<
From version < 31.5 >
edited by Xiaoling
on 2022/06/06 17:23
To version < 33.2 >
edited by Xiaoling
on 2022/06/07 11:43
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,13 +1,17 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="848" width="848"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 +**Contents:**
6 6  
8 +{{toc/}}
7 7  
8 8  
9 9  
10 10  
13 +
14 +
11 11  = 1. Introduction =
12 12  
13 13  == 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
... ... @@ -54,6 +54,8 @@
54 54  * IP66 Waterproof Enclosure
55 55  * 4000mAh or 8500mAh Battery for long term use
56 56  
61 +
62 +
57 57  == 1.3 Specification ==
58 58  
59 59  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
... ... @@ -85,7 +85,7 @@
85 85  )))
86 86  
87 87  (((
88 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]].
94 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
89 89  )))
90 90  
91 91  
... ... @@ -138,86 +138,107 @@
138 138  
139 139  == 2.3 Uplink Payload ==
140 140  
147 +=== ===
148 +
141 141  === 2.3.1 MOD~=0(Default Mode) ===
142 142  
143 143  LSE01 will uplink payload via LoRaWAN with below payload format: 
144 144  
145 -
153 +(((
146 146  Uplink payload includes in total 11 bytes.
147 -
155 +)))
148 148  
157 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
149 149  |(((
150 150  **Size**
151 151  
152 152  **(bytes)**
153 153  )))|**2**|**2**|**2**|**2**|**2**|**1**
154 -|**Value**|[[BAT>>path:#bat]]|(((
163 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
155 155  Temperature
156 156  
157 157  (Reserve, Ignore now)
158 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
167 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
159 159  MOD & Digital Interrupt
160 160  
161 161  (Optional)
162 162  )))
163 163  
164 -[[image:1654504881641-514.png]]
165 165  
166 -
167 -
168 168  === 2.3.2 MOD~=1(Original value) ===
169 169  
170 170  This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
171 171  
178 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
172 172  |(((
173 173  **Size**
174 174  
175 175  **(bytes)**
176 176  )))|**2**|**2**|**2**|**2**|**2**|**1**
177 -|**Value**|[[BAT>>path:#bat]]|(((
184 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
178 178  Temperature
179 179  
180 180  (Reserve, Ignore now)
181 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
182 182  MOD & Digital Interrupt
183 183  
184 184  (Optional)
185 185  )))
186 186  
187 -[[image:1654504907647-967.png]]
188 188  
189 -
190 -
191 191  === 2.3.3 Battery Info ===
192 192  
197 +(((
193 193  Check the battery voltage for LSE01.
199 +)))
194 194  
201 +(((
195 195  Ex1: 0x0B45 = 2885mV
203 +)))
196 196  
205 +(((
197 197  Ex2: 0x0B49 = 2889mV
207 +)))
198 198  
199 199  
200 200  
201 201  === 2.3.4 Soil Moisture ===
202 202  
213 +(((
203 203  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
215 +)))
204 204  
217 +(((
205 205  For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
219 +)))
206 206  
221 +(((
222 +
223 +)))
207 207  
225 +(((
208 208  (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
227 +)))
209 209  
210 210  
211 211  
212 212  === 2.3.5 Soil Temperature ===
213 213  
233 +(((
214 214   Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
235 +)))
215 215  
237 +(((
216 216  **Example**:
239 +)))
217 217  
241 +(((
218 218  If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
243 +)))
219 219  
245 +(((
220 220  If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
247 +)))
221 221  
222 222  
223 223  
... ... @@ -252,7 +252,7 @@
252 252  mod=(bytes[10]>>7)&0x01=1.
253 253  
254 254  
255 -Downlink Command:
282 +**Downlink Command:**
256 256  
257 257  If payload = 0x0A00, workmode=0
258 258  
... ... @@ -267,19 +267,22 @@
267 267  
268 268  [[image:1654505570700-128.png]]
269 269  
297 +(((
270 270  The payload decoder function for TTN is here:
299 +)))
271 271  
301 +(((
272 272  LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
303 +)))
273 273  
274 274  
306 +
275 275  == 2.4 Uplink Interval ==
276 276  
277 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
309 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
278 278  
279 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
280 280  
281 281  
282 -
283 283  == 2.5 Downlink Payload ==
284 284  
285 285  By default, LSE50 prints the downlink payload to console port.
... ... @@ -287,21 +287,41 @@
287 287  [[image:image-20220606165544-8.png]]
288 288  
289 289  
320 +(((
290 290  **Examples:**
322 +)))
291 291  
324 +(((
325 +
326 +)))
292 292  
293 -* **Set TDC**
328 +* (((
329 +**Set TDC**
330 +)))
294 294  
332 +(((
295 295  If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
334 +)))
296 296  
336 +(((
297 297  Payload:    01 00 00 1E    TDC=30S
338 +)))
298 298  
340 +(((
299 299  Payload:    01 00 00 3C    TDC=60S
342 +)))
300 300  
344 +(((
345 +
346 +)))
301 301  
302 -* **Reset**
348 +* (((
349 +**Reset**
350 +)))
303 303  
352 +(((
304 304  If payload = 0x04FF, it will reset the LSE01
354 +)))
305 305  
306 306  
307 307  * **CFM**
... ... @@ -312,12 +312,21 @@
312 312  
313 313  == 2.6 ​Show Data in DataCake IoT Server ==
314 314  
365 +(((
315 315  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
367 +)))
316 316  
369 +(((
370 +
371 +)))
317 317  
373 +(((
318 318  **Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
375 +)))
319 319  
377 +(((
320 320  **Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
379 +)))
321 321  
322 322  
323 323  [[image:1654505857935-743.png]]
... ... @@ -634,31 +634,52 @@
634 634  [[image:1654506634463-199.png]] ​
635 635  
636 636  (((
696 +(((
637 637  Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
638 638  )))
699 +)))
639 639  
640 640  
641 -
642 642  [[image:1654506665940-119.png]]
643 643  
704 +(((
644 644  Dig a hole with diameter > 20CM.
