Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 41 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- 1657328609906-564.png
- 1657328659945-416.png
- 1657328756309-230.png
- 1657328884227-504.png
- 1657329814315-101.png
- 1657330452568-615.png
- 1657330472797-498.png
- 1657330501006-241.png
- 1657330533775-472.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
- image-20220709092052-2.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWANSoil Moisture&ECSensor User Manual1 +NDDS75 NB-IoT Distance Detect Sensor User Manual - Content
-
... ... @@ -1,244 +1,125 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 606151504-2.jpeg||height="554" width="554"]]2 +[[image:image-20220709085040-1.png||height="542" width="524"]] 3 3 4 4 5 5 6 -**Contents:** 7 7 8 -{{toc/}} 9 9 8 +**Table of Contents:** 10 10 11 11 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 18 18 19 -((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 16 += 1. Introduction = 22 22 23 -((( 24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 -))) 18 +== 1.1 What is NDDS75 Distance Detection Sensor == 26 26 27 27 ((( 28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 21 + 30 30 31 31 ((( 32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 33 33 ))) 34 34 35 -((( 36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 32 + 37 37 ))) 38 38 39 - 40 40 [[image:1654503236291-817.png]] 41 41 42 42 43 -[[image:165 4503265560-120.png]]38 +[[image:1657327959271-447.png]] 44 44 45 45 46 46 47 -== 1.2 Features == 42 +== 1.2 Features == 48 48 49 -* LoRaWAN 1.0.3 Class A 44 + 45 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 50 50 * Ultra low power consumption 51 -* MonitorSoilMoisture52 -* MonitorSoil Temperature53 -* Monitor SoilConductivity54 -* Bands:CN470/EU433/KR920/US915/EU868/AS923/AU915/IN86547 +* Distance Detection by Ultrasonic technology 48 +* Flat object range 280mm - 7500mm 49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance) 50 +* Cable Length: 25cm 55 55 * AT Commands to change parameters 56 56 * Uplink on periodically 57 57 * Downlink to change configure 58 58 * IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 55 +* Micro SIM card slot for NB-IoT SIM 56 +* 8500mAh Battery for long term use 60 60 61 -== 1.3 Specification == 62 62 63 - MeasureVolume:Baseon thecentra pin ofthe probe, a cylinder with 7cm diameter and10cm height.59 +== 1.3 Specification == 64 64 65 -[[image:image-20220606162220-5.png]] 66 66 62 +(% style="color:#037691" %)**Common DC Characteristics:** 67 67 64 +* Supply Voltage: 2.1v ~~ 3.6v 65 +* Operating Temperature: -40 ~~ 85°C 68 68 69 - ==1.4 Applications==67 +(% style="color:#037691" %)**NB-IoT Spec:** 70 70 71 -* Smart Agriculture 69 +* - B1 @H-FDD: 2100MHz 70 +* - B3 @H-FDD: 1800MHz 71 +* - B8 @H-FDD: 900MHz 72 +* - B5 @H-FDD: 850MHz 73 +* - B20 @H-FDD: 800MHz 74 +* - B28 @H-FDD: 700MHz 72 72 73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 - 76 +(% style="color:#037691" %)**Battery:** 75 75 76 -== 1.5 Firmware Change log == 78 +* Li/SOCI2 un-chargeable battery 79 +* Capacity: 8500mAh 80 +* Self Discharge: <1% / Year @ 25°C 81 +* Max continuously current: 130mA 82 +* Max boost current: 2A, 1 second 77 77 84 +(% style="color:#037691" %)**Power Consumption** 78 78 79 -**LSE01 v1.0 :** Release 86 +* STOP Mode: 10uA @ 3.3v 87 +* Max transmit power: 350mA@3.3v 80 80 81 81 82 82 83 -= 2.Configure LSE01 toconnect to LoRaWAN network=91 +== 1.4 Applications == 84 84 85 -== 2.1 How it works == 93 +* Smart Buildings & Home Automation 94 +* Logistics and Supply Chain Management 95 +* Smart Metering 96 +* Smart Agriculture 97 +* Smart Cities 98 +* Smart Factory 86 86 87 -((( 88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 -))) 100 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 101 + 90 90 91 -((( 92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 -))) 94 94 95 95 105 +== 1.5 Pin Definitions == 96 96 97 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 98 98 99 - Following is an example for how to join the[[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]]as a LoRaWAN gateway in this example.108 +[[image:1657328609906-564.png]] 100 100 101 101 102 -[[image:1654503992078-669.png]] 103 103 112 += 2. Use NDDS75 to communicate with IoT Server = 104 104 105 - TheLG308is already set toconnected to [[TTN network>>url:https://console.cloud.thethings.network/]],sowhat we need to now is configure the TTN server.114 +== 2.1 How it works == 106 106 107 - 108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 109 - 110 -Each LSE01 is shipped with a sticker with the default device EUI as below: 111 - 112 -[[image:image-20220606163732-6.jpeg]] 113 - 114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 115 - 116 -**Add APP EUI in the application** 117 - 118 - 119 -[[image:1654504596150-405.png]] 120 - 121 - 122 - 123 -**Add APP KEY and DEV EUI** 124 - 125 -[[image:1654504683289-357.png]] 126 - 127 - 128 - 129 -**Step 2**: Power on LSE01 130 - 131 - 132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 - 134 -[[image:image-20220606163915-7.png]] 135 - 136 - 137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 - 139 -[[image:1654504778294-788.png]] 140 - 141 - 142 - 143 -== 2.3 Uplink Payload == 144 - 145 -=== 2.3.1 MOD~=0(Default Mode) === 146 - 147 -LSE01 will uplink payload via LoRaWAN with below payload format: 148 - 149 - 150 -Uplink payload includes in total 11 bytes. 