Last modified by Mengting Qiu on 2024/04/02 16:44

From version 31.42
edited by Xiaoling
on 2022/06/07 11:13
Change comment: There is no comment for this version
To version 65.2
edited by Xiaoling
on 2022/07/08 15:03
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,9 +3,7 @@
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
... ... @@ -12,1018 +12,805 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 +**Table of Contents:**
18 18  
19 -(((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
22 22  
23 -(((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 -)))
26 26  
27 -(((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 -)))
34 34  
20 +
21 += 1.  Introduction =
22 +
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 +
35 35  (((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 -)))
26 +
38 38  
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
39 39  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
36 +
37 +)))
38 +
40 40  [[image:1654503236291-817.png]]
41 41  
42 42  
43 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
44 44  
45 45  
46 46  
47 47  == 1.2 ​Features ==
48 48  
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
48 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
51 51  * Monitor Soil Moisture
52 52  * Monitor Soil Temperature
53 53  * Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 55  * AT Commands to change parameters
56 56  * Uplink on periodically
57 57  * Downlink to change configure
58 58  * IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
56 +* Ultra-Low Power consumption
57 +* AT Commands to change parameters
58 +* Micro SIM card slot for NB-IoT SIM
59 +* 8500mAh Battery for long term use
60 60  
61 -== 1.3 Specification ==
62 62  
63 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
64 64  
65 -[[image:image-20220606162220-5.png]]
66 66  
64 +== 1.3  Specification ==
67 67  
68 68  
69 -== ​1.4 Applications ==
67 +(% style="color:#037691" %)**Common DC Characteristics:**
70 70  
71 -* Smart Agriculture
69 +* Supply Voltage: 2.1v ~~ 3.6v
70 +* Operating Temperature: -40 ~~ 85°C
72 72  
73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
74 -​
75 75  
76 -== 1.5 Firmware Change log ==
77 77  
74 +(% style="color:#037691" %)**NB-IoT Spec:**
78 78  
79 -**LSE01 v1.0 :**  Release
76 +* - B1 @H-FDD: 2100MHz
77 +* - B3 @H-FDD: 1800MHz
78 +* - B8 @H-FDD: 900MHz
79 +* - B5 @H-FDD: 850MHz
80 +* - B20 @H-FDD: 800MHz
81 +* - B28 @H-FDD: 700MHz
80 80  
81 81  
82 82  
83 -= 2. Configure LSE01 to connect to LoRaWAN network =
85 +Probe(% style="color:#037691" %)** Specification:**
84 84  
85 -== 2.1 How it works ==
87 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
86 86  
87 -(((
88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
89 -)))
89 +[[image:image-20220708101224-1.png]]
90 90  
91 -(((
92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
93 -)))
94 94  
95 95  
93 +== ​1.4  Applications ==
96 96  
97 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
95 +* Smart Agriculture
98 98  
99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
97 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
98 +​
100 100  
100 +== 1.5  Pin Definitions ==
101 101  
102 -[[image:1654503992078-669.png]]
103 103  
103 +[[image:1657246476176-652.png]]
104 104  
105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
106 106  
107 107  
108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
107 += 2.  Use NSE01 to communicate with IoT Server =
109 109  
110 -Each LSE01 is shipped with a sticker with the default device EUI as below:
109 +== 2.1  How it works ==
111 111  
112 -[[image:image-20220606163732-6.jpeg]]
113 113  
114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
112 +(((
113 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
114 +)))
115 115  
116 -**Add APP EUI in the application**
117 117  
117 +(((
118 +The diagram below shows the working flow in default firmware of NSE01:
119 +)))
118 118  
119 -[[image:1654504596150-405.png]]
121 +[[image:image-20220708101605-2.png]]
120 120  
121 -
122 -
123 -**Add APP KEY and DEV EUI**
124 -
125 -[[image:1654504683289-357.png]]
126 -
127 -
128 -
129 -**Step 2**: Power on LSE01
130 -
131 -
132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
133 -
134 -[[image:image-20220606163915-7.png]]
135 -
136 -
137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
138 -
139 -[[image:1654504778294-788.png]]
140 -
141 -
142 -
143 -== 2.3 Uplink Payload ==
144 -
145 -=== 2.3.1 MOD~=0(Default Mode) ===
146 -
147 -LSE01 will uplink payload via LoRaWAN with below payload format: 
148 -
149 -
150 -Uplink payload includes in total 11 bytes.
