Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 24 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,9 +3,7 @@ 3 3 4 4 5 5 6 -**Contents:** 7 7 8 -{{toc/}} 9 9 10 10 11 11 ... ... @@ -12,1035 +12,805 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 - == 1.1 Whatis LoRaWANSoil Moisture& EC Sensor ==14 +**Table of Contents:** 18 18 19 -((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 22 22 23 -((( 24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 -))) 26 26 27 -((( 28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 -))) 34 34 20 + 21 += 1. Introduction = 22 + 23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 + 35 35 ((( 36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 -))) 26 + 38 38 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 39 39 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 + 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 + 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 + 36 + 37 +))) 38 + 40 40 [[image:1654503236291-817.png]] 41 41 42 42 43 -[[image:16545 03265560-120.png]]42 +[[image:1657245163077-232.png]] 44 44 45 45 46 46 47 47 == 1.2 Features == 48 48 49 -* LoRaWAN 1.0.3 Class A 50 -* Ultra low power consumption 48 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 51 51 * Monitor Soil Moisture 52 52 * Monitor Soil Temperature 53 53 * Monitor Soil Conductivity 54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 55 55 * AT Commands to change parameters 56 56 * Uplink on periodically 57 57 * Downlink to change configure 58 58 * IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 56 +* Ultra-Low Power consumption 57 +* AT Commands to change parameters 58 +* Micro SIM card slot for NB-IoT SIM 59 +* 8500mAh Battery for long term use 60 60 61 -== 1.3 Specification == 62 62 63 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 64 64 65 -[[image:image-20220606162220-5.png]] 66 66 64 +== 1.3 Specification == 67 67 68 68 69 - ==1.4 Applications==67 +(% style="color:#037691" %)**Common DC Characteristics:** 70 70 71 -* Smart Agriculture 69 +* Supply Voltage: 2.1v ~~ 3.6v 70 +* Operating Temperature: -40 ~~ 85°C 72 72 73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 - 75 75 76 -== 1.5 Firmware Change log == 77 77 74 +(% style="color:#037691" %)**NB-IoT Spec:** 78 78 79 -**LSE01 v1.0 :** Release 76 +* - B1 @H-FDD: 2100MHz 77 +* - B3 @H-FDD: 1800MHz 78 +* - B8 @H-FDD: 900MHz 79 +* - B5 @H-FDD: 850MHz 80 +* - B20 @H-FDD: 800MHz 81 +* - B28 @H-FDD: 700MHz 80 80 81 81 82 82 83 - = 2. ConfigureLSE01to connect toLoRaWANnetwork =85 +Probe(% style="color:#037691" %)** Specification:** 84 84 85 - ==2.1Howitworks==87 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 86 86 87 -((( 88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 -))) 89 +[[image:image-20220708101224-1.png]] 90 90 91 -((( 92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 -))) 94 94 95 95 93 +== 1.4 Applications == 96 96 97 - ==2.2Quick guideto connect to LoRaWAN server (OTAA) ==95 +* Smart Agriculture 98 98 99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 97 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 98 + 100 100 100 +== 1.5 Pin Definitions == 101 101 102 -[[image:1654503992078-669.png]] 103 103 103 +[[image:1657246476176-652.png]] 104 104 105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 106 106 107 107 108 - **Step1**:Createa devicein TTNwiththe OTAAkeys fromLSE01.107 += 2. Use NSE01 to communicate with IoT Server = 109 109 110 - EachLSE01is shippedwitha sticker withthe default device EUI asbelow:109 +== 2.1 How it works == 111 111 112 -[[image:image-20220606163732-6.jpeg]] 113 113 114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 115 - 116 -**Add APP EUI in the application** 117 - 118 - 119 -[[image:1654504596150-405.png]] 120 - 121 - 122 - 123 -**Add APP KEY and DEV EUI** 124 - 125 -[[image:1654504683289-357.png]] 126 - 127 - 128 - 129 -**Step 2**: Power on LSE01 130 - 131 - 132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 - 134 -[[image:image-20220606163915-7.png]] 135 - 136 - 137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 - 139 -[[image:1654504778294-788.png]] 140 - 141 - 142 - 143 -== 2.3 Uplink Payload == 144 - 145 -=== 2.3.1 MOD~=0(Default Mode) === 146 - 147 -LSE01 will uplink payload via LoRaWAN with below payload format: 148 - 149 - 150 -Uplink payload includes in total 11 bytes. 