Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 24 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,8 +3,16 @@ 3 3 4 4 5 5 6 -**Contents:** 7 7 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 +**Table of Contents:** 15 + 8 8 {{toc/}} 9 9 10 10 ... ... @@ -12,61 +12,81 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 -= =1.1Whatis LoRaWAN Soil Moisture & EC Sensor==24 += 1. Introduction = 18 18 26 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 27 + 19 19 ((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 29 + 22 22 23 23 ((( 24 - Itdetects (% style="color:#4f81bd" %)**SoilMoisture**(%%),(%style="color:#4f81bd"%)**Soil Temperature**(%%)and(%style="color:#4f81bd"%)**SoilConductivity**(%%),anduploadsthevalueviawirelesstoLoRaWANIoT Server.32 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 25 25 ))) 26 26 27 27 ((( 28 - TheLoRawirelesstechnologyusedin LES01 allows devicetoend data andreachextremely longrangesatlowdata-rates. It provides ultra-longrangespreadspectrumcommunicationandhighinterferenceimmunitywhilst minimizing current consumption.36 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 29 29 ))) 30 30 31 31 ((( 32 - LES01is powered by (%style="color:#4f81bd"%)**4000mAor8500mAhLi-SOCI2battery**(%%),Itisdesignedfor long termuseup to10 years.40 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 33 ))) 34 34 35 35 ((( 36 - Each LES01ispre-loadwithasetfuniquekeys for LoRaWANregistrations,register thesekeys to localLoRaWANserver anditwill autoconnectafterpower on.44 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 37 37 ))) 38 38 47 + 48 +))) 39 39 40 40 [[image:1654503236291-817.png]] 41 41 42 42 43 -[[image:16545 03265560-120.png]]53 +[[image:1657245163077-232.png]] 44 44 45 45 46 46 47 -== 1.2 Features == 57 +== 1.2 Features == 48 48 49 -* LoRaWAN 1.0.3 Class A 50 -* Ultra low power consumption 59 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 51 51 * Monitor Soil Moisture 52 52 * Monitor Soil Temperature 53 53 * Monitor Soil Conductivity 54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 55 55 * AT Commands to change parameters 56 56 * Uplink on periodically 57 57 * Downlink to change configure 58 58 * IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 67 +* Ultra-Low Power consumption 68 +* AT Commands to change parameters 69 +* Micro SIM card slot for NB-IoT SIM 70 +* 8500mAh Battery for long term use 60 60 61 -== 1.3 Specification == 72 +== 1.3 Specification == 62 62 74 + 75 +(% style="color:#037691" %)**Common DC Characteristics:** 76 + 77 +* Supply Voltage: 2.1v ~~ 3.6v 78 +* Operating Temperature: -40 ~~ 85°C 79 + 80 +(% style="color:#037691" %)**NB-IoT Spec:** 81 + 82 +* - B1 @H-FDD: 2100MHz 83 +* - B3 @H-FDD: 1800MHz 84 +* - B8 @H-FDD: 900MHz 85 +* - B5 @H-FDD: 850MHz 86 +* - B20 @H-FDD: 800MHz 87 +* - B28 @H-FDD: 700MHz 88 + 89 +Probe(% style="color:#037691" %)** Specification:** 90 + 63 63 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 64 64 65 -[[image:image-20220 606162220-5.png]]93 +[[image:image-20220708101224-1.png]] 66 66 67 67 68 68 69 -== 1.4 Applications == 97 +== 1.4 Applications == 70 70 71 71 * Smart Agriculture 72 72 ... ... @@ -73,974 +73,760 @@ 73 73 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 74 75 75 76 -== 1.5 Firmware Changelog==104 +== 1.5 Pin Definitions == 77 77 78 78 79 - **LSE01v1.0 :** Release107 +[[image:1657246476176-652.png]] 80 80 81 81 82 82 83 -= 2. ConfigureLSE01 to connect toLoRaWANnetwork=111 += 2. Use NSE01 to communicate with IoT Server = 84 84 85 -== 2.1 How it works == 113 +== 2.1 How it works == 86 86 115 + 87 87 ((( 88 -The LSE01 isconfiguredasLoRaWANOTAAClass Amodebydefault.IthasOTAAkeystojoinLoRaWANnetwork.Toconnect a localLoRaWAN network,you need toinputtheOTAAkeysin theLoRaWANserverandpoweronthe LSE0150. It willautomaticallyjointhenetworkviaOTAA and starttosendthesensor value117 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 89 89 ))) 90 90 120 + 91 91 ((( 92 - In case you can’t set the OTAA keys in theLoRaWAN OTAA server,andyouhave tousethe keysfromtheserver, you can [[useAT Commands >>||anchor="H3.200BUsingtheATCommands"]].122 +The diagram below shows the working flow in default firmware of NSE01: 93 93 ))) 94 94 125 +[[image:image-20220708101605-2.png]] 95 95 127 +((( 128 + 129 +))) 96 96 97 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 98 98 99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 100 100 133 +== 2.2 Configure the NSE01 == 101 101 102 -[[image:1654503992078-669.png]] 103 103 136 +=== 2.2.1 Test Requirement === 104 104 105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 106 106 139 +((( 140 +To use NSE01 in your city, make sure meet below requirements: 141 +))) 107 107 108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 143 +* Your local operator has already distributed a NB-IoT Network there. 144 +* The local NB-IoT network used the band that NSE01 supports. 