123 +(((
151 151  
152 -
153 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
154 -|=(((
155 -**Size**
156 -
157 -**(bytes)**
158 -)))|=(% style="width: 45px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**
159 -|**Value**|(% style="width:45px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:80px" %)(((
160 -Temperature
161 -
162 -(Reserve, Ignore now)
163 -)))|(% style="width:80px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:80px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:80px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:80px" %)(((
164 -MOD & Digital Interrupt
165 -
166 -(Optional)
167 167  )))
168 168  
169 -[[image:1654504881641-514.png]]
170 170  
171 171  
129 +== 2.2 ​ Configure the NSE01 ==
172 172  
173 -=== 2.3.2 MOD~=1(Original value) ===
174 174  
175 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
132 +=== 2.2.1 Test Requirement ===
176 176  
177 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
178 -|=(((
179 -**Size**
180 180  
181 -**(bytes)**
182 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1**
183 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
184 -Temperature
135 +To use NSE01 in your city, make sure meet below requirements:
185 185  
186 -(Reserve, Ignore now)
187 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
188 -MOD & Digital Interrupt
137 +* Your local operator has already distributed a NB-IoT Network there.
138 +* The local NB-IoT network used the band that NSE01 supports.
139 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
189 189  
190 -(Optional)
141 +(((
142 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
191 191  )))
192 192  
193 -[[image:1654504907647-967.png]]
194 194  
146 +[[image:1657249419225-449.png]]
195 195  
196 196  
197 -=== 2.3.3 Battery Info ===
198 198  
199 -Check the battery voltage for LSE01.
150 +=== 2.2.2 Insert SIM card ===
200 200  
201 -Ex1: 0x0B45 = 2885mV
152 +Insert the NB-IoT Card get from your provider.
202 202  
203 -Ex2: 0x0B49 = 2889mV
154 +User need to take out the NB-IoT module and insert the SIM card like below:
204 204  
205 205  
157 +[[image:1657249468462-536.png]]
206 206  
207 -=== 2.3.4 Soil Moisture ===
208 208  
209 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
210 210  
211 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
161 +=== 2.2.3 Connect USB TTL to NSE01 to configure it ===
212 212  
213 -
214 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
215 -
216 -
217 -
218 -=== 2.3.5 Soil Temperature ===
219 -
220 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
221 -
222 -**Example**:
223 -
224 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
225 -
226 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
227 -
228 -
229 -
230 -=== 2.3.6 Soil Conductivity (EC) ===
231 -
232 232  (((
233 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
234 -)))
235 -
236 236  (((
237 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
165 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
238 238  )))
239 -
240 -(((
241 -Generally, the EC value of irrigation water is less than 800uS / cm.
242 242  )))
243 243  
244 -(((
245 -
246 -)))
247 247  
248 -(((
249 -
250 -)))
170 +**Connection:**
251 251  
252 -=== 2.3.7 MOD ===
172 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
253 253  
254 -Firmware version at least v2.1 supports changing mode.
174 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
255 255  
256 -For example, bytes[10]=90
176 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
257 257  
258 -mod=(bytes[10]>>7)&0x01=1.
259 259  
179 +In the PC, use below serial tool settings:
260 260  
261 -**Downlink Command:**
181 +* Baud:  (% style="color:green" %)**9600**
182 +* Data bits:** (% style="color:green" %)8(%%)**
183 +* Stop bits: (% style="color:green" %)**1**
184 +* Parity:  (% style="color:green" %)**None**
185 +* Flow Control: (% style="color:green" %)**None**
262 262  
263 -If payload = 0x0A00, workmode=0
187 +(((
188 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
189 +)))
264 264  
265 -If** **payload =** **0x0A01, workmode=1
191 +[[image:image-20220708110657-3.png]]
266 266  
193 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
267 267  
268 268  
269 -=== 2.3.8 ​Decode payload in The Things Network ===
270 270  
271 -While using TTN network, you can add the payload format to decode the payload.
197 +=== 2.2.4 Use CoAP protocol to uplink data ===
272 272  
199 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
273 273  
274 -[[image:1654505570700-128.png]]
275 275  
276 -The payload decoder function for TTN is here:
202 +**Use below commands:**
277 277  
278 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
204 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
205 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
206 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
279 279  
208 +For parameter description, please refer to AT command set
280 280  
210 +[[image:1657249793983-486.png]]
281 281  
282 -== 2.4 Uplink Interval ==
283 283  
284 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
213 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
285 285  
215 +[[image:1657249831934-534.png]]
286 286  
287 287  
288 -== 2.5 Downlink Payload ==
289 289  
290 -By default, LSE50 prints the downlink payload to console port.