151 - 152 - 153 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 154 -|=((( 155 -**Size** 156 - 157 -**(bytes)** 158 -)))|=(% style="width: 45px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1** 159 -|**Value**|(% style="width:45px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:80px" %)((( 160 160 ((( 161 -Temperature 113 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 162 162 ))) 163 163 116 + 164 164 ((( 165 - (Reserve,Ignore now)118 +The diagram below shows the working flow in default firmware of NSE01: 166 166 ))) 167 -)))|(% style="width:80px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:80px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:80px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:80px" %)((( 168 -((( 169 -MOD & Digital Interrupt 170 -))) 171 171 121 +[[image:image-20220708101605-2.png]] 122 + 172 172 ((( 173 - (Optional)124 + 174 174 ))) 175 -))) 176 176 177 -[[image:1654504881641-514.png]] 178 178 179 179 129 +== 2.2 Configure the NSE01 == 180 180 181 -=== 2.3.2 MOD~=1(Original value) === 182 182 183 - Thismodecangettheoriginal AD value of moistureand original conductivity (with temperature drift compensation).132 +=== 2.2.1 Test Requirement === 184 184 185 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 186 -|=((( 187 -**Size** 188 188 189 -**(bytes)** 190 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1** 191 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 192 -((( 193 -Temperature 194 -))) 135 +To use NSE01 in your city, make sure meet below requirements: 195 195 196 -((( 197 -(Reserve, Ignore now) 198 -))) 199 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|((( 200 -[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw) 201 -)))|((( 202 -((( 203 -MOD & Digital Interrupt 204 -))) 137 +* Your local operator has already distributed a NB-IoT Network there. 138 +* The local NB-IoT network used the band that NSE01 supports. 139 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 205 205 206 206 ((( 207 - (Optional)142 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 208 208 ))) 209 -))) 210 210 211 -[[image:1654504907647-967.png]] 212 212 146 +[[image:1657249419225-449.png]] 213 213 214 214 215 -=== 2.3.3 Battery Info === 216 216 217 - Checkthebattery voltageforLSE01.150 +=== 2.2.2 Insert SIM card === 218 218 219 - Ex1:0x0B45=2885mV152 +Insert the NB-IoT Card get from your provider. 220 220 221 - Ex2:0x0B49=2889mV154 +User need to take out the NB-IoT module and insert the SIM card like below: 222 222 223 223 157 +[[image:1657249468462-536.png]] 224 224 225 -=== 2.3.4 Soil Moisture === 226 226 227 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 228 228 229 - Forexample,ifthedatayougetfromtheregister is __0x050xDC__,themoisturecontentinthesoil is161 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 230 230 231 - 232 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 233 - 234 - 235 - 236 -=== 2.3.5 Soil Temperature === 237 - 238 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 239 - 240 -**Example**: 241 - 242 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 243 - 244 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 245 - 246 - 247 - 248 -=== 2.3.6 Soil Conductivity (EC) === 249 - 250 250 ((( 251 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 252 -))) 253 - 254 254 ((( 255 - For example,ifthedatayougetfromtheregister is 0x000xC8,the soilconductivityis00C8(H)=200(D)=200uS/cm.165 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 256 256 ))) 257 - 258 -((( 259 -Generally, the EC value of irrigation water is less than 800uS / cm. 260 260 ))) 261 261 262 -((( 263 - 264 -))) 265 265 266 -((( 267 - 268 -))) 170 +**Connection:** 269 269 270 -= ==2.3.7MOD===172 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 271 271 272 - Firmwareversionatst v2.1 supportschanging mode.174 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 273 273 274 - Forexample,bytes[10]=90176 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 275 275 276 -mod=(bytes[10]>>7)&0x01=1. 277 277 179 +In the PC, use below serial tool settings: 278 278 279 -**Downlink Command:** 181 +* Baud: (% style="color:green" %)**9600** 182 +* Data bits:** (% style="color:green" %)8(%%)** 183 +* Stop bits: (% style="color:green" %)**1** 184 +* Parity: (% style="color:green" %)**None** 185 +* Flow Control: (% style="color:green" %)**None** 280 280 281 -If payload = 0x0A00, workmode=0 187 +((( 188 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 189 +))) 282 282 283 - If** **payload =** **0x0A01, workmode=1191 +[[image:image-20220708110657-3.png]] 284 284 193 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 285 285 286 286 287 -=== 2.3.8 Decode payload in The Things Network === 288 288 289 - WhileusingTTNnetwork,youcan add thepayload formattodecodethepayload.197 +=== 2.2.4 Use CoAP protocol to uplink data === 290 290 199 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 291 291 292 -[[image:1654505570700-128.png]] 293 293 294 - Thepayloaddecoder function for TTN ishere:202 +**Use below commands:** 295 295 296 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 204 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 205 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 206 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 297 297 208 +For parameter description, please refer to AT command set 298 298 210 +[[image:1657249793983-486.png]] 299 299 