151 - 152 - 153 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 154 -|=((( 155 -**Size** 156 - 157 -**(bytes)** 158 -)))|=(% style="width: 45px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1** 159 -|**Value**|(% style="width:45px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:80px" %)((( 160 -Temperature 161 - 162 -(Reserve, Ignore now) 163 -)))|(% style="width:80px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:80px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:80px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:80px" %)((( 164 -MOD & Digital Interrupt 165 - 166 -(Optional) 167 -))) 168 - 169 -[[image:1654504881641-514.png]] 170 - 171 - 172 - 173 -=== 2.3.2 MOD~=1(Original value) === 174 - 175 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 176 - 177 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 178 -|=((( 179 -**Size** 180 - 181 -**(bytes)** 182 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1** 183 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 184 -Temperature 185 - 186 -(Reserve, Ignore now) 187 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 188 -MOD & Digital Interrupt 189 - 190 -(Optional) 191 -))) 192 - 193 -[[image:1654504907647-967.png]] 194 - 195 - 196 - 197 -=== 2.3.3 Battery Info === 198 - 199 -Check the battery voltage for LSE01. 200 - 201 -Ex1: 0x0B45 = 2885mV 202 - 203 -Ex2: 0x0B49 = 2889mV 204 - 205 - 206 - 207 -=== 2.3.4 Soil Moisture === 208 - 209 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 210 - 211 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 212 - 213 - 214 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 215 - 216 - 217 - 218 -=== 2.3.5 Soil Temperature === 219 - 220 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 221 - 222 -**Example**: 223 - 224 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 225 - 226 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 227 - 228 - 229 - 230 -=== 2.3.6 Soil Conductivity (EC) === 231 - 232 232 ((( 233 - Obtain(%style="color:#4f81bd"%)**__solublesaltconcentration__**(%%)insoilor (% style="color:#4f81bd"%)**__soluble ionconcentrationinliquidfertilizer__**(%%)or(% style="color:#4f81bd"%)**__plantingmedium__**(%%). Thevaluerangeftheregister is0 - 20000(Decimal)(Canbegreaterthan20000).117 +The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75. 234 234 ))) 235 235 236 -((( 237 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 238 -))) 239 239 240 240 ((( 241 - Generally,theEC valueof irrigationwateris lessthan800uS/ cm.122 +The diagram below shows the working flow in default firmware of NDDS75: 242 242 ))) 243 243 244 244 ((( ... ... @@ -245,482 +245,600 @@ 245 245 246 246 ))) 247 247 129 +[[image:1657328659945-416.png]] 130 + 248 248 ((( 249 249 250 250 ))) 251 251 252 -=== 2.3.7 MOD === 253 253 254 - Firmwareversion at least v2.1supportschangingmode.136 +== 2.2 Configure the NDDS75 == 255 255 256 -For example, bytes[10]=90 257 257 258 - mod=(bytes[10]>>7)&0x01=1.139 +=== 2.2.1 Test Requirement === 259 259 141 +((( 142 +To use NDDS75 in your city, make sure meet below requirements: 143 +))) 260 260 261 -**Downlink Command:** 145 +* Your local operator has already distributed a NB-IoT Network there. 146 +* The local NB-IoT network used the band that NSE01 supports. 147 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 262 262 263 -If payload = 0x0A00, workmode=0 149 +((( 150 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 151 +))) 264 264 265 -If** **payload =** **0x0A01, workmode=1 266 266 154 +[[image:1657328756309-230.png]] 267 267 268 268 269 -=== 2.3.8 Decode payload in The Things Network === 270 270 271 - WhileusingTTNnetwork,youcan add the payload format todecodethe payload.158 +=== 2.2.2 Insert SIM card === 272 272 160 +((( 161 +Insert the NB-IoT Card get from your provider. 162 +))) 273 273 274 -[[image:1654505570700-128.png]] 164 +((( 165 +User need to take out the NB-IoT module and insert the SIM card like below: 166 +))) 275 275 276 -The payload decoder function for TTN is here: 277 277 278 - LSE01 TTN Payload Decoder:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]169 +[[image:1657328884227-504.png]] 279 279 280 280 281 281 282 -== 2. 4UplinkInterval==173 +=== 2.2.3 Connect USB – TTL to NDDS75 to configure it === 283 283 284 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 175 +((( 176 +((( 177 +User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below. 