219 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
291 291  
292 -[[image:image-20220606165544-8.png]]
221 +This feature is supported since firmware version v1.0.1
293 293  
294 294  
295 -**Examples:**
224 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
225 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
226 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
296 296  
228 +[[image:1657249864775-321.png]]
297 297  
298 -* **Set TDC**
299 299  
300 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
231 +[[image:1657249930215-289.png]]
301 301  
302 -Payload:    01 00 00 1E    TDC=30S
303 303  
304 -Payload:    01 00 00 3C    TDC=60S
305 305  
235 +=== 2.2.6 Use MQTT protocol to uplink data ===
306 306  
307 -* **Reset**
237 +This feature is supported since firmware version v110
308 308  
309 -If payload = 0x04FF, it will reset the LSE01
310 310  
240 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
241 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
242 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
243 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
244 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
245 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
246 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
311 311  
312 -* **CFM**
248 +[[image:1657249978444-674.png]]
313 313  
314 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
315 315  
251 +[[image:1657249990869-686.png]]
316 316  
317 317  
318 -== 2.6 ​Show Data in DataCake IoT Server ==
254 +(((
255 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
256 +)))
319 319  
320 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
321 321  
322 322  
323 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
260 +=== 2.2.7 Use TCP protocol to uplink data ===
324 324  
325 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
262 +This feature is supported since firmware version v110
326 326  
327 327  
328 -[[image:1654505857935-743.png]]
265 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
266 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
329 329  
268 +[[image:1657250217799-140.png]]
330 330  
331 -[[image:1654505874829-548.png]]
332 332  
333 -Step 3: Create an account or log in Datacake.
271 +[[image:1657250255956-604.png]]
334 334  
335 -Step 4: Search the LSE01 and add DevEUI.
336 336  
337 337  
338 -[[image:1654505905236-553.png]]
275 +=== 2.2.8 Change Update Interval ===
339 339  
277 +User can use below command to change the (% style="color:green" %)**uplink interval**.
340 340  
341 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
279 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
342 342  
343 -[[image:1654505925508-181.png]]
281 +(((
282 +(% style="color:red" %)**NOTE:**
283 +)))
344 344  
285 +(((
286 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
287 +)))
345 345  
346 346  
347 -== 2.7 Frequency Plans ==
348 348  
349 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
291 +== 2.3  Uplink Payload ==
350 350  
293 +In this mode, uplink payload includes in total 18 bytes
351 351  
352 -=== 2.7.1 EU863-870 (EU868) ===
295 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
296 +|=(% style="width: 50px;" %)(((
297 +**Size(bytes)**
298 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
299 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
353 353  
354 -(% style="color:#037691" %)** Uplink:**
301 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
355 355  
356 -868.1 - SF7BW125 to SF12BW125
357 357  
358 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
304 +[[image:image-20220708111918-4.png]]
359 359  
360 -868.5 - SF7BW125 to SF12BW125
361 361  
362 -867.1 - SF7BW125 to SF12BW125
307 +The payload is ASCII string, representative same HEX:
363 363  
364 -867.3 - SF7BW125 to SF12BW125
309 +0x72403155615900640c7817075e0a8c02f900 where:
365 365  
366 -867.5 - SF7BW125 to SF12BW125
311 +* Device ID: 0x 724031556159 = 724031556159
312 +* Version: 0x0064=100=1.0.0
367 367  
368 -867.7 - SF7BW125 to SF12BW125
314 +* BAT: 0x0c78 = 3192 mV = 3.192V
315 +* Singal: 0x17 = 23
316 +* Soil Moisture: 0x075e= 1886 = 18.86  %
317 +* Soil Temperature:0x0a8c =2700=27 °C
318 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
319 +* Interrupt: 0x00 = 0
369 369  
370 -867.9 - SF7BW125 to SF12BW125
371 371  
372 -868.8 - FSK
373 373  
374 374  
375 -(% style="color:#037691" %)** Downlink:**
324 +== 2.4  Payload Explanation and Sensor Interface ==
376 376  
377 -Uplink channels 1-9 (RX1)
378 378  
379 -869.525 - SF9BW125 (RX2 downlink only)
327 +=== 2.4.1  Device ID ===
380 380  
329 +By default, the Device ID equal to the last 6 bytes of IMEI.