145 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 109 109 110 -Each LSE01 is shipped with a sticker with the default device EUI as below: 147 +((( 148 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 149 +))) 111 111 112 -[[image:image-20220606163732-6.jpeg]] 113 113 114 - You can enter this key in the LoRaWAN Server portal.Below is TTN screenshot:152 +[[image:1657249419225-449.png]] 115 115 116 -**Add APP EUI in the application** 117 117 118 118 119 - [[image:1654504596150-405.png]]156 +=== 2.2.2 Insert SIM card === 120 120 121 - 122 - 123 -**Add APP KEY and DEV EUI** 124 - 125 -[[image:1654504683289-357.png]] 126 - 127 - 128 - 129 -**Step 2**: Power on LSE01 130 - 131 - 132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 - 134 -[[image:image-20220606163915-7.png]] 135 - 136 - 137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 - 139 -[[image:1654504778294-788.png]] 140 - 141 - 142 - 143 -== 2.3 Uplink Payload == 144 - 145 -=== 2.3.1 MOD~=0(Default Mode) === 146 - 147 -LSE01 will uplink payload via LoRaWAN with below payload format: 148 - 149 - 150 -Uplink payload includes in total 11 bytes. 151 - 152 - 153 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 154 -|=((( 155 -**Size** 156 - 157 -**(bytes)** 158 -)))|=(% style="width: 45px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1** 159 -|**Value**|(% style="width:45px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:80px" %)((( 160 160 ((( 161 - Temperature159 +Insert the NB-IoT Card get from your provider. 162 162 ))) 163 163 164 164 ((( 165 - (Reserve,Ignore now)163 +User need to take out the NB-IoT module and insert the SIM card like below: 166 166 ))) 167 -)))|(% style="width:80px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:80px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:80px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:80px" %)((( 168 -((( 169 -MOD & Digital Interrupt 170 -))) 171 171 172 -((( 173 -(Optional) 174 -))) 175 -))) 176 176 177 -[[image:1654 504881641-514.png]]167 +[[image:1657249468462-536.png]] 178 178 179 179 180 180 181 -=== 2. 3.2MOD~=1(Original value)===171 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 182 182 183 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 184 - 185 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 186 -|=((( 187 -**Size** 188 - 189 -**(bytes)** 190 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1** 191 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 192 192 ((( 193 -Temperature 194 -))) 195 - 196 196 ((( 197 - (Reserve,Ignore now)175 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 198 198 ))) 199 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|((( 200 -[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw) 201 -)))|((( 202 -((( 203 -MOD & Digital Interrupt 204 204 ))) 205 205 206 -((( 207 -(Optional) 208 -))) 209 -))) 210 210 211 - [[image:1654504907647-967.png]]180 +**Connection:** 212 212 182 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 213 213 184 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 214 214 215 - ===2.3.3Battery Info===186 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 216 216 217 -Check the battery voltage for LSE01. 218 218 219 - Ex1:0x0B45=2885mV189 +In the PC, use below serial tool settings: 220 220 221 -Ex2: 0x0B49 = 2889mV 191 +* Baud: (% style="color:green" %)**9600** 192 +* Data bits:** (% style="color:green" %)8(%%)** 193 +* Stop bits: (% style="color:green" %)**1** 194 +* Parity: (% style="color:green" %)**None** 195 +* Flow Control: (% style="color:green" %)**None** 222 222 223 - 224 - 225 -=== 2.3.4 Soil Moisture === 226 - 227 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 228 - 229 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 230 - 231 - 232 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 233 - 234 - 235 - 236 -=== 2.3.5 Soil Temperature === 237 - 238 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 239 - 240 -**Example**: 241 - 242 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 243 - 244 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 245 - 246 - 247 - 248 -=== 2.3.6 Soil Conductivity (EC) === 249 - 250 250 ((( 251 - Obtain(%style="color:#4f81bd"%)**__solublesaltconcentration__**(%%)insoil or(%style="color:#4f81bd" %)**__soluble ionconcentrationinliquidfertilizer__**(%%)or(% style="color:#4f81bd" %)**__planting medium__**(%%).Thevaluerange of the register is0- 20000(Decimal)( Canbe greater than20000).198 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 252 252 ))) 253 253 254 -((( 255 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 256 -))) 201 +[[image:image-20220708110657-3.png]] 257 257 258 258 ((( 259 - Generally,theECvalueofirrigationwaterisless than800uS/204 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 260 260 ))) 261 261 262 -((( 263 - 264 -))) 265 265 266 -((( 267 - 268 -))) 269 269 270 -=== 2. 