300 -== 2.4 Uplink Interval == 301 301 302 - TheLSE01 by defaultuplinkthe sensordata every20 minutes. Usercan change thisintervalbyATCommandor LoRaWANDownlinkCommand.Seethislink: [[Change UplinkInterval>>doc:Main.End Device AT Commandsand DownlinkCommand.WebHome||anchor="H4.1ChangeUplinkInterval"]]213 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 303 303 215 +[[image:1657249831934-534.png]] 304 304 305 305 306 -== 2.5 Downlink Payload == 307 307 308 - Bydefault,LSE50printsthe downlinkpayloadtonsoleport.219 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 309 309 310 - [[image:image-20220606165544-8.png]]221 +This feature is supported since firmware version v1.0.1 311 311 312 312 313 -**Examples:** 224 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 225 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 226 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 314 314 228 +[[image:1657249864775-321.png]] 315 315 316 -* **Set TDC** 317 317 318 - If the payload=0100003C,itmeans set the END Node’s TDC to 0x00003C=60(S), while type code is 01.231 +[[image:1657249930215-289.png]] 319 319 320 -Payload: 01 00 00 1E TDC=30S 321 321 322 -Payload: 01 00 00 3C TDC=60S 323 323 235 +=== 2.2.6 Use MQTT protocol to uplink data === 324 324 325 - ***Reset**237 +This feature is supported since firmware version v110 326 326 327 -If payload = 0x04FF, it will reset the LSE01 328 328 240 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 241 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 242 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 243 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 244 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 245 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 246 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 329 329 330 - * **CFM**248 +[[image:1657249978444-674.png]] 331 331 332 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 333 333 251 +[[image:1657249990869-686.png]] 334 334 335 335 336 -== 2.6 Show Data in DataCake IoT Server == 254 +((( 255 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 256 +))) 337 337 338 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 339 339 340 340 341 - **Step1**:Besurethatyour device isprogrammed and properlyconnectedtothenetwork atthis time.260 +=== 2.2.7 Use TCP protocol to uplink data === 342 342 343 - **Step 2**:ToconfiguretheApplication to forward data to DATACAKE you will needto addintegration. To add theDATACAKE integration,perform the following steps:262 +This feature is supported since firmware version v110 344 344 345 345 346 -[[image:1654505857935-743.png]] 265 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 266 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 347 347 268 +[[image:1657250217799-140.png]] 348 348 349 -[[image:1654505874829-548.png]] 350 350 351 - Step 3: Create an account or login Datacake.271 +[[image:1657250255956-604.png]] 352 352 353 -Step 4: Search the LSE01 and add DevEUI. 354 354 355 355 356 - [[image:1654505905236-553.png]]275 +=== 2.2.8 Change Update Interval === 357 357 277 +User can use below command to change the (% style="color:green" %)**uplink interval**. 358 358 359 - Afteradded,thesensordata arrive TTN,itwillalsoarriveandshow inMydevices.279 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 360 360 361 -[[image:1654505925508-181.png]] 281 +((( 282 +(% style="color:red" %)**NOTE:** 283 +))) 362 362 285 +((( 286 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 287 +))) 363 363 364 364 365 -== 2.7 Frequency Plans == 366 366 367 - TheLSE01uses OTAA mode and below frequencyplans by default. If user want to useit with differentfrequencyplan, please refer the AT commandsets.291 +== 2.3 Uplink Payload == 368 368 293 +In this mode, uplink payload includes in total 18 bytes 369 369 370 -=== 2.7.1 EU863-870 (EU868) === 295 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 296 +|=(% style="width: 50px;" %)((( 297 +**Size(bytes)** 298 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 299 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 371 371 372 - (%style="color:#037691"%)** Uplink:**301 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 373 373 374 -868.1 - SF7BW125 to SF12BW125 375 375 376 - 868.3-SF7BW125 to SF12BW125 and SF7BW250304 +[[image:image-20220708111918-4.png]] 377 377 378 -868.5 - SF7BW125 to SF12BW125 379 379 380 - 867.1-SF7BW125toSF12BW125307 +The payload is ASCII string, representative same HEX: 381 381 382 - 867.3- SF7BW125to SF12BW125309 +0x72403155615900640c7817075e0a8c02f900 where: 383 383 384 -867.5 - SF7BW125 to SF12BW125 311 +* Device ID: 0x 724031556159 = 724031556159 312 +* Version: 0x0064=100=1.0.0 385 385 386 -867.7 - SF7BW125 to SF12BW125 314 +* BAT: 0x0c78 = 3192 mV = 3.192V 315 +* Singal: 0x17 = 23 316 +* Soil Moisture: 0x075e= 1886 = 18.86 % 317 +* Soil Temperature:0x0a8c =2700=27 °C 318 