381 381  
331 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
382 382  
383 -=== 2.7.2 US902-928(US915) ===
333 +**Example:**
384 384  
385 -Used in USA, Canada and South America. Default use CHE=2
335 +AT+DEUI=A84041F15612
386 386  
387 -(% style="color:#037691" %)**Uplink:**
337 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
388 388  
389 -903.9 - SF7BW125 to SF10BW125
390 390  
391 -904.1 - SF7BW125 to SF10BW125
392 392  
393 -904.3 - SF7BW125 to SF10BW125
341 +=== 2.4.2  Version Info ===
394 394  
395 -904.5 - SF7BW125 to SF10BW125
343 +Specify the software version: 0x64=100, means firmware version 1.00.
396 396  
397 -904.7 - SF7BW125 to SF10BW125
345 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
398 398  
399 -904.9 - SF7BW125 to SF10BW125
400 400  
401 -905.1 - SF7BW125 to SF10BW125
402 402  
403 -905.3 - SF7BW125 to SF10BW125
349 +=== 2.4.3  Battery Info ===
404 404  
351 +(((
352 +Check the battery voltage for LSE01.
353 +)))
405 405  
406 -(% style="color:#037691" %)**Downlink:**
355 +(((
356 +Ex1: 0x0B45 = 2885mV
357 +)))
407 407  
408 -923.3 - SF7BW500 to SF12BW500
359 +(((
360 +Ex2: 0x0B49 = 2889mV
361 +)))
409 409  
410 -923.9 - SF7BW500 to SF12BW500
411 411  
412 -924.5 - SF7BW500 to SF12BW500
413 413  
414 -925.1 - SF7BW500 to SF12BW500
365 +=== 2.4.4  Signal Strength ===
415 415  
416 -925.7 - SF7BW500 to SF12BW500
367 +NB-IoT Network signal Strength.
417 417  
418 -926.3 - SF7BW500 to SF12BW500
369 +**Ex1: 0x1d = 29**
419 419  
420 -926.9 - SF7BW500 to SF12BW500
371 +(% style="color:blue" %)**0**(%%)  -113dBm or less
421 421  
422 -927.5 - SF7BW500 to SF12BW500
373 +(% style="color:blue" %)**1**(%%)  -111dBm
423 423  
424 -923.3 - SF12BW500(RX2 downlink only)
375 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
425 425  
377 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
426 426  
379 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
427 427  
428 -=== 2.7.3 CN470-510 (CN470) ===
429 429  
430 -Used in China, Default use CHE=1
431 431  
432 -(% style="color:#037691" %)**Uplink:**
383 +=== 2.4.5  Soil Moisture ===
433 433  
434 -486.3 - SF7BW125 to SF12BW125
385 +(((
386 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
387 +)))
435 435  
436 -486.5 - SF7BW125 to SF12BW125
389 +(((
390 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
391 +)))
437 437  
438 -486.7 - SF7BW125 to SF12BW125
393 +(((
394 +
395 +)))
439 439  
440 -486.9 - SF7BW125 to SF12BW125
397 +(((
398 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
399 +)))
441 441  
442 -487.1 - SF7BW125 to SF12BW125
443 443  
444 -487.3 - SF7BW125 to SF12BW125
445 445  
446 -487.5 - SF7BW125 to SF12BW125
403 +=== 2.4. Soil Temperature ===
447 447  
448 -487.7 - SF7BW125 to SF12BW125
405 +(((
406 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
407 +)))
449 449  
409 +(((
410 +**Example**:
411 +)))
450 450  
451 -(% style="color:#037691" %)**Downlink:**
413 +(((
414 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
415 +)))
452 452  
453 -506.7 - SF7BW125 to SF12BW125
417 +(((
418 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
419 +)))
454 454  
455 -506.9 - SF7BW125 to SF12BW125
456 456  
457 -507.1 - SF7BW125 to SF12BW125
458 458  
459 -507.3 - SF7BW125 to SF12BW125
423 +=== 2.4.7  Soil Conductivity (EC) ===
460 460  
461 -507.5 - SF7BW125 to SF12BW125
425 +(((
426 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
427 +)))
462 462  
463 -507.7 - SF7BW125 to SF12BW125
429 +(((
430 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
431 +)))
464 464  
465 -507.9 - SF7BW125 to SF12BW125
433 +(((
434 +Generally, the EC value of irrigation water is less than 800uS / cm.