178 +))) 179 +))) 285 285 181 +[[image:image-20220709092052-2.png]] 286 286 183 +**Connection:** 287 287 288 - ==2.5Downlink Payload==185 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 289 289 290 - Bydefault,LSE50 printshe downlink payload toconsole port.187 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 291 291 292 - [[image:image-20220606165544-8.png]]189 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 293 293 294 294 295 - **Examples:**192 +In the PC, use below serial tool settings: 296 296 194 +* Baud: (% style="color:green" %)**9600** 195 +* Data bits:** (% style="color:green" %)8(%%)** 196 +* Stop bits: (% style="color:green" %)**1** 197 +* Parity: (% style="color:green" %)**None** 198 +* Flow Control: (% style="color:green" %)**None** 297 297 298 -* **Set TDC** 200 +((( 201 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 202 +))) 299 299 300 - If the payload=0100003C,itmeans set the END Node’s TDC to 0x00003C=60(S), while type code is 01.204 +[[image:1657329814315-101.png]] 301 301 302 -Payload: 01 00 00 1E TDC=30S 206 +((( 207 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]] 208 +))) 303 303 304 -Payload: 01 00 00 3C TDC=60S 305 305 306 306 307 - ***Reset**212 +=== 2.2.4 Use CoAP protocol to uplink data === 308 308 309 - Ifpayload=0x04FF,itwillreset theLSE01214 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 310 310 311 311 312 -* ** CFM**217 +**Use below commands:** 313 313 314 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 219 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 220 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 221 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 315 315 223 +For parameter description, please refer to AT command set 316 316 225 +[[image:1657330452568-615.png]] 317 317 318 -== 2.6 Show Data in DataCake IoT Server == 319 319 320 - [[DATACAKE>>url:https://datacake.co/]]provides ahumanfriendlyinterface toshow thesensordata,oncewehavedatainTTN, wecan use [[DATACAKE>>url:https://datacake.co/]]toconnecttoTTNand seethedata in DATACAKE.Below arethe steps:228 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server. 321 321 230 +[[image:1657330472797-498.png]] 322 322 323 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 324 324 325 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 326 326 234 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 327 327 328 -[[image:1654505857935-743.png]] 329 329 237 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 238 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 239 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 330 330 331 -[[image:1654505874829-548.png]] 332 332 333 - Step 3: Create an account or login Datacake.242 +[[image:1657330501006-241.png]] 334 334 335 -Step 4: Search the LSE01 and add DevEUI. 336 336 245 +[[image:1657330533775-472.png]] 337 337 338 -[[image:1654505905236-553.png]] 339 339 340 340 341 - Afteradded,thesensordata arriveTTN,itwillalsoarrive andshow in Mydevices.249 +=== 2.2.6 Use MQTT protocol to uplink data === 342 342 343 - [[image:1654505925508-181.png]]251 +This feature is supported since firmware version v110 344 344 345 345 254 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 255 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 256 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 257 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 258 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 259 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 260 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 346 346 347 - ==2.7Frequency Plans ==262 +[[image:1657249978444-674.png]] 348 348 349 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 350 350 265 +[[image:1657249990869-686.png]] 351 351 352 -=== 2.7.1 EU863-870 (EU868) === 353 353 354 -(% style="color:#037691" %)** Uplink:** 268 +((( 269 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 270 +))) 355 355 356 -868.1 - SF7BW125 to SF12BW125 357 357 358 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 359 359 360 - 868.5-SF7BW125toSF12BW125274 +=== 2.2.7 Use TCP protocol to uplink data === 361 361 362 - 867.1-SF7BW125toSF12BW125276 +This feature is supported since firmware version v110 363 363 364 -867.3 - SF7BW125 to SF12BW125 365 365 366 -867.5 - SF7BW125 to SF12BW125 279 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 280 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 367 367 368 - 867.7 - SF7BW125to SF12BW125282 +[[image:1657250217799-140.png]] 369 369 370 -867.9 - SF7BW125 to SF12BW125 371 371 372 - 868.8-FSK285 +[[image:1657250255956-604.png]] 373 373 374 374 375 -(% style="color:#037691" %)** Downlink:** 376 376 377 - Uplinkchannels1-9 (RX1)289 +=== 2.2.8 Change Update Interval === 378 378 379 - 869.525-SF9BW125(RX2downlinkonly)291 +User can use below command to change the (% style="color:green" %)**uplink interval**. 380 380 293 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 381 381 295 +((( 296 +(% style="color:red" %)**NOTE:** 297 +))) 382 382 383 -=== 2.7.2 US902-928(US915) === 299 +((( 300 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 301 +))) 384 384 385 -Used in USA, Canada and South America. Default use CHE=2 386 386 387 -(% style="color:#037691" %)**Uplink:** 388 388 389 - 903.9- SF7BW125toSF10BW125305 +== 2.3 Uplink Payload == 390 390 391 - 904.1-SF7BW125toSF10BW125307 +In this mode, uplink payload includes in total 18 bytes 392 392 393 -904.3 - SF7BW125 to SF10BW125 309 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 310 +|=(% style="width: 60px;" %)((( 311 +**Size(bytes)** 312 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 313 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 394 394 395 -904.5 - SF7BW125 to SF10BW125 315 +((( 316 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 317 +))) 396 396 397 -904.7 - SF7BW125 to SF10BW125 398 398 399 - 904.9-SF7BW125 to