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 319 +* Interrupt: 0x00 = 0 387 387 388 -867.9 - SF7BW125 to SF12BW125 389 389 390 -868.8 - FSK 391 391 392 392 393 - (%style="color:#037691"%)**Downlink:**324 +== 2.4 Payload Explanation and Sensor Interface == 394 394 395 -Uplink channels 1-9 (RX1) 396 396 397 - 869.525- SF9BW125 (RX2 downlinkonly)327 +=== 2.4.1 Device ID === 398 398 329 +By default, the Device ID equal to the last 6 bytes of IMEI. 399 399 331 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 400 400 401 - === 2.7.2 US902-928(US915) ===333 +**Example:** 402 402 403 - Used in USA, Canada and South America.Default use CHE=2335 +AT+DEUI=A84041F15612 404 404 405 - (%style="color:#037691"%)**Uplink:**337 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 406 406 407 -903.9 - SF7BW125 to SF10BW125 408 408 409 -904.1 - SF7BW125 to SF10BW125 410 410 411 - 904.3 - SF7BW125toSF10BW125341 +=== 2.4.2 Version Info === 412 412 413 - 904.5-SF7BW125toSF10BW125343 +Specify the software version: 0x64=100, means firmware version 1.00. 414 414 415 - 904.7-SF7BW125toSF10BW125345 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 416 416 417 -904.9 - SF7BW125 to SF10BW125 418 418 419 -905.1 - SF7BW125 to SF10BW125 420 420 421 - 905.3- SF7BW125toSF10BW125349 +=== 2.4.3 Battery Info === 422 422 351 +((( 352 +Check the battery voltage for LSE01. 353 +))) 423 423 424 -(% style="color:#037691" %)**Downlink:** 355 +((( 356 +Ex1: 0x0B45 = 2885mV 357 +))) 425 425 426 -923.3 - SF7BW500 to SF12BW500 359 +((( 360 +Ex2: 0x0B49 = 2889mV 361 +))) 427 427 428 -923.9 - SF7BW500 to SF12BW500 429 429 430 -924.5 - SF7BW500 to SF12BW500 431 431 432 - 925.1-SF7BW500toSF12BW500365 +=== 2.4.4 Signal Strength === 433 433 434 - 925.7-SF7BW500to SF12BW500367 +NB-IoT Network signal Strength. 435 435 436 - 926.3- SF7BW500toSF12BW500369 +**Ex1: 0x1d = 29** 437 437 438 - 926.9-SF7BW500toSF12BW500371 +(% style="color:blue" %)**0**(%%) -113dBm or less 439 439 440 - 927.5- SF7BW500toSF12BW500373 +(% style="color:blue" %)**1**(%%) -111dBm 441 441 442 - 923.3 -SF12BW500(RX2downlinkonly)375 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 443 443 377 +(% style="color:blue" %)**31** (%%) -51dBm or greater 444 444 379 +(% style="color:blue" %)**99** (%%) Not known or not detectable 445 445 446 -=== 2.7.3 CN470-510 (CN470) === 447 447 448 -Used in China, Default use CHE=1 449 449 450 - (% style="color:#037691"%)**Uplink:**383 +=== 2.4.5 Soil Moisture === 451 451 452 -486.3 - SF7BW125 to SF12BW125 385 +((( 386 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 387 +))) 453 453 454 -486.5 - SF7BW125 to SF12BW125 389 +((( 390 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 391 +))) 455 455 456 -486.7 - SF7BW125 to SF12BW125 393 +((( 394 + 395 +))) 457 457 458 -486.9 - SF7BW125 to SF12BW125 397 +((( 398 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 399 +))) 459 459 460 -487.1 - SF7BW125 to SF12BW125 461 461 462 -487.3 - SF7BW125 to SF12BW125 463 463 464 -4 87.5-SF7BW125toSF12BW125403 +=== 2.4.6 Soil Temperature === 465 465 466 -487.7 - SF7BW125 to SF12BW125 405 +((( 406 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 407 +))) 467 467 409 +((( 410 +**Example**: 411 +))) 468 468 469 -(% style="color:#037691" %)**Downlink:** 413 +((( 414 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 415 +))) 470 470 471 -506.7 - SF7BW125 to SF12BW125 417 +((( 418 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 419 +))) 472 472 473 -506.9 - SF7BW125 to SF12BW125 474 474 475 -507.1 - SF7BW125 to SF12BW125 476 476 477 - 507.3-SF7BW125toSF12BW125423 +=== 2.4.7 Soil Conductivity (EC) === 478 478 479 -507.5 - SF7BW125 to SF12BW125 425 +((( 426 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 427 +))) 480 480 481 -507.7 - SF7BW125 to SF12BW125 429 +((( 430 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 431 +))) 482 482 483 -507.9 - SF7BW125 to SF12BW125 433 +((( 434 +Generally, the EC value of irrigation water is less than 800uS / cm. 435 +))) 484 484 485 -508.1 - SF7BW125 to SF12BW125 437 +((( 438 + 439 +))) 486 486 487 -505.3 - SF12BW125 (RX2 downlink only) 441 +((( 442 + 443 +))) 488 488 445 +=== 2.4.8 Digital Interrupt === 489 489 447 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 490 490 491 - ===2.7.4AU915-928(AU915) ===449 +The command is: 492 492 493 -Defau ltuse CHE=2451 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 494 494 495 -(% style="color:#037691" %)**Uplink:** 496 496 497 - 916.8-SF7BW125toSF12BW125454 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 498 498 499 -917.0 - SF7BW125 to SF12BW125 500 500 501 - 917.2 - SF7BW125 to SF12BW125457 +Example: 502 502 503 - 917.4-SF7BW125to SF12BW125459 +0x(00): Normal uplink packet. 504 504 505 - 917.6-SF7BW125to SF12BW125461 +0x(01): Interrupt Uplink Packet. 