3.7MOD===209 +=== 2.2.4 Use CoAP protocol to uplink data === 271 271 272 - Firmwareversion atleastv2.1supportschangingmode.211 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 273 273 274 -For example, bytes[10]=90 275 275 276 - mod=(bytes[10]>>7)&0x01=1.214 +**Use below commands:** 277 277 216 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 217 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 218 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 278 278 279 - **DownlinkCommand:**220 +For parameter description, please refer to AT command set 280 280 281 - If payload = 0x0A00, workmode=0222 +[[image:1657249793983-486.png]] 282 282 283 -If** **payload =** **0x0A01, workmode=1 284 284 225 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 285 285 227 +[[image:1657249831934-534.png]] 286 286 287 -=== 2.3.8 Decode payload in The Things Network === 288 288 289 -While using TTN network, you can add the payload format to decode the payload. 290 290 231 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 291 291 292 - [[image:1654505570700-128.png]]233 +This feature is supported since firmware version v1.0.1 293 293 294 -The payload decoder function for TTN is here: 295 295 296 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 236 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 237 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 238 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 297 297 240 +[[image:1657249864775-321.png]] 298 298 299 299 300 - ==2.4Uplink Interval ==243 +[[image:1657249930215-289.png]] 301 301 302 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 303 303 304 304 247 +=== 2.2.6 Use MQTT protocol to uplink data === 305 305 306 - ==2.5DownlinkPayload==249 +This feature is supported since firmware version v110 307 307 308 -By default, LSE50 prints the downlink payload to console port. 309 309 310 -[[image:image-20220606165544-8.png]] 252 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 253 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 254 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 255 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 256 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 257 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 258 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 311 311 260 +[[image:1657249978444-674.png]] 312 312 313 -**Examples:** 314 314 263 +[[image:1657249990869-686.png]] 315 315 316 -* **Set TDC** 317 317 318 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 266 +((( 267 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 268 +))) 319 319 320 -Payload: 01 00 00 1E TDC=30S 321 321 322 -Payload: 01 00 00 3C TDC=60S 323 323 272 +=== 2.2.7 Use TCP protocol to uplink data === 324 324 325 - ***Reset**274 +This feature is supported since firmware version v110 326 326 327 -If payload = 0x04FF, it will reset the LSE01 328 328 277 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 278 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 329 329 330 - * **CFM**280 +[[image:1657250217799-140.png]] 331 331 332 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 333 333 283 +[[image:1657250255956-604.png]] 334 334 335 335 336 -== 2.6 Show Data in DataCake IoT Server == 337 337 338 - [[DATACAKE>>url:https://datacake.co/]]providesahumanfriendlyinterface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]]to connectto TTN and see the data in DATACAKE. Beloware the steps:287 +=== 2.2.8 Change Update Interval === 339 339 289 +User can use below command to change the (% style="color:green" %)**uplink interval**. 340 340 341 -* *Step1**:Besurethatyour device is programmedandproperlyconnectedto the networkatthistime.291 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 342 342 343 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 293 +((( 294 +(% style="color:red" %)**NOTE:** 295 +))) 344 344 297 +((( 298 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 299 +))) 345 345 346 -[[image:1654505857935-743.png]] 347 347 348 348 349 - [[image:1654505874829-548.png]]303 +== 2.3 Uplink Payload == 350 350 351 - Step3: Createan accountorloginDatacake.305 +In this mode, uplink payload includes in total 18 bytes 352 352 353 -Step 4: Search the LSE01 and add DevEUI. 307 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 308 +|=(% style="width: 60px;" %)((( 309 +**Size(bytes)** 310 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 311 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 354 354 313 +((( 314 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 315 +))) 355 355 356 -[[image:1654505905236-553.png]] 357 357 318 +[[image:image-20220708111918-4.png]] 358 358 359 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 360 360 361 - [[image:1654505925508-181.png]]321 +The payload is ASCII string, representative same HEX: 362 362 323 +0x72403155615900640c7817075e0a8c02f900 where: 363 363 325 +* Device ID: 0x 724031556159 = 724031556159 326 +* Version: 0x0064=100=1.0.0 364 364 365 -== 2.7 Frequency Plans == 328 +* BAT: 0x0c78 = 3192 mV = 3.192V 329 +* Singal: 0x17 = 23 330 +* Soil Moisture: 0x075e= 1886 = 18.86 % 331 +* Soil Temperature:0x0a8c =2700=27 °C 332 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 333 +* Interrupt: 0x00 = 0 366 366 367 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 