435 +)))
466 466  
467 -508.1 - SF7BW125 to SF12BW125
437 +(((
438 +
439 +)))
468 468  
469 -505.3 - SF12BW125 (RX2 downlink only)
441 +(((
442 +
443 +)))
470 470  
445 +=== 2.4.8  Digital Interrupt ===
471 471  
447 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
472 472  
473 -=== 2.7.4 AU915-928(AU915) ===
449 +The command is:
474 474  
475 -Default use CHE=2
451 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
476 476  
477 -(% style="color:#037691" %)**Uplink:**
478 478  
479 -916.8 - SF7BW125 to SF12BW125
454 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
480 480  
481 -917.0 - SF7BW125 to SF12BW125
482 482  
483 -917.2 - SF7BW125 to SF12BW125
457 +Example:
484 484  
485 -917.4 - SF7BW125 to SF12BW125
459 +0x(00): Normal uplink packet.
486 486  
487 -917.6 - SF7BW125 to SF12BW125
461 +0x(01): Interrupt Uplink Packet.
488 488  
489 -917.8 - SF7BW125 to SF12BW125
490 490  
491 -918.0 - SF7BW125 to SF12BW125
492 492  
493 -918.2 - SF7BW125 to SF12BW125
465 +=== 2.4.9  ​+5V Output ===
494 494  
467 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
495 495  
496 -(% style="color:#037691" %)**Downlink:**
497 497  
498 -923.3 - SF7BW500 to SF12BW500
470 +The 5V output time can be controlled by AT Command.
499 499  
500 -923.9 - SF7BW500 to SF12BW500
472 +(% style="color:blue" %)**AT+5VT=1000**
501 501  
502 -924.5 - SF7BW500 to SF12BW500
474 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
503 503  
504 -925.1 - SF7BW500 to SF12BW500
505 505  
506 -925.7 - SF7BW500 to SF12BW500
507 507  
508 -926.3 - SF7BW500 to SF12BW500
478 +== 2.5  Downlink Payload ==
509 509  
510 -926.9 - SF7BW500 to SF12BW500
480 +By default, NSE01 prints the downlink payload to console port.
511 511  
512 -927.5 - SF7BW500 to SF12BW500
482 +[[image:image-20220708133731-5.png]]
513 513  
514 -923.3 - SF12BW500(RX2 downlink only)
515 515  
485 +(((
486 +(% style="color:blue" %)**Examples:**
487 +)))
516 516  
489 +(((
490 +
491 +)))
517 517  
518 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
493 +* (((
494 +(% style="color:blue" %)**Set TDC**
495 +)))
519 519  
520 -(% style="color:#037691" %)**Default Uplink channel:**
497 +(((
498 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
499 +)))
521 521  
522 -923.2 - SF7BW125 to SF10BW125
501 +(((
502 +Payload:    01 00 00 1E    TDC=30S
503 +)))
523 523  
524 -923.4 - SF7BW125 to SF10BW125
505 +(((
506 +Payload:    01 00 00 3C    TDC=60S
507 +)))
525 525  
509 +(((
510 +
511 +)))
526 526  
527 -(% style="color:#037691" %)**Additional Uplink Channel**:
513 +* (((
514 +(% style="color:blue" %)**Reset**
515 +)))
528 528  
529 -(OTAA mode, channel added by JoinAccept message)
517 +(((
518 +If payload = 0x04FF, it will reset the NSE01
519 +)))
530 530  
531 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
532 532  
533 -922.2 - SF7BW125 to SF10BW125
522 +* (% style="color:blue" %)**INTMOD**
534 534  
535 -922.4 - SF7BW125 to SF10BW125
524 +Downlink Payload: 06000003, Set AT+INTMOD=3
536 536  
537 -922.6 - SF7BW125 to SF10BW125
538 538  
539 -922.8 - SF7BW125 to SF10BW125
540 540  
541 -923.0 - SF7BW125 to SF10BW125
528 +== 2. ​LED Indicator ==
542 542  
543 -922.0 - SF7BW125 to SF10BW125
530 +(((
531 +The NSE01 has an internal LED which is to show the status of different state.
544 544  
545 545  
546 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
534 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
535 +* Then the LED will be on for 1 second means device is boot normally.
536 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
537 +* For each uplink probe, LED will be on for 500ms.
538 +)))
547 547  
548 -923.6 - SF7BW125 to SF10BW125
549 549  
550 -923.8 - SF7BW125 to SF10BW125
551 551  
552 -924.0 - SF7BW125 to SF10BW125
553 553  
554 -924.2 - SF7BW125 to SF10BW125
543 +== 2.7  Installation in Soil ==
555 555  
556 -924.4 - SF7BW125 to SF10BW125
545 +__**Measurement the soil surface**__
557 557  
558 -924.6 - SF7BW125 to SF10BW125
547 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
559 559  
549 +[[image:1657259653666-883.png]] ​
560 560  
561 -(% style="color:#037691" %)** Downlink:**
562 562  
563 -Uplink channels 1-8 (RX1)
552 +(((
553 +
564 564  
565 -923.2 - SF10BW125 (RX2)
555 +(((
556 +Dig a hole with diameter > 20CM.