506 506 507 -917.8 - SF7BW125 to SF12BW125 508 508 509 -918.0 - SF7BW125 to SF12BW125 510 510 511 - 918.2- SF7BW125 toSF12BW125465 +=== 2.4.9 +5V Output === 512 512 467 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 513 513 514 -(% style="color:#037691" %)**Downlink:** 515 515 516 - 923.3- SF7BW500toSF12BW500470 +The 5V output time can be controlled by AT Command. 517 517 518 - 923.9- SF7BW500toSF12BW500472 +(% style="color:blue" %)**AT+5VT=1000** 519 519 520 - 924.5-SF7BW500 toSF12BW500474 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 521 521 522 -925.1 - SF7BW500 to SF12BW500 523 523 524 -925.7 - SF7BW500 to SF12BW500 525 525 526 - 926.3 - SF7BW500toSF12BW500478 +== 2.5 Downlink Payload == 527 527 528 - 926.9-SF7BW500toSF12BW500480 +By default, NSE01 prints the downlink payload to console port. 529 529 530 - 927.5-SF7BW500 to SF12BW500482 +[[image:image-20220708133731-5.png]] 531 531 532 -923.3 - SF12BW500(RX2 downlink only) 533 533 485 +((( 486 +(% style="color:blue" %)**Examples:** 487 +))) 534 534 489 +((( 490 + 491 +))) 535 535 536 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 493 +* ((( 494 +(% style="color:blue" %)**Set TDC** 495 +))) 537 537 538 -(% style="color:#037691" %)**Default Uplink channel:** 497 +((( 498 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 499 +))) 539 539 540 -923.2 - SF7BW125 to SF10BW125 501 +((( 502 +Payload: 01 00 00 1E TDC=30S 503 +))) 541 541 542 -923.4 - SF7BW125 to SF10BW125 505 +((( 506 +Payload: 01 00 00 3C TDC=60S 507 +))) 543 543 509 +((( 510 + 511 +))) 544 544 545 -(% style="color:#037691" %)**Additional Uplink Channel**: 513 +* ((( 514 +(% style="color:blue" %)**Reset** 515 +))) 546 546 547 -(OTAA mode, channel added by JoinAccept message) 517 +((( 518 +If payload = 0x04FF, it will reset the NSE01 519 +))) 548 548 549 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 550 550 551 - 922.2-SF7BW125toSF10BW125522 +* (% style="color:blue" %)**INTMOD** 552 552 553 - 922.4-SF7BW125toSF10BW125524 +Downlink Payload: 06000003, Set AT+INTMOD=3 554 554 555 -922.6 - SF7BW125 to SF10BW125 556 556 557 -922.8 - SF7BW125 to SF10BW125 558 558 559 - 923.0-SF7BW125toSF10BW125528 +== 2.6 LED Indicator == 560 560 561 -922.0 - SF7BW125 to SF10BW125 530 +((( 531 +The NSE01 has an internal LED which is to show the status of different state. 562 562 563 563 564 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 534 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 535 +* Then the LED will be on for 1 second means device is boot normally. 536 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 537 +* For each uplink probe, LED will be on for 500ms. 538 +))) 565 565 566 -923.6 - SF7BW125 to SF10BW125 567 567 568 -923.8 - SF7BW125 to SF10BW125 569 569 570 -924.0 - SF7BW125 to SF10BW125 571 571 572 - 924.2 - SF7BW125to SF10BW125543 +== 2.7 Installation in Soil == 573 573 574 - 924.4- SF7BW125toSF10BW125545 +__**Measurement the soil surface**__ 575 575 576 - 924.6-SF7BW125SF10BW125547 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 577 577 549 +[[image:1657259653666-883.png]] 578 578 579 -(% style="color:#037691" %)** Downlink:** 580 580 581 -Uplink channels 1-8 (RX1) 552 +((( 553 + 582 582 583 -923.2 - SF10BW125 (RX2) 555 +((( 556 +Dig a hole with diameter > 20CM. 557 +))) 584 584 559 +((( 560 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 561 +))) 562 +))) 585 585 564 +[[image:1654506665940-119.png]] 586 586 587 -=== 2.7.6 KR920-923 (KR920) === 566 +((( 567 + 568 +))) 588 588 589 -Default channel: 590 590 591 - 922.1- SF7BW125toSF12BW125571 +== 2.8 Firmware Change Log == 592 592 593 -922.3 - SF7BW125 to SF12BW125 594 594 595 - 922.5-SF7BW125toSF12BW125574 +Download URL & Firmware Change log 596 596 576 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 597 597 598 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 599 599 600 - 922.1- SF7BW125toSF12BW125579 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 601 601 602 -922.3 - SF7BW125 to SF12BW125 603 603 604 -922.5 - SF7BW125 to SF12BW125 605 605 606 - 922.7- SF7BW125toSF12BW125583 +== 2.9 Battery Analysis == 607 607 608 - 922.9- SF7BW125toSF12BW125585 +=== 2.9.1 Battery Type === 609 609 610 -923.1 - SF7BW125 to SF12BW125 611 611 612 - 923.3-SF7BW125to SF12BW125588 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 613 613 614 614 615 - (%style="color:#037691"%)**Downlink:**591 +The battery is designed to last for several years depends on the actually use environment and update interval. 616 616 617 -Uplink channels 1-7(RX1) 618 618 619 - 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 mightbechangedtoSF9BW125)594 +The battery related documents as below: 620 620 596 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 597 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 598 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 621 621 622 - 623 -=== 2.7.7 IN865-867 (IN865) === 624 - 625 -(% style="color:#037691" %)** Uplink:** 626 - 627 -865.0625 - SF7BW125 to SF12BW125 628 - 629 -865.4025 - SF7BW125 to SF12BW125 630 - 631 -865.9850 - SF7BW125 to SF12BW125 632 - 633 - 634 -(% style="color:#037691" %) **Downlink:** 635 - 636 -Uplink channels 1-3 (RX1) 637 - 638 -866.550 - SF10BW125 (RX2) 639 - 640 - 641 - 642 - 643 -== 2.8 LED Indicator == 644 - 645 -The LSE01 has an internal LED which is to show the status of different state. 