 871 - 872 -= 4. FAQ = 873 - 874 -== 4.1 How to change the LoRa Frequency Bands/Region? == 875 - 876 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]]. 877 -When downloading the images, choose the required image file for download. 878 - 879 - 880 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 881 - 882 - 883 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 884 - 885 - 886 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 887 - 888 -[[image:image-20220606154726-3.png]] 889 - 890 -When you use the TTN network, the US915 frequency bands use are: 891 - 892 -* 903.9 - SF7BW125 to SF10BW125 893 -* 904.1 - SF7BW125 to SF10BW125 894 -* 904.3 - SF7BW125 to SF10BW125 895 -* 904.5 - SF7BW125 to SF10BW125 896 -* 904.7 - SF7BW125 to SF10BW125 897 -* 904.9 - SF7BW125 to SF10BW125 898 -* 905.1 - SF7BW125 to SF10BW125 899 -* 905.3 - SF7BW125 to SF10BW125 900 -* 904.6 - SF8BW500 901 - 902 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 903 - 904 -(% class="box infomessage" %) 905 905 ((( 906 - **AT+CHE=2**764 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 907 907 ))) 908 908 909 -(% class="box infomessage" %) 910 910 ((( 911 - **ATZ**768 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 912 912 ))) 913 913 914 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 915 915 916 916 917 - The**AU915**band is similar. Beloware the AU915 UplinkChannels.773 += 6. Trouble Shooting = 918 918 919 - [[image:image-20220606154825-4.png]]775 +== 6.1 Connection problem when uploading firmware == 920 920 921 921 778 +(% class="wikigeneratedid" %) 779 +((( 780 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]] 781 +))) 922 922 923 -= 5. Trouble Shooting = 924 924 925 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 926 926 927 - Itis due to channel mapping.Please see the [[Eight Channel Mode>>doc:Main.LoRaWANCommunicationDebug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]sectionabove fordetails.785 +== 6.2 AT Command input doesn't work == 928 928 787 +((( 788 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 789 +))) 929 929 930 -== 5.2 AT Command input doesn’t work == 931 931 932 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 933 933 793 += 7. Order Info = 934 934 935 -== 5.3 Device rejoin in at the second uplink packet == 936 936 937 -(% style="color:#4f81bd" %)** Issue describe as below:**796 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 938 938 939 -[[image:1654500909990-784.png]] 940 940 799 +(% class="wikigeneratedid" %) 800 +((( 801 + 802 +))) 941 941 942 - (% style="color:#4f81bd"%)**Causeforthis issue:**804 += 8. Packing Info = 943 943 944 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 806 +((( 807 + 945 945 809 +(% style="color:#037691" %)**Package Includes**: 946 946 947 -(% style="color:#4f81bd" %)**Solution: ** 948 948 949 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 812 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 813 +* External antenna x 1 814 +))) 950 950 951 -[[image:1654500929571-736.png]] 816 +((( 817 + 952 952 819 +(% style="color:#037691" %)**Dimension and weight**: 953 953 954 -= 6. Order Info = 955 955 956 - 957 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 958 - 959 - 960 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 961 - 962 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 963 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 964 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 965 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 966 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 967 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 968 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 969 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 970 - 971 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 972 - 973 -* (% style="color:red" %)**4**(%%): 4000mAh battery 974 -* (% style="color:red" %)**8**(%%): 8500mAh battery 975 - 976 -= 7. Packing Info = 977 - 978 -((( 979 -**Package Includes**: 822 +* Size: 195 x 125 x 55 mm 823 +* Weight: 420g 980 980 ))) 981 981 982 -* ((( 983 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 984 -))) 985 - 986 986 ((( 987 987 988 -))) 989 989 990 -((( 991 -**Dimension and weight**: 992 -))) 993 993 994 -* ((( 995 -Device Size: cm 830 + 996 996 ))) 997 -* ((( 998 -Device Weight: g 999 -))) 1000 -* ((( 1001 -Package Size / pcs : cm 1002 -))) 1003 -* ((( 1004 -Weight / pcs : g 1005 -))) 1006 1006 1007 -= 8. Support =833 += 9. Support = 1008 1008 1009 1009 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1010 1010 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1011 - 1012 -
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content