557 +)))
566 566  
559 +(((
560 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
561 +)))
562 +)))
567 567  
564 +[[image:1654506665940-119.png]]
568 568  
569 -=== 2.7.6 KR920-923 (KR920) ===
566 +(((
567 +
568 +)))
570 570  
571 -Default channel:
572 572  
573 -922.1 - SF7BW125 to SF12BW125
571 +== 2. Firmware Change Log ==
574 574  
575 -922.3 - SF7BW125 to SF12BW125
576 576  
577 -922.5 - SF7BW125 to SF12BW125
574 +Download URL & Firmware Change log
578 578  
576 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
579 579  
580 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
581 581  
582 -922.1 - SF7BW125 to SF12BW125
579 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
583 583  
584 -922.3 - SF7BW125 to SF12BW125
585 585  
586 -922.5 - SF7BW125 to SF12BW125
587 587  
588 -922.7 - SF7BW125 to SF12BW125
583 +== 2. Battery Analysis ==
589 589  
590 -922.9 - SF7BW125 to SF12BW125
585 +=== 2.9.1  ​Battery Type ===
591 591  
592 -923.1 - SF7BW125 to SF12BW125
593 593  
594 -923.3 - SF7BW125 to SF12BW125
588 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
595 595  
596 596  
597 -(% style="color:#037691" %)**Downlink:**
591 +The battery is designed to last for several years depends on the actually use environment and update interval. 
598 598  
599 -Uplink channels 1-7(RX1)
600 600  
601 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
594 +The battery related documents as below:
602 602  
596 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
597 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
598 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
603 603  
604 -
605 -=== 2.7.7 IN865-867 (IN865) ===
606 -
607 -(% style="color:#037691" %)** Uplink:**
608 -
609 -865.0625 - SF7BW125 to SF12BW125
610 -
611 -865.4025 - SF7BW125 to SF12BW125
612 -
613 -865.9850 - SF7BW125 to SF12BW125
614 -
615 -
616 -(% style="color:#037691" %) **Downlink:**
617 -
618 -Uplink channels 1-3 (RX1)
619 -
620 -866.550 - SF10BW125 (RX2)
621 -
622 -
623 -
624 -
625 -== 2.8 LED Indicator ==
626 -
627 -The LSE01 has an internal LED which is to show the status of different state.
628 -
629 -* Blink once when device power on.
630 -* Solid ON for 5 seconds once device successful Join the network.
631 -* Blink once when device transmit a packet.
632 -
633 -
634 -== 2.9 Installation in Soil ==
635 -
636 -**Measurement the soil surface**
637 -
638 -
639 -[[image:1654506634463-199.png]] ​
640 -
641 641  (((
642 -(((
643 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
601 +[[image:image-20220708140453-6.png]]
644 644  )))
645 -)))
646 646  
647 647  
648 -[[image:1654506665940-119.png]]
649 649  
650 -(((
651 -Dig a hole with diameter > 20CM.
652 -)))
606 +=== 2.9.2  Power consumption Analyze ===
653 653  
654 654  (((
655 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
609 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
656 656  )))
657 657  
658 658  
659 -== 2.10 ​Firmware Change Log ==
660 -
661 661  (((
662 -**Firmware download link:**
614 +Instruction to use as below:
663 663  )))
664 664  
665 665  (((
666 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
618 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
667 667  )))
668 668  
669 -(((
670 -
671 -)))
672 672  
673 673  (((
674 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
623 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
675 675  )))
676 676  
677 -(((
678 -
626 +* (((
627 +Product Model
679 679  )))
680 -
681 -(((
682 -**V1.0.**
629 +* (((
630 +Uplink Interval
683 683  )))
632 +* (((
633 +Working Mode
634 +)))
684 684  
685 685  (((
686 -Release
637 +And the Life expectation in difference case will be shown on the right.
687 687  )))
688 688  
640 +[[image:image-20220708141352-7.jpeg]]
689 689  
690 -== 2.11 ​Battery Analysis ==
691 691  
692 -=== 2.11.1 ​Battery Type ===
693 693  
694 -(((
695 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
696 -)))
644 +=== 2.9.3  ​Battery Note ===
697 697  
698 698  (((
699 -The battery is designed to last for more than 5 years for the LSN50.