646 - 647 -* Blink once when device power on. 648 -* Solid ON for 5 seconds once device successful Join the network. 649 -* Blink once when device transmit a packet. 650 - 651 -== 2.9 Installation in Soil == 652 - 653 -**Measurement the soil surface** 654 - 655 - 656 -[[image:1654506634463-199.png]] 657 - 658 658 ((( 659 -((( 660 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 601 +[[image:image-20220708140453-6.png]] 661 661 ))) 662 -))) 663 663 664 664 665 -[[image:1654506665940-119.png]] 666 666 667 -((( 668 -Dig a hole with diameter > 20CM. 669 -))) 606 +=== 2.9.2 Power consumption Analyze === 670 670 671 671 ((( 672 - Horizontalinsertthe probeto the soil andfill the holefor longtermmeasurement.609 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 673 673 ))) 674 674 675 675 676 -== 2.10 Firmware Change Log == 677 - 678 678 ((( 679 - **Firmware downloadlink:**614 +Instruction to use as below: 680 680 ))) 681 681 682 682 ((( 683 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/ LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]618 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 684 684 ))) 685 685 686 -((( 687 - 688 -))) 689 689 690 690 ((( 691 - **FirmwareUpgradeMethod: **[[FirmwareUpgradeInstruction>>doc:Main.FirmwareUpgradeInstruction for STM32 baseproducts.WebHome]]623 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 692 692 ))) 693 693 694 -((( 695 - 626 +* ((( 627 +Product Model 696 696 ))) 697 - 698 -((( 699 -**V1.0.** 629 +* ((( 630 +Uplink Interval 700 700 ))) 632 +* ((( 633 +Working Mode 634 +))) 701 701 702 702 ((( 703 - Release637 +And the Life expectation in difference case will be shown on the right. 704 704 ))) 705 705 640 +[[image:image-20220708141352-7.jpeg]] 706 706 707 -== 2.11 Battery Analysis == 708 708 709 -=== 2.11.1 Battery Type === 710 710 711 -((( 712 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 713 -))) 644 +=== 2.9.3 Battery Note === 714 714 715 715 ((( 716 -The battery is designed to last for more than5 yearsfor theLSN50.647 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 717 717 ))) 718 718 719 -((( 720 -((( 721 -The battery-related documents are as below: 722 -))) 723 -))) 724 724 725 -* ((( 726 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 727 -))) 728 -* ((( 729 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 730 -))) 731 -* ((( 732 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 733 -))) 734 734 735 - [[image:image-20220606171726-9.png]]652 +=== 2.9.4 Replace the battery === 736 736 737 - 738 - 739 -=== 2.11.2 Battery Note === 740 - 741 741 ((( 742 -The Li-SICObatteryisdesigned forsmallcurrent/longperiodapplication. Itis notgood to use ahigh current,shortperiodtransmitmethod. Therecommendedminimum periodfor use ofthisbatteryis5minutes.If you useahorterperiodtimeto transmitLoRa, then the battery lifemaybe decreased.655 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 743 743 ))) 744 744 745 745 746 746 747 -= ==2.11.3Replacethebattery===660 += 3. Access NB-IoT Module = 748 748 749 749 ((( 750 - If Battery islower than2.7v, user shouldplace thebatteryofLSE01.663 +Users can directly access the AT command set of the NB-IoT module. 751 751 ))) 752 752 753 753 ((( 754 - Youcan changethebatteryintheLSE01.Thetypeofbattery is notlimitedaslongas the outputisbetween3v to3.6v. On themainboard, there isa diode(D1) between the battery andthe main circuit. If you needo usea battery with lessthan 3.3v, pleaseremovethe D1 andshortcut thetwopadsofit sothere won’t be voltageop between battery andmain board.667 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 755 755 ))) 756 756 757 -((( 758 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 759 -))) 670 +[[image:1657261278785-153.png]] 760 760 761 761 762 762 763 -= 3.Using the AT Commands =674 += 4. Using the AT Commands = 764 764 765 -== 3.1 Access AT Commands ==676 +== 4.1 Access AT Commands == 766 766 678 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 767 767 768 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 769 769 770 - [[image:1654501986557-872.png||height="391"width="800"]]681 +AT+<CMD>? : Help on <CMD> 771 771 683 +AT+<CMD> : Run <CMD> 772 772 773 - Orifyouhavebelowboard,usebelowconnection:685 +AT+<CMD>=<value> : Set the value 774 774 687 +AT+<CMD>=? : Get the value 775 775 776 -[[image:1654502005655-729.png||height="503" width="801"]] 777 777 778 - 779 - 780 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 781 - 782 - 783 - [[image:1654502050864-459.png||height="564" width="806"]] 784 - 785 - 786 