368 368 369 369 370 -=== 2.7.1 EU863-870 (EU868) === 371 371 372 - (%style="color:#037691"%)** Uplink:**338 +== 2.4 Payload Explanation and Sensor Interface == 373 373 374 -868.1 - SF7BW125 to SF12BW125 375 375 376 - 868.3- SF7BW125 to SF12BW125andSF7BW250341 +=== 2.4.1 Device ID === 377 377 378 -868.5 - SF7BW125 to SF12BW125 343 +((( 344 +By default, the Device ID equal to the last 6 bytes of IMEI. 345 +))) 379 379 380 -867.1 - SF7BW125 to SF12BW125 347 +((( 348 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 349 +))) 381 381 382 -867.3 - SF7BW125 to SF12BW125 351 +((( 352 +**Example:** 353 +))) 383 383 384 -867.5 - SF7BW125 to SF12BW125 355 +((( 356 +AT+DEUI=A84041F15612 357 +))) 385 385 386 -867.7 - SF7BW125 to SF12BW125 359 +((( 360 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 361 +))) 387 387 388 -867.9 - SF7BW125 to SF12BW125 389 389 390 -868.8 - FSK 391 391 365 +=== 2.4.2 Version Info === 392 392 393 -(% style="color:#037691" %)** Downlink:** 367 +((( 368 +Specify the software version: 0x64=100, means firmware version 1.00. 369 +))) 394 394 395 -Uplink channels 1-9 (RX1) 371 +((( 372 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 373 +))) 396 396 397 -869.525 - SF9BW125 (RX2 downlink only) 398 398 399 399 377 +=== 2.4.3 Battery Info === 400 400 401 -=== 2.7.2 US902-928(US915) === 379 +((( 380 +Check the battery voltage for LSE01. 381 +))) 402 402 403 -Used in USA, Canada and South America. Default use CHE=2 383 +((( 384 +Ex1: 0x0B45 = 2885mV 385 +))) 404 404 405 -(% style="color:#037691" %)**Uplink:** 387 +((( 388 +Ex2: 0x0B49 = 2889mV 389 +))) 406 406 407 -903.9 - SF7BW125 to SF10BW125 408 408 409 -904.1 - SF7BW125 to SF10BW125 410 410 411 - 904.3-SF7BW125toSF10BW125393 +=== 2.4.4 Signal Strength === 412 412 413 -904.5 - SF7BW125 to SF10BW125 395 +((( 396 +NB-IoT Network signal Strength. 397 +))) 414 414 415 -904.7 - SF7BW125 to SF10BW125 399 +((( 400 +**Ex1: 0x1d = 29** 401 +))) 416 416 417 -904.9 - SF7BW125 to SF10BW125 403 +((( 404 +(% style="color:blue" %)**0**(%%) -113dBm or less 405 +))) 418 418 419 -905.1 - SF7BW125 to SF10BW125 407 +((( 408 +(% style="color:blue" %)**1**(%%) -111dBm 409 +))) 420 420 421 -905.3 - SF7BW125 to SF10BW125 411 +((( 412 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 413 +))) 422 422 415 +((( 416 +(% style="color:blue" %)**31** (%%) -51dBm or greater 417 +))) 423 423 424 -(% style="color:#037691" %)**Downlink:** 419 +((( 420 +(% style="color:blue" %)**99** (%%) Not known or not detectable 421 +))) 425 425 426 -923.3 - SF7BW500 to SF12BW500 427 427 428 -923.9 - SF7BW500 to SF12BW500 429 429 430 - 924.5-SF7BW500toSF12BW500425 +=== 2.4.5 Soil Moisture === 431 431 432 -925.1 - SF7BW500 to SF12BW500 427 +((( 428 +((( 429 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 430 +))) 431 +))) 433 433 434 -925.7 - SF7BW500 to SF12BW500 433 +((( 434 +((( 435 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 436 +))) 437 +))) 435 435 436 -926.3 - SF7BW500 to SF12BW500 439 +((( 440 + 441 +))) 437 437 438 -926.9 - SF7BW500 to SF12BW500 443 +((( 444 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 445 +))) 439 439 440 -927.5 - SF7BW500 to SF12BW500 441 441 442 -923.3 - SF12BW500(RX2 downlink only) 443 443 449 +=== 2.4.6 Soil Temperature === 444 444 451 +((( 452 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 453 +))) 445 445 446 -=== 2.7.3 CN470-510 (CN470) === 455 +((( 456 +**Example**: 457 +))) 447 447 448 -Used in China, Default use CHE=1 459 +((( 460 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 461 +))) 449 449 450 -(% style="color:#037691" %)**Uplink:** 463 +((( 464 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 465 +))) 451 451 452 -486.3 - SF7BW125 to SF12BW125 453 453 454 -486.5 - SF7BW125 to SF12BW125 455 455 456 -4 86.7-SF7BW125toSF12BW125469 +=== 2.4.7 Soil Conductivity (EC) === 457 457 458 -486.9 - SF7BW125 to SF12BW125 471 +((( 472 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 473 +))) 459 459 460 -487.1 - SF7BW125 to SF12BW125 475 +((( 476 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 477 +))) 461 461 462 -487.3 - SF7BW125 to SF12BW125 479 +((( 480 +Generally, the EC value of irrigation water is less than 800uS / cm. 481 +))) 463 463 464 -487.5 - SF7BW125 to SF12BW125 483 +((( 484 + 485 +))) 465 465 466 -487.7 - SF7BW125 to SF12BW125 487 +((( 488 + 489 +))) 467 467 491 +=== 2.4.8 Digital Interrupt === 468 468 469 -(% style="color: #037691" %)**Downlink:**493 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 470 470 471 - 506.7- SF7BW125 toSF12BW125495 +The command is: 472 472 473 - 506.9-SF7BW125to SF12BW125497 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 474 474 475 -507.1 - SF7BW125 to SF12BW125 476 476 477 - 507.3-SF7BW125toSF12BW125500 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 478 478 479 -507.5 - SF7BW125 to SF12BW125 480 480 481 - 507.7 - SF7BW125 to SF12BW125503 +Example: 482 482 483 - 507.9-SF7BW125to SF12BW125505 +0x(00): Normal uplink packet. 484 484 485 - 508.1-SF7BW125to SF12BW125507 +0x(01): Interrupt Uplink Packet. 