SF10BW125320 +[[image:image-20220708111918-4.png]] 400 400 401 -905.1 - SF7BW125 to SF10BW125 402 402 403 - 905.3-SF7BW125toSF10BW125323 +The payload is ASCII string, representative same HEX: 404 404 325 +0x72403155615900640c7817075e0a8c02f900 where: 405 405 406 -(% style="color:#037691" %)**Downlink:** 327 +* Device ID: 0x 724031556159 = 724031556159 328 +* Version: 0x0064=100=1.0.0 407 407 408 -923.3 - SF7BW500 to SF12BW500 330 +* BAT: 0x0c78 = 3192 mV = 3.192V 331 +* Singal: 0x17 = 23 332 +* Soil Moisture: 0x075e= 1886 = 18.86 % 333 +* Soil Temperature:0x0a8c =2700=27 °C 334 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 335 +* Interrupt: 0x00 = 0 409 409 410 - 923.9-SF7BW500to SF12BW500337 +== 2.4 Payload Explanation and Sensor Interface == 411 411 412 -924.5 - SF7BW500 to SF12BW500 413 413 414 - 925.1-SF7BW500 to SF12BW500340 +=== 2.4.1 Device ID === 415 415 416 -925.7 - SF7BW500 to SF12BW500 342 +((( 343 +By default, the Device ID equal to the last 6 bytes of IMEI. 344 +))) 417 417 418 -926.3 - SF7BW500 to SF12BW500 346 +((( 347 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 348 +))) 419 419 420 -926.9 - SF7BW500 to SF12BW500 350 +((( 351 +**Example:** 352 +))) 421 421 422 -927.5 - SF7BW500 to SF12BW500 354 +((( 355 +AT+DEUI=A84041F15612 356 +))) 423 423 424 -923.3 - SF12BW500(RX2 downlink only) 358 +((( 359 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 360 +))) 425 425 426 426 427 427 428 -=== 2. 7.3CN470-510(CN470)===364 +=== 2.4.2 Version Info === 429 429 430 -Used in China, Default use CHE=1 366 +((( 367 +Specify the software version: 0x64=100, means firmware version 1.00. 368 +))) 431 431 432 -(% style="color:#037691" %)**Uplink:** 370 +((( 371 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 372 +))) 433 433 434 -486.3 - SF7BW125 to SF12BW125 435 435 436 -486.5 - SF7BW125 to SF12BW125 437 437 438 -4 86.7- SF7BW125toSF12BW125376 +=== 2.4.3 Battery Info === 439 439 440 -486.9 - SF7BW125 to SF12BW125 378 +((( 379 +Check the battery voltage for LSE01. 380 +))) 441 441 442 -487.1 - SF7BW125 to SF12BW125 382 +((( 383 +Ex1: 0x0B45 = 2885mV 384 +))) 443 443 444 -487.3 - SF7BW125 to SF12BW125 386 +((( 387 +Ex2: 0x0B49 = 2889mV 388 +))) 445 445 446 -487.5 - SF7BW125 to SF12BW125 447 447 448 -487.7 - SF7BW125 to SF12BW125 449 449 392 +=== 2.4.4 Signal Strength === 450 450 451 -(% style="color:#037691" %)**Downlink:** 394 +((( 395 +NB-IoT Network signal Strength. 396 +))) 452 452 453 -506.7 - SF7BW125 to SF12BW125 398 +((( 399 +**Ex1: 0x1d = 29** 400 +))) 454 454 455 -506.9 - SF7BW125 to SF12BW125 402 +((( 403 +(% style="color:blue" %)**0**(%%) -113dBm or less 404 +))) 456 456 457 -507.1 - SF7BW125 to SF12BW125 406 +((( 407 +(% style="color:blue" %)**1**(%%) -111dBm 408 +))) 458 458 459 -507.3 - SF7BW125 to SF12BW125 410 +((( 411 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 412 +))) 460 460 461 -507.5 - SF7BW125 to SF12BW125 414 +((( 415 +(% style="color:blue" %)**31** (%%) -51dBm or greater 416 +))) 462 462 463 -507.7 - SF7BW125 to SF12BW125 418 +((( 419 +(% style="color:blue" %)**99** (%%) Not known or not detectable 420 +))) 464 464 465 -507.9 - SF7BW125 to SF12BW125 466 466 467 -508.1 - SF7BW125 to SF12BW125 468 468 469 - 505.3- SF12BW125(RX2 downlinkonly)424 +=== 2.4.5 Soil Moisture === 470 470 426 +((( 427 +((( 428 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 429 +))) 430 +))) 471 471 432 +((( 433 +((( 434 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 435 +))) 436 +))) 472 472 473 -=== 2.7.4 AU915-928(AU915) === 438 +((( 439 + 440 +))) 474 474 475 -Default use CHE=2 442 +((( 443 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 444 +))) 476 476 477 -(% style="color:#037691" %)**Uplink:** 478 478 479 -916.8 - SF7BW125 to SF12BW125 480 480 481 - 917.0-SF7BW125toSF12BW125448 +=== 2.4.6 Soil Temperature === 482 482 483 -917.2 - SF7BW125 to SF12BW125 450 +((( 451 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 452 +))) 484 484 485 -917.4 - SF7BW125 to SF12BW125 454 +((( 455 +**Example**: 456 +))) 486 486 487 -917.6 - SF7BW125 to SF12BW125 458 +((( 459 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 460 +))) 488 488 489 -917.8 - SF7BW125 to SF12BW125 462 +((( 463 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 464 +))) 490 490 491 -918.0 - SF7BW125 to SF12BW125 492 492 493 -918.2 - SF7BW125 to SF12BW125 494 494 468 +=== 2.4.7 Soil Conductivity (EC) === 495 495 496 -(% style="color:#037691" %)**Downlink:** 470 +((( 471 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 472 +))) 497 497 498 -923.3 - SF7BW500 to SF12BW500 474 +((( 475 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 476 +))) 499 499 500 -923.9 - SF7BW500 to SF12BW500 478 +((( 479 +Generally, the EC value of irrigation water is less than 800uS / cm. 480 +))) 501 501 502 -924.5 - SF7BW500 to SF12BW500 482 +((( 483 + 484 +))) 503 503 504 -925.1 - SF7BW500 to SF12BW500 486 +((( 487 + 488 +))) 505 505 506 - 925.7-SF7BW500toSF12BW500490 +=== 2.4.8 Digital Interrupt === 507 507 508 -926.3 - SF7BW500 to SF12BW500 492 +((( 493 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 494 +))) 509 509 510 -926.9 - SF7BW500 to SF12BW500 496 +((( 497 +The command is: 498 +))) 511 511 512 -927.5 - SF7BW500 to SF12BW500 500 +((( 501 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 502 +))) 513 513 514 -923.3 - SF12BW500(RX2 downlink only) 515 515 505 +((( 506 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 507 +))) 516 516 517 517 518 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 510 +((( 511 +Example: 512 +))) 519 519 520 -(% style="color:#037691" %)**Default Uplink channel:** 514 +((( 515 +0x(00): Normal uplink packet. 