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 787 - 788 - 789 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 790 - 791 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 792 - 793 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 794 - 795 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 796 - 797 - 798 798 (% style="color:#037691" %)**General Commands**(%%) 799 799 800 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention692 +AT : Attention 801 801 802 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help694 +AT? : Short Help 803 803 804 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset696 +ATZ : MCU Reset 805 805 806 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval698 +AT+TDC : Application Data Transmission Interval 807 807 700 +AT+CFG : Print all configurations 808 808 809 - (%style="color:#037691"%)**Keys,IDsand EUIs management**702 +AT+CFGMOD : Working mode selection 810 810 811 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI704 +AT+INTMOD : Set the trigger interrupt mode 812 812 813 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey706 +AT+5VT : Set extend the time of 5V power 814 814 815 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key708 +AT+PRO : Choose agreement 816 816 817 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress710 +AT+WEIGRE : Get weight or set weight to 0 818 818 819 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI712 +AT+WEIGAP : Get or Set the GapValue of weight 820 820 821 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)714 +AT+RXDL : Extend the sending and receiving time 822 822 823 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network716 +AT+CNTFAC : Get or set counting parameters 824 824 825 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode718 +AT+SERVADDR : Server Address 826 826 827 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 828 828 829 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network721 +(% style="color:#037691" %)**COAP Management** 830 830 831 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode723 +AT+URI : Resource parameters 832 832 833 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 834 834 835 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format726 +(% style="color:#037691" %)**UDP Management** 836 836 837 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat728 +AT+CFM : Upload confirmation mode (only valid for UDP) 838 838 839 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 840 840 841 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data731 +(% style="color:#037691" %)**MQTT Management** 842 842 733 +AT+CLIENT : Get or Set MQTT client 843 843 844 - (%style="color:#037691"%)**LoRaNetworkManagement**735 +AT+UNAME : Get or Set MQTT Username 845 845 846 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate737 +AT+PWD : Get or Set MQTT password 847 847 848 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA739 +AT+PUBTOPIC : Get or Set MQTT publish topic 849 849 850 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting741 +AT+SUBTOPIC : Get or Set MQTT subscription topic 851 851 852 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 853 853 854 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink744 +(% style="color:#037691" %)**Information** 855 855 856 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink746 +AT+FDR : Factory Data Reset 857 857 858 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1748 +AT+PWORD : Serial Access Password 859 859 860 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 861 861 862 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 863 863 864 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1752 += 5. FAQ = 865 865 866 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2754 +== 5.1 How to Upgrade Firmware == 867 867 868 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 869 869 870 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 871 - 872 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 873 - 874 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 875 - 876 - 877 -(% style="color:#037691" %)**Information** 878 - 879 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 880 - 881 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 882 - 883 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 884 - 885 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 886 - 887 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 888 - 889 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 890 - 891 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 892 - 893 - 894 -= 4. FAQ = 895 - 896 -== 4.1 How to change the LoRa Frequency Bands/Region? == 897 - 898 898 ((( 899 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 900 -When downloading the images, choose the required image file for download. 