486 486 487 -505.3 - SF12BW125 (RX2 downlink only) 488 488 489 489 511 +=== 2.4.9 +5V Output === 490 490 491 - ===2.7.4AU915-928(AU915)===513 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 492 492 493 -Default use CHE=2 494 494 495 - (%style="color:#037691" %)**Uplink:**516 +The 5V output time can be controlled by AT Command. 496 496 497 - 916.8- SF7BW125toSF12BW125518 +(% style="color:blue" %)**AT+5VT=1000** 498 498 499 - 917.0-SF7BW125 toSF12BW125520 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 500 500 501 -917.2 - SF7BW125 to SF12BW125 502 502 503 -917.4 - SF7BW125 to SF12BW125 504 504 505 - 917.6- SF7BW125toSF12BW125524 +== 2.5 Downlink Payload == 506 506 507 - 917.8-SF7BW125toSF12BW125526 +By default, NSE01 prints the downlink payload to console port. 508 508 509 - 918.0-SF7BW125 to SF12BW125528 +[[image:image-20220708133731-5.png]] 510 510 511 -918.2 - SF7BW125 to SF12BW125 512 512 531 +((( 532 +(% style="color:blue" %)**Examples:** 533 +))) 513 513 514 -(% style="color:#037691" %)**Downlink:** 535 +((( 536 + 537 +))) 515 515 516 -923.3 - SF7BW500 to SF12BW500 539 +* ((( 540 +(% style="color:blue" %)**Set TDC** 541 +))) 517 517 518 -923.9 - SF7BW500 to SF12BW500 543 +((( 544 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 545 +))) 519 519 520 -924.5 - SF7BW500 to SF12BW500 547 +((( 548 +Payload: 01 00 00 1E TDC=30S 549 +))) 521 521 522 -925.1 - SF7BW500 to SF12BW500 551 +((( 552 +Payload: 01 00 00 3C TDC=60S 553 +))) 523 523 524 -925.7 - SF7BW500 to SF12BW500 555 +((( 556 + 557 +))) 525 525 526 -926.3 - SF7BW500 to SF12BW500 559 +* ((( 560 +(% style="color:blue" %)**Reset** 561 +))) 527 527 528 -926.9 - SF7BW500 to SF12BW500 563 +((( 564 +If payload = 0x04FF, it will reset the NSE01 565 +))) 529 529 530 -927.5 - SF7BW500 to SF12BW500 531 531 532 - 923.3- SF12BW500(RX2downlinkonly)568 +* (% style="color:blue" %)**INTMOD** 533 533 570 +Downlink Payload: 06000003, Set AT+INTMOD=3 534 534 535 535 536 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 537 537 538 - (% style="color:#037691"%)**DefaultUplinkchannel:**574 +== 2.6 LED Indicator == 539 539 540 -923.2 - SF7BW125 to SF10BW125 576 +((( 577 +The NSE01 has an internal LED which is to show the status of different state. 541 541 542 -923.4 - SF7BW125 to SF10BW125 543 543 580 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 581 +* Then the LED will be on for 1 second means device is boot normally. 582 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 583 +* For each uplink probe, LED will be on for 500ms. 584 +))) 544 544 545 -(% style="color:#037691" %)**Additional Uplink Channel**: 546 546 547 -(OTAA mode, channel added by JoinAccept message) 548 548 549 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 550 550 551 - 922.2 - SF7BW125to SF10BW125589 +== 2.7 Installation in Soil == 552 552 553 - 922.4- SF7BW125toSF10BW125591 +__**Measurement the soil surface**__ 554 554 555 - 922.6-SF7BW125SF10BW125593 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 556 556 557 - 922.8 - SF7BW125to SF10BW125595 +[[image:1657259653666-883.png]] 558 558 559 -923.0 - SF7BW125 to SF10BW125 560 560 561 -922.0 - SF7BW125 to SF10BW125 598 +((( 599 + 562 562 601 +((( 602 +Dig a hole with diameter > 20CM. 603 +))) 563 563 564 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 605 +((( 606 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 607 +))) 608 +))) 565 565 566 - 923.6 - SF7BW125to SF10BW125610 +[[image:1654506665940-119.png]] 567 567 568 -923.8 - SF7BW125 to SF10BW125 612 +((( 613 + 614 +))) 569 569 570 -924.0 - SF7BW125 to SF10BW125 571 571 572 - 924.2- SF7BW125toSF10BW125617 +== 2.8 Firmware Change Log == 573 573 574 -924.4 - SF7BW125 to SF10BW125 575 575 576 - 924.6-SF7BW125toSF10BW125620 +Download URL & Firmware Change log 577 577 622 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 578 578 579 -(% style="color:#037691" %)** Downlink:** 580 580 581 -Up linkchannels 1-8 (RX1)625 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 582 582 583 -923.2 - SF10BW125 (RX2) 584 584 585 585 629 +== 2.9 Battery Analysis == 586 586 587 -=== 2. 7.6KR920-923(KR920)===631 +=== 2.9.1 Battery Type === 588 588 589 -Default channel: 590 590 591 - 922.1-SF7BW125to SF12BW125634 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 592 592 593 -922.3 - SF7BW125 to SF12BW125 594 594 595 - 922.5-SF7BW125toSF12BW125637 +The battery is designed to last for several years depends on the actually use environment and update interval. 