647 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
700 700  )))
701 701  
702 -(((
703 -(((
704 -The battery-related documents are as below:
705 -)))
706 -)))
707 707  
708 -* (((
709 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
710 -)))
711 -* (((
712 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
713 -)))
714 -* (((
715 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
716 -)))
717 717  
718 - [[image:image-20220606171726-9.png]]
652 +=== 2.9.4  Replace the battery ===
719 719  
720 -
721 -
722 -=== 2.11.2 ​Battery Note ===
723 -
724 724  (((
725 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
655 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
726 726  )))
727 727  
728 728  
729 729  
730 -=== 2.11.3 Replace the battery ===
660 += 3. ​ Access NB-IoT Module =
731 731  
732 732  (((
733 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
663 +Users can directly access the AT command set of the NB-IoT module.
734 734  )))
735 735  
736 736  (((
737 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
667 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
738 738  )))
739 739  
740 -(((
741 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
742 -)))
670 +[[image:1657261278785-153.png]]
743 743  
744 744  
745 745  
746 -= 3. Using the AT Commands =
674 += 4.  Using the AT Commands =
747 747  
748 -== 3.1 Access AT Commands ==
676 +== 4.1  Access AT Commands ==
749 749  
678 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
750 750  
751 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
752 752  
753 -[[image:1654501986557-872.png||height="391" width="800"]]
681 +AT+<CMD>?  : Help on <CMD>
754 754  
683 +AT+<CMD>         : Run <CMD>
755 755  
756 -Or if you have below board, use below connection:
685 +AT+<CMD>=<value> : Set the value
757 757  
687 +AT+<CMD>=?  : Get the value
758 758  
759 -[[image:1654502005655-729.png||height="503" width="801"]]
760 760  
761 -
762 -
763 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
764 -
765 -
766 - [[image:1654502050864-459.png||height="564" width="806"]]
767 -
768 -
769 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
770 -
771 -
772 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
773 -
774 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
775 -
776 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
777 -
778 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
779 -
780 -
781 781  (% style="color:#037691" %)**General Commands**(%%)      
782 782  
783 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
692 +AT  : Attention       
784 784  
785 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
694 +AT?  : Short Help     
786 786  
787 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
696 +ATZ  : MCU Reset    
788 788  
789 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
698 +AT+TDC  : Application Data Transmission Interval
790 790  
700 +AT+CFG  : Print all configurations
791 791  
792 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
702 +AT+CFGMOD           : Working mode selection
793 793  
794 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
704 +AT+INTMOD            : Set the trigger interrupt mode
795 795  
796 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
706 +AT+5VT  : Set extend the time of 5V power  
797 797  
798 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
708 +AT+PRO  : Choose agreement
799 799  
800 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
710 +AT+WEIGRE  : Get weight or set weight to 0
801 801  
802 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
712 +AT+WEIGAP  : Get or Set the GapValue of weight
803 803  
804 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
714 +AT+RXDL  : Extend the sending and receiving time
805 805  
806 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
716 +AT+CNTFAC  : Get or set counting parameters
807 807  
808 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
718 +AT+SERVADDR  : Server Address
809 809  
810 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
811 811  
812 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
721 +(% style="color:#037691" %)**COAP Management**      
813 813  
814 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
723 +AT+URI            : Resource parameters
815 815  
816 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
817 817  
818 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
726 +(% style="color:#037691" %)**UDP Management**
819 819  
820 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
728 +AT+CFM          : Upload confirmation mode (only valid for UDP)
821 821  
822 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
823 823  
824 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
731 +(% style="color:#037691" %)**MQTT Management**
825 825  
733 +AT+CLIENT               : Get or Set MQTT client
826 826  
827 -(% style="color:#037691" %)**LoRa Network Management**
735 +AT+UNAME  : Get or Set MQTT Username
828 828  
829 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
737 +AT+PWD                  : Get or Set MQTT password
830 830  
831 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
739 +AT+PUBTOPI : Get or Set MQTT publish topic
832 832  
833 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
741 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
834 834  
835 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
836 836  
837 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
744 +(% style="color:#037691" %)**Information**          
838 838  
839 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
746 +AT+FDR  : Factory Data Reset
840 840  
841 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
748 +AT+PWOR : Serial Access Password
842 842  
843 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
844 844  
845 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
846 846  
847 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