706 +)))
645 645  
708 +(((
646 646  Horizontal insert the probe to the soil and fill the hole for long term measurement.
710 +)))
647 647  
648 648  
649 649  == 2.10 ​Firmware Change Log ==
650 650  
715 +(((
651 651  **Firmware download link:**
717 +)))
652 652  
719 +(((
653 653  [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
721 +)))
654 654  
723 +(((
724 +
725 +)))
655 655  
727 +(((
656 656  **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
729 +)))
657 657  
731 +(((
732 +
733 +)))
658 658  
735 +(((
659 659  **V1.0.**
737 +)))
660 660  
739 +(((
661 661  Release
741 +)))
662 662  
663 663  
664 664  == 2.11 ​Battery Analysis ==
... ... @@ -665,15 +665,19 @@
665 665  
666 666  === 2.11.1 ​Battery Type ===
667 667  
748 +(((
668 668  The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
750 +)))
669 669  
670 -
752 +(((
671 671  The battery is designed to last for more than 5 years for the LSN50.
754 +)))
672 672  
673 -
674 674  (((
757 +(((
675 675  The battery-related documents are as below:
676 676  )))
760 +)))
677 677  
678 678  * (((
679 679  [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
... ... @@ -720,13 +720,13 @@
720 720  
721 721  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
722 722  
723 -[[image:1654501986557-872.png]]
807 +[[image:1654501986557-872.png||height="391" width="800"]]
724 724  
725 725  
726 726  Or if you have below board, use below connection:
727 727  
728 728  
729 -[[image:1654502005655-729.png]]
813 +[[image:1654502005655-729.png||height="503" width="801"]]
730 730  
731 731  
732 732  
... ... @@ -733,7 +733,7 @@
733 733  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
734 734  
735 735  
736 - [[image:1654502050864-459.png]]
820 + [[image:1654502050864-459.png||height="564" width="806"]]
737 737  
738 738  
739 739  Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
... ... @@ -848,20 +848,38 @@
848 848  
849 849  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
850 850  
851 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
935 +(((
936 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
852 852  When downloading the images, choose the required image file for download. ​
938 +)))
853 853  
940 +(((
941 +
942 +)))
854 854  
944 +(((
855 855  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
946 +)))
856 856  
948 +(((
949 +
950 +)))
857 857  
952 +(((
858 858  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
954 +)))
859 859  
956 +(((
957 +
958 +)))
860 860  
960 +(((
861 861  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
962 +)))
862 862  
863 863  [[image:image-20220606154726-3.png]]
864 864  
966 +
865 865  When you use the TTN network, the US915 frequency bands use are:
866 866  
867 867  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -874,7 +874,9 @@
874 874  * 905.3 - SF7BW125 to SF10BW125
875 875  * 904.6 - SF8BW500
876 876  
979 +(((
877 877  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
981 +)))
878 878  
879 879  (% class="box infomessage" %)
880 880  (((
... ... @@ -886,10 +886,17 @@
886 886  **ATZ**
887 887  )))
888 888  
993 +(((
889 889  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
995 +)))
890 890  
997 +(((
998 +
999 +)))
891 891  
1001 +(((
892 892  The **AU915** band is similar. Below are the AU915 Uplink Channels.
1003 +)))
893 893  
894 894  [[image:image-20220606154825-4.png]]
895 895  
... ... @@ -904,7 +904,9 @@
904 904  
905 905  == 5.2 AT Command input doesn’t work ==
906 906  
1018 +(((
907 907  In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1020 +)))
908 908  
909 909  
910 910  == 5.3 Device rejoin in at the second uplink packet ==
... ... @@ -916,7 +916,9 @@
916 916  
917 917  (% style="color:#4f81bd" %)**Cause for this issue:**
918 918  
1032 +(((
919 919  The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1034 +)))
920 920  
921 921  
922 922  (% style="color:#4f81bd" %)**Solution: **
... ... @@ -923,7 +923,7 @@
923 923  
924 924  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
925 925  
926 -[[image:1654500929571-736.png]]
1041 +[[image:1654500929571-736.png||height="458" width="832"]]
927 927  
928 928  
929 929  = 6. ​Order Info =
... ... @@ -948,10 +948,17 @@
948 948  * (% style="color:red" %)**4**(%%): 4000mAh battery
949 949  * (% style="color:red" %)**8**(%%): 8500mAh battery
950 950  
1066 +(% class="wikigeneratedid" %)
1067 +(((
1068 +
1069 +)))
1070 +
951 951  = 7. Packing Info =
952 952  
953 953  (((
954 -**Package Includes**:
1074 +
1075 +
1076 +(% style="color:#037691" %)**Package Includes**:
955 955  )))
956 956  
957 957  * (((
... ... @@ -960,10 +960,8 @@
960 960  
961 961  (((
962 962  
963 -)))
964 964  
965 -(((
966 -**Dimension and weight**:
1086 +(% style="color:#037691" %)**Dimension and weight**:
967 967  )))
968 968  
969 969  * (((
... ... @@ -977,6 +977,8 @@
977 977  )))
978 978  * (((
979 979  Weight / pcs : g
1100 +
1101 +
980 980  )))
981 981  
982 982  = 8. Support =
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0