596 596 597 597 598 - (%style="color:#037691"%)**Uplink: (OTAA mode, channelddedby JoinAcceptmessage)**640 +The battery related documents as below: 599 599 600 -922.1 - SF7BW125 to SF12BW125 642 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 643 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 644 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 601 601 602 -922.3 - SF7BW125 to SF12BW125 603 - 604 -922.5 - SF7BW125 to SF12BW125 605 - 606 -922.7 - SF7BW125 to SF12BW125 607 - 608 -922.9 - SF7BW125 to SF12BW125 609 - 610 -923.1 - SF7BW125 to SF12BW125 611 - 612 -923.3 - SF7BW125 to SF12BW125 613 - 614 - 615 -(% style="color:#037691" %)**Downlink:** 616 - 617 -Uplink channels 1-7(RX1) 618 - 619 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 620 - 621 - 622 - 623 -=== 2.7.7 IN865-867 (IN865) === 624 - 625 -(% style="color:#037691" %)** Uplink:** 626 - 627 -865.0625 - SF7BW125 to SF12BW125 628 - 629 -865.4025 - SF7BW125 to SF12BW125 630 - 631 -865.9850 - SF7BW125 to SF12BW125 632 - 633 - 634 -(% style="color:#037691" %) **Downlink:** 635 - 636 -Uplink channels 1-3 (RX1) 637 - 638 -866.550 - SF10BW125 (RX2) 639 - 640 - 641 - 642 - 643 -== 2.8 LED Indicator == 644 - 645 -The LSE01 has an internal LED which is to show the status of different state. 646 - 647 -* Blink once when device power on. 648 -* Solid ON for 5 seconds once device successful Join the network. 649 -* Blink once when device transmit a packet. 650 - 651 -== 2.9 Installation in Soil == 652 - 653 -**Measurement the soil surface** 654 - 655 - 656 -[[image:1654506634463-199.png]] 657 - 658 658 ((( 659 -((( 660 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 647 +[[image:image-20220708140453-6.png]] 661 661 ))) 662 -))) 663 663 664 664 665 -[[image:1654506665940-119.png]] 666 666 667 -((( 668 -Dig a hole with diameter > 20CM. 669 -))) 652 +=== 2.9.2 Power consumption Analyze === 670 670 671 671 ((( 672 - Horizontalinsertthe probeto the soil andfill the holefor longtermmeasurement.655 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 673 673 ))) 674 674 675 675 676 -== 2.10 Firmware Change Log == 677 - 678 678 ((( 679 - **Firmware downloadlink:**660 +Instruction to use as below: 680 680 ))) 681 681 682 682 ((( 683 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/ LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]664 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 684 684 ))) 685 685 686 -((( 687 - 688 -))) 689 689 690 690 ((( 691 - **FirmwareUpgradeMethod: **[[FirmwareUpgradeInstruction>>doc:Main.FirmwareUpgradeInstruction for STM32 baseproducts.WebHome]]669 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 692 692 ))) 693 693 694 -((( 695 - 672 +* ((( 673 +Product Model 696 696 ))) 697 - 698 -((( 699 -**V1.0.** 675 +* ((( 676 +Uplink Interval 700 700 ))) 678 +* ((( 679 +Working Mode 680 +))) 701 701 702 702 ((( 703 - Release683 +And the Life expectation in difference case will be shown on the right. 704 704 ))) 705 705 686 +[[image:image-20220708141352-7.jpeg]] 706 706 707 -== 2.11 Battery Analysis == 708 708 709 -=== 2.11.1 Battery Type === 710 710 711 -((( 712 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 713 -))) 690 +=== 2.9.3 Battery Note === 714 714 715 715 ((( 716 -The battery is designed to last for more than5 yearsfor theLSN50.693 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 717 717 ))) 718 718 719 -((( 720 -((( 721 -The battery-related documents are as below: 722 -))) 723 -))) 724 724 725 -* ((( 726 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 727 -))) 728 -* ((( 729 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 730 -))) 731 -* ((( 732 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 733 -))) 734 734 735 - [[image:image-20220606171726-9.png]]698 +=== 2.9.4 Replace the battery === 736 736 737 - 738 - 739 -=== 2.11.2 Battery Note === 740 - 741 741 ((( 742 -The Li-SICObatteryisdesigned forsmallcurrent/longperiodapplication. Itis notgood to use ahigh current,shortperiodtransmitmethod. Therecommendedminimum periodfor use ofthisbatteryis5minutes.If you useahorterperiodtimeto transmitLoRa, then the battery lifemaybe decreased.701 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 743 743 ))) 744 744 745 745 746 746 747 -= ==2.11.3Replacethebattery===706 += 3. Access NB-IoT Module = 748 748 749 749 ((( 750 - If Battery islower than2.7v, user shouldplace thebatteryofLSE01.709 +Users can directly access the AT command set of the NB-IoT module. 751 751 ))) 752 752 753 753 ((( 754 - Youcan changethebatteryintheLSE01.Thetypeofbattery is notlimitedaslongas the outputisbetween3v to3.6v. On themainboard, there isa diode(D1) between the battery andthe main circuit. If you needo usea battery with lessthan 3.3v, pleaseremovethe D1 andshortcut thetwopadsofit sothere won’t be voltageop between battery andmain board.713 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 755 755 ))) 756 756 757 -((( 758 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 759 -))) 716 +[[image:1657261278785-153.png]] 760 760 761 761 762 762 763 -= 3.Using the AT Commands =720 += 4. Using the AT Commands = 764 764 765 -== 3.1 Access AT Commands ==722 +== 4.1 Access AT Commands == 766 766 724 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 767 767 768 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 769 769 770 - [[image:1654501986557-872.png||height="391"width="800"]]727 +AT+<CMD>? : Help on <CMD> 771 771 729 +AT+<CMD> : Run <CMD> 772 772 773 - Orifyouhavebelowboard,usebelowconnection:731 +AT+<CMD>=<value> : Set the value 774 774 733 +AT+<CMD>=? : Get