516 +))) 521 521 522 -923.2 - SF7BW125 to SF10BW125 518 +((( 519 +0x(01): Interrupt Uplink Packet. 520 +))) 523 523 524 -923.4 - SF7BW125 to SF10BW125 525 525 526 526 527 - (% style="color:#037691"%)**AdditionalUplinkChannel**:524 +=== 2.4.9 +5V Output === 528 528 529 -(OTAA mode, channel added by JoinAccept message) 526 +((( 527 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 528 +))) 530 530 531 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 532 532 533 -922.2 - SF7BW125 to SF10BW125 531 +((( 532 +The 5V output time can be controlled by AT Command. 533 +))) 534 534 535 -922.4 - SF7BW125 to SF10BW125 535 +((( 536 +(% style="color:blue" %)**AT+5VT=1000** 537 +))) 536 536 537 -922.6 - SF7BW125 to SF10BW125 539 +((( 540 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 541 +))) 538 538 539 -922.8 - SF7BW125 to SF10BW125 540 540 541 -923.0 - SF7BW125 to SF10BW125 542 542 543 - 922.0- SF7BW125toSF10BW125545 +== 2.5 Downlink Payload == 544 544 547 +By default, NSE01 prints the downlink payload to console port. 545 545 546 - (% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, HongKong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:549 +[[image:image-20220708133731-5.png]] 547 547 548 -923.6 - SF7BW125 to SF10BW125 549 549 550 -923.8 - SF7BW125 to SF10BW125 552 +((( 553 +(% style="color:blue" %)**Examples:** 554 +))) 551 551 552 -924.0 - SF7BW125 to SF10BW125 556 +((( 557 + 558 +))) 553 553 554 -924.2 - SF7BW125 to SF10BW125 560 +* ((( 561 +(% style="color:blue" %)**Set TDC** 562 +))) 555 555 556 -924.4 - SF7BW125 to SF10BW125 564 +((( 565 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 566 +))) 557 557 558 -924.6 - SF7BW125 to SF10BW125 568 +((( 569 +Payload: 01 00 00 1E TDC=30S 570 +))) 559 559 572 +((( 573 +Payload: 01 00 00 3C TDC=60S 574 +))) 560 560 561 -(% style="color:#037691" %)** Downlink:** 576 +((( 577 + 578 +))) 562 562 563 -Uplink channels 1-8 (RX1) 580 +* ((( 581 +(% style="color:blue" %)**Reset** 582 +))) 564 564 565 -923.2 - SF10BW125 (RX2) 584 +((( 585 +If payload = 0x04FF, it will reset the NSE01 586 +))) 566 566 567 567 589 +* (% style="color:blue" %)**INTMOD** 568 568 569 -=== 2.7.6 KR920-923 (KR920) === 591 +((( 592 +Downlink Payload: 06000003, Set AT+INTMOD=3 593 +))) 570 570 571 -Default channel: 572 572 573 -922.1 - SF7BW125 to SF12BW125 574 574 575 - 922.3-SF7BW125toSF12BW125597 +== 2.6 LED Indicator == 576 576 577 -922.5 - SF7BW125 to SF12BW125 599 +((( 600 +The NSE01 has an internal LED which is to show the status of different state. 578 578 579 579 580 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 603 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 604 +* Then the LED will be on for 1 second means device is boot normally. 605 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 606 +* For each uplink probe, LED will be on for 500ms. 607 +))) 581 581 582 -922.1 - SF7BW125 to SF12BW125 583 583 584 -922.3 - SF7BW125 to SF12BW125 585 585 586 -922.5 - SF7BW125 to SF12BW125 587 587 588 - 922.7- SF7BW125to SF12BW125612 +== 2.7 Installation in Soil == 589 589 590 - 922.9- SF7BW125toSF12BW125614 +__**Measurement the soil surface**__ 591 591 592 -923.1 - SF7BW125 to SF12BW125 616 +((( 617 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 618 +))) 593 593 594 - 923.3 - SF7BW125to SF12BW125620 +[[image:1657259653666-883.png]] 595 595 596 596 597 -(% style="color:#037691" %)**Downlink:** 623 +((( 624 + 598 598 599 -Uplink channels 1-7(RX1) 626 +((( 627 +Dig a hole with diameter > 20CM. 628 +))) 600 600 601 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 630 +((( 631 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 632 +))) 633 +))) 602 602 635 +[[image:1654506665940-119.png]] 603 603 637 +((( 638 + 639 +))) 604 604 605 -=== 2.7.7 IN865-867 (IN865) === 606 606 607 - (% style="color:#037691"%)**Uplink:**642 +== 2.8 Firmware Change Log == 608 608 609 -865.0625 - SF7BW125 to SF12BW125 610 610 611 - 865.4025-SF7BW125toSF12BW125645 +Download URL & Firmware Change log 612 612 613 - 865.9850-F7BW125toSF12BW125647 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 614 614 615 615 616 - (%style="color:#037691"%) **Downlink:**650 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 617 617 618 -Uplink channels 1-3 (RX1) 619 619 620 -866.550 - SF10BW125 (RX2) 621 621 654 +== 2.9 Battery Analysis == 622 622 656 +=== 2.9.1 Battery Type === 623 623 624 624 625 -== 2.8 LED Indicator == 626 - 627 -The LSE01 has an internal LED which is to show the status of different state. 628 - 629 -* Blink once when device power on. 630 -* Solid ON for 5 seconds once device successful Join the network. 631 -* Blink once when device transmit a packet. 