752 += ​5.  FAQ =
848 848  
849 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
754 +== 5.1 How to Upgrade Firmware ==
850 850  
851 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
852 852  
853 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
854 -
855 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
856 -
857 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
858 -
859 -
860 -(% style="color:#037691" %)**Information** 
861 -
862 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
863 -
864 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
865 -
866 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
867 -
868 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
869 -
870 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
871 -
872 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
873 -
874 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
875 -
876 -
877 -= ​4. FAQ =
878 -
879 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
880 -
881 881  (((
882 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
883 -When downloading the images, choose the required image file for download. ​
758 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
884 884  )))
885 885  
886 886  (((
887 -
762 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
888 888  )))
889 889  
890 890  (((
891 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
766 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
892 892  )))
893 893  
894 -(((
895 -
896 -)))
897 897  
898 -(((
899 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
900 -)))
901 901  
902 -(((
903 -
904 -)))
771 += 6.  Trouble Shooting =
905 905  
906 -(((
907 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
908 -)))
773 +== 6.1  ​Connection problem when uploading firmware ==
909 909  
910 -[[image:image-20220606154726-3.png]]
911 911  
912 -
913 -When you use the TTN network, the US915 frequency bands use are:
914 -
915 -* 903.9 - SF7BW125 to SF10BW125
916 -* 904.1 - SF7BW125 to SF10BW125
917 -* 904.3 - SF7BW125 to SF10BW125
918 -* 904.5 - SF7BW125 to SF10BW125
919 -* 904.7 - SF7BW125 to SF10BW125
920 -* 904.9 - SF7BW125 to SF10BW125
921 -* 905.1 - SF7BW125 to SF10BW125
922 -* 905.3 - SF7BW125 to SF10BW125
923 -* 904.6 - SF8BW500
924 -
776 +(% class="wikigeneratedid" %)
925 925  (((
926 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
778 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
927 927  )))
928 928  
929 -(% class="box infomessage" %)
930 -(((
931 -**AT+CHE=2**
932 -)))
933 933  
934 -(% class="box infomessage" %)
935 -(((
936 -**ATZ**
937 -)))
938 938  
939 -(((
940 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
941 -)))
783 +== 6.2  AT Command input doesn't work ==
942 942  
943 943  (((
944 -
786 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
945 945  )))
946 946  
947 -(((
948 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
949 -)))
950 950  
951 -[[image:image-20220606154825-4.png]]
952 952  
791 += 7. ​ Order Info =
953 953  
954 954  
955 -= 5. Trouble Shooting =
794 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
956 956  
957 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
958 958  
959 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
960 -
961 -
962 -== 5.2 AT Command input doesn’t work ==
963 -
964 -(((
965 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
966 -)))
967 -
968 -
969 -== 5.3 Device rejoin in at the second uplink packet ==
970 -
971 -(% style="color:#4f81bd" %)**Issue describe as below:**
972 -
973 -[[image:1654500909990-784.png]]
974 -
975 -
976 -(% style="color:#4f81bd" %)**Cause for this issue:**
977 -
978 -(((
979 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
980 -)))
981 -
982 -
983 -(% style="color:#4f81bd" %)**Solution: **
984 -
985 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
986 -
987 -[[image:1654500929571-736.png||height="458" width="832"]]
988 -
989 -
990 -= 6. ​Order Info =
991 -
992 -
993 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
994 -
995 -
996 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
997 -
998 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
999 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1000 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1001 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1002 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1003 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1004 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1005 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1006 -
1007 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1008 -
1009 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1010 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1011 -
1012 1012  (% class="wikigeneratedid" %)
1013 1013  (((
1014 1014  
1015 1015  )))
1016 1016  
1017 -= 7. Packing Info =
802 += 8.  Packing Info =
1018 1018  
1019 1019  (((
1020 1020  
1021 1021  
1022 1022  (% style="color:#037691" %)**Package Includes**:
1023 -)))
1024 1024  
1025 -* (((
1026 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
809 +
810 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
811 +* External antenna x 1
1027 1027  )))
1028 1028  
1029 1029  (((
... ... @@ -1030,27 +1030,20 @@
1030 1030  
1031 1031  
1032 1032  (% style="color:#037691" %)**Dimension and weight**:
1033 -)))
1034 1034  
1035 -* (((
1036 -Device Size: cm
819 +
820 +* Size: 195 x 125 x 55 mm
821 +* Weight:   420g
1037 1037  )))
1038 -* (((
1039 -Device Weight: g
1040 -)))
1041 -* (((
1042 -Package Size / pcs : cm
1043 -)))
1044 -* (((
1045 -Weight / pcs : g
1046 1046  
824 +(((
825 +
1047 1047  
827 +
1048 1048  
1049 1049  )))
1050 1050  
1051 -= 8. Support =
831 += 9.  Support =
1052 1052  
1053 1053  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1054 1054  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1055 -
1056 -
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content