the value 775 775 776 -[[image:1654502005655-729.png||height="503" width="801"]] 777 777 778 - 779 - 780 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 781 - 782 - 783 - [[image:1654502050864-459.png||height="564" width="806"]] 784 - 785 - 786 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 787 - 788 - 789 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 790 - 791 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 792 - 793 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 794 - 795 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 796 - 797 - 798 798 (% style="color:#037691" %)**General Commands**(%%) 799 799 800 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention738 +AT : Attention 801 801 802 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help740 +AT? : Short Help 803 803 804 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset742 +ATZ : MCU Reset 805 805 806 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval744 +AT+TDC : Application Data Transmission Interval 807 807 746 +AT+CFG : Print all configurations 808 808 809 - (%style="color:#037691"%)**Keys,IDsand EUIs management**748 +AT+CFGMOD : Working mode selection 810 810 811 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI750 +AT+INTMOD : Set the trigger interrupt mode 812 812 813 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey752 +AT+5VT : Set extend the time of 5V power 814 814 815 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key754 +AT+PRO : Choose agreement 816 816 817 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress756 +AT+WEIGRE : Get weight or set weight to 0 818 818 819 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI758 +AT+WEIGAP : Get or Set the GapValue of weight 820 820 821 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)760 +AT+RXDL : Extend the sending and receiving time 822 822 823 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network762 +AT+CNTFAC : Get or set counting parameters 824 824 825 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode764 +AT+SERVADDR : Server Address 826 826 827 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 828 828 829 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network767 +(% style="color:#037691" %)**COAP Management** 830 830 831 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode769 +AT+URI : Resource parameters 832 832 833 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 834 834 835 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format772 +(% style="color:#037691" %)**UDP Management** 836 836 837 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat774 +AT+CFM : Upload confirmation mode (only valid for UDP) 838 838 839 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 840 840 841 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data777 +(% style="color:#037691" %)**MQTT Management** 842 842 779 +AT+CLIENT : Get or Set MQTT client 843 843 844 - (%style="color:#037691"%)**LoRaNetworkManagement**781 +AT+UNAME : Get or Set MQTT Username 845 845 846 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate783 +AT+PWD : Get or Set MQTT password 847 847 848 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA785 +AT+PUBTOPIC : Get or Set MQTT publish topic 849 849 850 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting787 +AT+SUBTOPIC : Get or Set MQTT subscription topic 851 851 852 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 853 853 854 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink790 +(% style="color:#037691" %)**Information** 855 855 856 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink792 +AT+FDR : Factory Data Reset 857 857 858 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1794 +AT+PWORD : Serial Access Password 859 859 860 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 861 861 862 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 863 863 864 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1798 += 5. FAQ = 865 865 866 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2800 +== 5.1 How to Upgrade Firmware == 867 867 868 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 869 869 870 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 871 - 872 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 873 - 874 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 875 - 876 - 877 -(% style="color:#037691" %)**Information** 878 - 879 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 880 - 881 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 882 - 883 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 884 - 885 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 886 - 887 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 888 - 889 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 890 - 891 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 892 - 893 - 894 -= 4. FAQ = 895 - 896 -== 4.1 How to change the LoRa Frequency Bands/Region? == 897 - 898 898 ((( 899 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 900 -When downloading the images, choose the required image file for download. 