632 - 633 - 634 -== 2.9 Installation in Soil == 635 - 636 -**Measurement the soil surface** 637 - 638 - 639 -[[image:1654506634463-199.png]] 640 - 641 641 ((( 642 -((( 643 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 660 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 644 644 ))) 645 -))) 646 646 647 647 648 -[[image:1654506665940-119.png]] 649 - 650 650 ((( 651 - Dig aholewithdiameter>20CM.665 +The battery is designed to last for several years depends on the actually use environment and update interval. 652 652 ))) 653 653 654 -((( 655 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 656 -))) 657 657 658 - 659 -== 2.10 Firmware Change Log == 660 - 661 661 ((( 662 - **Firmware downloadlink:**670 +The battery related documents as below: 663 663 ))) 664 664 665 - (((666 -[[ http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]667 - )))673 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 674 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 675 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 668 668 669 669 ((( 670 - 678 +[[image:image-20220708140453-6.png]] 671 671 ))) 672 672 673 -((( 674 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 675 -))) 676 676 677 -((( 678 - 679 -))) 680 680 681 -((( 682 -**V1.0.** 683 -))) 683 +=== 2.9.2 Power consumption Analyze === 684 684 685 685 ((( 686 - Release686 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 687 687 ))) 688 688 689 689 690 -== 2.11 Battery Analysis == 691 - 692 -=== 2.11.1 Battery Type === 693 - 694 694 ((( 695 - The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The batteryis non-rechargeablebattery type with a lowdischargerate (<2% per year). Thistype ofbattery is commonly used in IoT devices such aswater meter.691 +Instruction to use as below: 696 696 ))) 697 697 698 698 ((( 699 - Thebatterys designedlastforrethan5 years fortheSN50.695 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 700 700 ))) 701 701 698 + 702 702 ((( 703 -((( 704 -The battery-related documents are as below: 700 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 705 705 ))) 706 -))) 707 707 708 708 * ((( 709 - [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],704 +Product Model 710 710 ))) 711 711 * ((( 712 - [[Lithium-ThionylChloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],707 +Uplink Interval 713 713 ))) 714 714 * ((( 715 - [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]],[[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]710 +Working Mode 716 716 ))) 717 717 718 - [[image:image-20220606171726-9.png]] 713 +((( 714 +And the Life expectation in difference case will be shown on the right. 715 +))) 719 719 717 +[[image:image-20220708141352-7.jpeg]] 720 720 721 721 722 -=== 2.11.2 Battery Note === 723 723 721 +=== 2.9.3 Battery Note === 722 + 724 724 ((( 725 725 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 726 726 ))) ... ... @@ -727,303 +727,176 @@ 727 727 728 728 729 729 730 -=== 2. 11.3Replace the battery ===729 +=== 2.9.4 Replace the battery === 731 731 732 732 ((( 733 - IfBattery is lower than 2.7v,usershouldreplace the battery ofLSE01.732 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 734 734 ))) 735 735 735 + 736 + 737 += 3. Access NB-IoT Module = 738 + 736 736 ((( 737 - You can changethe battery in the LSE01.The type of battery isnot limitedas longas the outputis between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the maincircuit. If you need to use a battery with lessthan 3.3v, pleaseremovethe D1and shortcut thewopadsofitso therewon’tbe voltage drop between battery andmain board.740 +Users can directly access the AT command set of the NB-IoT module. 738 738 ))) 739 739 740 740 ((( 741 -The defaultbattery packof LSE01 includesa ER18505 plussupercapacitor.Ifusercan’tfind this pack locally, theycan find ER18505orequivalence,whichwillalsoworkinmostcase.The SPC can enlargethebattery lifeforigh frequency use(updateperiod below5minutes)744 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 742 742 ))) 743 743 747 +[[image:1657261278785-153.png]] 744 744 745 745 746 -= 3. Using the AT Commands = 747 747 748 -= =3.1AccessAT Commands ==751 += 4. Using the AT Commands = 749 749 753 +== 4.1 Access AT Commands == 750 750 751 - LSE01supportsATCommandsetn the stock firmware.Youcanuse a USB toTTLadaptertoconnect to LSE01forusing ATcommand,asbelow.755 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 752 752 753 -[[image:1654501986557-872.png||height="391" width="800"]] 754 754 758 +AT+<CMD>? : Help on <CMD> 755 755 756 - Orifyouhavebelowboard,usebelowconnection:760 +AT+<CMD> : Run <CMD> 757 757 762 +AT+<CMD>=<value> : Set the value 758 758 759 - [[image:1654502005655-729.png||height="503"width="801"]]764 +AT+<CMD>=? : Get the value 760 760 761 761 762 - 763 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 764 - 765 - 766 - [[image:1654502050864-459.png||height="564" width="806"]] 767 - 768 - 769 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 770 - 771 - 772 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 773 - 774 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 775 - 776 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 777 - 778 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 779 - 780 - 781 781 (% style="color:#037691" %)**General Commands**(%%) 782 782 783 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention769 +AT : Attention 784 784 785 