758 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 901 901 ))) 902 902 903 903 ((( 904 - 762 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 905 905 ))) 906 906 907 907 ((( 908 - Howtosetup LSE01 towork in 8 channel modeBy default,thefrequency bandsUS915,AU915, CN470 work in 72 frequencies.Many gatewaysare8 channelgateways, andin thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.766 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 909 909 ))) 910 910 911 -((( 912 - 913 -))) 914 914 915 -((( 916 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 917 -))) 918 918 919 -((( 920 - 921 -))) 771 += 6. Trouble Shooting = 922 922 923 -((( 924 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 925 -))) 773 +== 6.1 Connection problem when uploading firmware == 926 926 927 -[[image:image-20220606154726-3.png]] 928 928 929 - 930 -When you use the TTN network, the US915 frequency bands use are: 931 - 932 -* 903.9 - SF7BW125 to SF10BW125 933 -* 904.1 - SF7BW125 to SF10BW125 934 -* 904.3 - SF7BW125 to SF10BW125 935 -* 904.5 - SF7BW125 to SF10BW125 936 -* 904.7 - SF7BW125 to SF10BW125 937 -* 904.9 - SF7BW125 to SF10BW125 938 -* 905.1 - SF7BW125 to SF10BW125 939 -* 905.3 - SF7BW125 to SF10BW125 940 -* 904.6 - SF8BW500 941 - 776 +(% class="wikigeneratedid" %) 942 942 ((( 943 - Becausehe end nodeisnowhopping72 frequency,itmakesitdifficulttheevicestoJointhe TTN networkplink data.solvethisissue,youcanaccess thedeviceviatheATcommandsand run:778 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]] 944 944 ))) 945 945 946 -(% class="box infomessage" %) 947 -((( 948 -**AT+CHE=2** 949 -))) 950 950 951 -(% class="box infomessage" %) 952 -((( 953 -**ATZ** 954 -))) 955 955 956 -((( 957 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 958 -))) 783 +== 6.2 AT Command input doesn't work == 959 959 960 960 ((( 961 - 786 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 962 962 ))) 963 963 964 -((( 965 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 966 -))) 967 967 968 -[[image:image-20220606154825-4.png]] 969 969 791 += 7. Order Info = 970 970 971 971 972 - = 5. TroubleShooting=794 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 973 973 974 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 975 975 976 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 977 - 978 - 979 -== 5.2 AT Command input doesn’t work == 980 - 981 -((( 982 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 983 -))) 984 - 985 - 986 -== 5.3 Device rejoin in at the second uplink packet == 987 - 988 -(% style="color:#4f81bd" %)**Issue describe as below:** 989 - 990 -[[image:1654500909990-784.png]] 991 - 992 - 993 -(% style="color:#4f81bd" %)**Cause for this issue:** 994 - 995 -((( 996 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 997 -))) 998 - 999 - 1000 -(% style="color:#4f81bd" %)**Solution: ** 1001 - 1002 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1003 - 1004 -[[image:1654500929571-736.png||height="458" width="832"]] 1005 - 1006 - 1007 -= 6. Order Info = 1008 - 1009 - 1010 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1011 - 1012 - 1013 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1014 - 1015 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1016 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1017 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1018 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1019 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1020 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1021 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1022 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1023 - 1024 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1025 - 1026 -* (% style="color:red" %)**4**(%%): 4000mAh battery 1027 -* (% style="color:red" %)**8**(%%): 8500mAh battery 1028 - 1029 1029 (% class="wikigeneratedid" %) 1030 1030 ((( 1031 1031 1032 1032 ))) 1033 1033 1034 -= 7. Packing Info =802 += 8. Packing Info = 1035 1035 1036 1036 ((( 1037 1037 1038 1038 1039 1039 (% style="color:#037691" %)**Package Includes**: 1040 -))) 1041 1041 1042 -* ((( 1043 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 809 + 810 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 811 +* External antenna x 1 1044 1044 ))) 1045 1045 1046 1046 ((( ... ... @@ -1047,27 +1047,20 @@ 1047 1047 1048 1048 1049 1049 (% style="color:#037691" %)**Dimension and weight**: 1050 -))) 1051 1051 1052 -* ((( 1053 -Device Size: cm 819 + 820 +* Size: 195 x 125 x 55 mm 821 +* Weight: 420g 1054 1054 ))) 1055 -* ((( 1056 -Device Weight: g 1057 -))) 1058 -* ((( 1059 -Package Size / pcs : cm 1060 -))) 1061 -* ((( 1062 -Weight / pcs : g 1063 1063 824 +((( 825 + 1064 1064 827 + 1065 1065 1066 1066 ))) 1067 1067 1068 -= 8. Support =831 += 9. Support = 1069 1069 1070 1070 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1071 1071 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1072 - 1073 -
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content