804 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 901 901 ))) 902 902 903 903 ((( 904 - 808 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 905 905 ))) 906 906 907 907 ((( 908 - Howtosetup LSE01 towork in 8 channel modeBy default,thefrequency bandsUS915,AU915, CN470 work in 72 frequencies.Many gatewaysare8 channelgateways, andin thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.812 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 909 909 ))) 910 910 911 -((( 912 - 913 -))) 914 914 915 -((( 916 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 917 -))) 918 918 919 -((( 920 - 921 -))) 817 += 6. Trouble Shooting = 922 922 923 -((( 924 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 925 -))) 819 +== 6.1 Connection problem when uploading firmware == 926 926 927 -[[image:image-20220606154726-3.png]] 928 928 929 - 930 -When you use the TTN network, the US915 frequency bands use are: 931 - 932 -* 903.9 - SF7BW125 to SF10BW125 933 -* 904.1 - SF7BW125 to SF10BW125 934 -* 904.3 - SF7BW125 to SF10BW125 935 -* 904.5 - SF7BW125 to SF10BW125 936 -* 904.7 - SF7BW125 to SF10BW125 937 -* 904.9 - SF7BW125 to SF10BW125 938 -* 905.1 - SF7BW125 to SF10BW125 939 -* 905.3 - SF7BW125 to SF10BW125 940 -* 904.6 - SF8BW500 941 - 822 +(% class="wikigeneratedid" %) 942 942 ((( 943 - Becausehe end nodeisnowhopping72 frequency,itmakesitdifficulttheevicestoJointhe TTN networkplink data.solvethisissue,youcanaccess thedeviceviatheATcommandsand run:824 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]] 944 944 ))) 945 945 946 -(% class="box infomessage" %) 947 -((( 948 -**AT+CHE=2** 949 -))) 950 950 951 -(% class="box infomessage" %) 952 -((( 953 -**ATZ** 954 -))) 955 955 956 -((( 957 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 958 -))) 829 +== 6.2 AT Command input doesn't work == 959 959 960 960 ((( 961 - 832 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 962 962 ))) 963 963 964 -((( 965 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 966 -))) 967 967 968 -[[image:image-20220606154825-4.png]] 969 969 837 += 7. Order Info = 970 970 971 971 972 - = 5. TroubleShooting=840 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 973 973 974 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 975 975 976 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 977 - 978 - 979 -== 5.2 AT Command input doesn’t work == 980 - 981 -((( 982 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 983 -))) 984 - 985 - 986 -== 5.3 Device rejoin in at the second uplink packet == 987 - 988 -(% style="color:#4f81bd" %)**Issue describe as below:** 989 - 990 -[[image:1654500909990-784.png]] 991 - 992 - 993 -(% style="color:#4f81bd" %)**Cause for this issue:** 994 - 995 -((( 996 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 997 -))) 998 - 999 - 1000 -(% style="color:#4f81bd" %)**Solution: ** 1001 - 1002 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1003 - 1004 -[[image:1654500929571-736.png||height="458" width="832"]] 1005 - 1006 - 1007 -= 6. Order Info = 1008 - 1009 - 1010 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1011 - 1012 - 1013 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1014 - 1015 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1016 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1017 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1018 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1019 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1020 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1021 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1022 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1023 - 1024 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1025 - 1026 -* (% style="color:red" %)**4**(%%): 4000mAh battery 1027 -* (% style="color:red" %)**8**(%%): 8500mAh battery 1028 - 1029 1029 (% class="wikigeneratedid" %) 1030 1030 ((( 1031 1031 1032 1032 ))) 1033 1033 1034 -= 7. Packing Info =848 += 8. Packing Info = 1035 1035 1036 1036 ((( 1037 1037 1038 1038 1039 1039 (% style="color:#037691" %)**Package Includes**: 1040 -))) 1041 1041 1042 -* ((( 1043 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 855 + 856 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 857 +* External antenna x 1 1044 1044 ))) 1045 1045 1046 1046 ((( ... ... @@ -1047,27 +1047,20 @@ 1047 1047 1048 1048 1049 1049 (% style="color:#037691" %)**Dimension and weight**: 1050 -))) 1051 1051 1052 -* ((( 1053 -Device Size: cm 865 + 866 +* Size: 195 x 125 x 55 mm 867 +* Weight: 420g 1054 1054 ))) 1055 -* ((( 1056 -Device Weight: g 1057 -))) 1058 -* ((( 1059 -Package Size / pcs : cm 1060 -))) 1061 -* ((( 1062 -Weight / pcs : g 1063 1063 870 +((( 871 + 1064 1064 873 + 1065 1065 1066 1066 ))) 1067 1067 1068 -= 8. Support =877 += 9. Support = 1069 1069 1070 1070 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1071 1071 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1072 - 1073 -
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content