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help771 +AT? : Short Help 786 786 787 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset773 +ATZ : MCU Reset 788 788 789 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval775 +AT+TDC : Application Data Transmission Interval 790 790 777 +AT+CFG : Print all configurations 791 791 792 - (%style="color:#037691"%)**Keys,IDsand EUIs management**779 +AT+CFGMOD : Working mode selection 793 793 794 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI781 +AT+INTMOD : Set the trigger interrupt mode 795 795 796 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey783 +AT+5VT : Set extend the time of 5V power 797 797 798 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key785 +AT+PRO : Choose agreement 799 799 800 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress787 +AT+WEIGRE : Get weight or set weight to 0 801 801 802 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI789 +AT+WEIGAP : Get or Set the GapValue of weight 803 803 804 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)791 +AT+RXDL : Extend the sending and receiving time 805 805 806 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network793 +AT+CNTFAC : Get or set counting parameters 807 807 808 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode795 +AT+SERVADDR : Server Address 809 809 810 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 811 811 812 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network798 +(% style="color:#037691" %)**COAP Management** 813 813 814 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode800 +AT+URI : Resource parameters 815 815 816 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 817 817 818 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format803 +(% style="color:#037691" %)**UDP Management** 819 819 820 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat805 +AT+CFM : Upload confirmation mode (only valid for UDP) 821 821 822 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 823 823 824 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data808 +(% style="color:#037691" %)**MQTT Management** 825 825 810 +AT+CLIENT : Get or Set MQTT client 826 826 827 - (%style="color:#037691"%)**LoRaNetworkManagement**812 +AT+UNAME : Get or Set MQTT Username 828 828 829 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate814 +AT+PWD : Get or Set MQTT password 830 830 831 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA816 +AT+PUBTOPIC : Get or Set MQTT publish topic 832 832 833 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting818 +AT+SUBTOPIC : Get or Set MQTT subscription topic 834 834 835 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 836 836 837 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink821 +(% style="color:#037691" %)**Information** 838 838 839 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink823 +AT+FDR : Factory Data Reset 840 840 841 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1825 +AT+PWORD : Serial Access Password 842 842 843 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 844 844 845 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 846 846 847 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1829 += 5. FAQ = 848 848 849 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2831 +== 5.1 How to Upgrade Firmware == 850 850 851 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 852 852 853 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 854 - 855 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 856 - 857 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 858 - 859 - 860 -(% style="color:#037691" %)**Information** 861 - 862 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 863 - 864 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 865 - 866 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 867 - 868 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 869 - 870 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 871 - 872 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 873 - 874 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 875 - 876 - 877 -= 4. FAQ = 878 - 879 -== 4.1 How to change the LoRa Frequency Bands/Region? == 880 - 881 881 ((( 882 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 883 -When downloading the images, choose the required image file for download. 835 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 884 884 ))) 885 885 886 886 ((( 887 - 839 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 888 888 ))) 889 889 890 890 ((( 891 - Howtosetup LSE01 towork in 8 channel modeBy default,thefrequency bandsUS915,AU915, CN470 work in 72 frequencies.Many gatewaysare8 channelgateways, andin thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.843 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 892 892 ))) 893 893 894 -((( 895 - 896 -))) 897 897 898 -((( 899 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 900 -))) 901 901 902 -((( 903 - 904 -))) 848 +== 5.2 Can I calibrate NSE01 to different soil types? == 905 905 906 906 ((( 907 - Forexample,in **US915**band,the frequencytablesasbelow. By default,the endnodewilluse all channels(0~~71)forOTAAJoinprocess.AftertheOTAAJoin,theend nodewilluse these allchannels(0~~71)tosenduplinkkets.851 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. 908 908 ))) 909 909 910 -[[image:image-20220606154726-3.png]] 911 911 855 += 6. Trouble Shooting = 912 912 913 - Whenyouuse the TTNnetwork,theUS915 frequencybandsuseare:857 +== 6.1 Connection problem when uploading firmware == 914 914 915 -* 903.9 - SF7BW125 to SF10BW125 916 -* 904.1 - SF7BW125 to SF10BW125 917 -* 904.3 - SF7BW125 to SF10BW125 918 -* 904.5 - SF7BW125 to SF10BW125 919 -* 904.7 - SF7BW125 to SF10BW125 920 -* 904.9 - SF7BW125 to SF10BW125 921 -* 905.1 - SF7BW125 to SF10BW125 922 -* 905.3 - SF7BW125 to SF10BW125 923 -* 904.6 - SF8BW500 924 924 925 925 ((( 926 - Becausethendnodeisnow hoppingin72 frequency,itmakesitdifficulttheevicestoJointhe TTN network and uplinkta.Tosolve thisissue, you canccess thedevice viatheAT commandsandrun:861 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 927 927 ))) 928 928 929 -(% class=" boxinfomessage" %)864 +(% class="wikigeneratedid" %) 930 930 ((( 931 -**AT+CHE=2** 932 -))) 933 - 934 -(% class="box infomessage" %) 935 -((( 936 -**ATZ** 937 -))) 938 - 939 -((( 940 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 941 -))) 942 - 943 -((( 944 944 945 945 ))) 946 946 947 -((( 948 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 949 -))) 950 950 951 - [[image:image-20220606154825-4.png]]870 +== 6.2 AT Command input doesn't work == 952 952 953 - 954 - 955 -= 5. Trouble Shooting = 956 - 957 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 958 - 959 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 960 - 961 - 962 -== 5.2 AT Command input doesn’t work == 963 - 964 964 ((( 965 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 966 -))) 873 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 967 967 968 - 969 -== 5.3 Device rejoin in at the second uplink packet == 970 - 971 -(% style="color:#4f81bd" %)**Issue describe as below:** 972 - 973 -[[image:1654500909990-784.png]] 974 - 975 - 976 -(% style="color:#4f81bd" %)**Cause for this issue:** 977 - 978 -((( 979 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 875 + 980 980 ))) 981 981 982 982 983 - (% style="color:#4f81bd"%)**Solution:**879 += 7. Order Info = 984 984 985 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 986 986 987 - [[image:1654500929571-736.png||height="458" width="832"]]882 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 988 988 989 989 990 -= 6. Order Info = 991 - 992 - 993 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 994 - 995 - 996 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 997 - 998 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 999 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1000 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1001 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1002 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1003 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1004 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1005 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1006 - 1007 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1008 - 1009 -* (% style="color:red" %)**4**(%%): 4000mAh battery 1010 -* (% style="color:red" %)**8**(%%): 8500mAh battery 1011 - 1012 1012 (% class="wikigeneratedid" %) 1013 1013 ((( 1014 1014 1015 1015 ))) 1016 1016 1017 -= 7. Packing Info =890 += 8. Packing Info = 1018 1018 1019 1019 ((( 1020 1020 1021 1021 1022 1022 (% style="color:#037691" %)**Package Includes**: 1023 -))) 1024 1024 1025 -* (((1026 - LSE01LoRaWAN SoilMoisture& EC Sensorx 1897 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 898 +* External antenna x 1 1027 1027 ))) 1028 1028 1029 1029 ((( ... ... @@ -1030,27 +1030,19 @@ 1030 1030 1031 1031 1032 1032 (% style="color:#037691" %)**Dimension and weight**: 1033 -))) 1034 1034 1035 -* (((1036 - DeviceSize:cm906 +* Size: 195 x 125 x 55 mm 907 +* Weight: 420g 1037 1037 ))) 1038 -* ((( 1039 -Device Weight: g 1040 -))) 1041 -* ((( 1042 -Package Size / pcs : cm 1043 -))) 1044 -* ((( 1045 -Weight / pcs : g 1046 1046 910 +((( 911 + 1047 1047 913 + 1048 1048 1049 1049 ))) 1050 1050 1051 -= 8. Support =917 += 9. Support = 1052 1052 1053 1053 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1054 1054 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1055 - 1056 -
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.3 KB - Content
- 1657328609906-564.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657328659945-416.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.8 KB - Content
- 1657328756309-230.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.5 KB - Content
- 1657328884227-504.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657329814315-101.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.3 KB - Content
- 1657330452568-615.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.3 KB - Content
- 1657330472797-498.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +68.9 KB - Content
- 1657330501006-241.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +119.2 KB - Content
- 1657330533775-472.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +74.9 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +200.4 KB - Content
- image-20220709092052-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +247.3 KB - Content