Last modified by Mengting Qiu on 2024/04/02 16:44

From version 31.42
edited by Xiaoling
on 2022/06/07 11:13
Change comment: There is no comment for this version
To version 65.1
edited by Xiaoling
on 2022/07/08 14:59
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,9 +3,7 @@
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
... ... @@ -12,1003 +12,781 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 +**Table of Contents:**
18 18  
19 -(((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
22 22  
23 -(((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 -)))
26 26  
27 -(((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 -)))
34 34  
35 -(((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 -)))
38 38  
21 += 1.  Introduction =
39 39  
40 -[[image:1654503236291-817.png]]
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
41 41  
42 -
43 -[[image:1654503265560-120.png]]
44 -
45 -
46 -
47 -== 1.2 ​Features ==
48 -
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
51 -* Monitor Soil Moisture
52 -* Monitor Soil Temperature
53 -* Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 -* AT Commands to change parameters
56 -* Uplink on periodically
57 -* Downlink to change configure
58 -* IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
60 -
61 -== 1.3 Specification ==
62 -
63 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
64 -
65 -[[image:image-20220606162220-5.png]]
66 -
67 -
68 -
69 -== ​1.4 Applications ==
70 -
71 -* Smart Agriculture
72 -
73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
74 -​
75 -
76 -== 1.5 Firmware Change log ==
77 -
78 -
79 -**LSE01 v1.0 :**  Release
80 -
81 -
82 -
83 -= 2. Configure LSE01 to connect to LoRaWAN network =
84 -
85 -== 2.1 How it works ==
86 -
87 87  (((
88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
89 -)))
26 +
90 90  
91 -(((
92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
93 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
94 94  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
95 95  
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
96 96  
97 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
98 98  
99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
100 -
101 -
102 -[[image:1654503992078-669.png]]
103 -
104 -
105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
106 -
107 -
108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
109 -
110 -Each LSE01 is shipped with a sticker with the default device EUI as below:
111 -
112 -[[image:image-20220606163732-6.jpeg]]
113 -
114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
115 -
116 -**Add APP EUI in the application**
117 -
118 -
119 -[[image:1654504596150-405.png]]
120 -
121 -
122 -
123 -**Add APP KEY and DEV EUI**
124 -
125 -[[image:1654504683289-357.png]]
126 -
127 -
128 -
129 -**Step 2**: Power on LSE01
130 -
131 -
132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
133 -
134 -[[image:image-20220606163915-7.png]]
135 -
136 -
137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
138 -
139 -[[image:1654504778294-788.png]]
140 -
141 -
142 -
143 -== 2.3 Uplink Payload ==
144 -
145 -=== 2.3.1 MOD~=0(Default Mode) ===
146 -
147 -LSE01 will uplink payload via LoRaWAN with below payload format: 
148 -
149 -
150 -Uplink payload includes in total 11 bytes.
151 151  
152 -
153 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
154 -|=(((
155 -**Size**
156 -
157 -**(bytes)**
158 -)))|=(% style="width: 45px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**
159 -|**Value**|(% style="width:45px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:80px" %)(((
160 -Temperature
161 -
162 -(Reserve, Ignore now)
163 -)))|(% style="width:80px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:80px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:80px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:80px" %)(((
164 -MOD & Digital Interrupt
165 -
166 -(Optional)
167 167  )))
168 168  
169 -[[image:1654504881641-514.png]]
39 +[[image:1654503236291-817.png]]
170 170  
171 171  
42 +[[image:1657245163077-232.png]]
172 172  
173 -=== 2.3.2 MOD~=1(Original value) ===
174 174  
175 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
176 176  
177 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
178 -|=(((
179 -**Size**
46 +== 1.2 ​Features ==
180 180  
181 -**(bytes)**
182 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1**
183 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
184 -Temperature
185 185  
186 -(Reserve, Ignore now)
187 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
188 -MOD & Digital Interrupt
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
53 +* AT Commands to change parameters
54 +* Uplink on periodically
55 +* Downlink to change configure
56 +* IP66 Waterproof Enclosure
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
189 189  
190 -(Optional)
191 -)))
62 +== 1.3  Specification ==
192 192  
193 -[[image:1654504907647-967.png]]
194 194  
65 +(% style="color:#037691" %)**Common DC Characteristics:**
195 195  
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
196 196  
197 -=== 2.3.3 Battery Info ===
70 +(% style="color:#037691" %)**NB-IoT Spec:**
198 198  
199 -Check the battery voltage for LSE01.
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
200 200  
201 -Ex1: 0x0B45 = 2885mV
79 +(% style="color:#037691" %)**Probe Specification:**
202 202  
203 -Ex2: 0x0B49 = 2889mV
81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
204 204  
83 +[[image:image-20220708101224-1.png]]
205 205  
206 206  
207 -=== 2.3.4 Soil Moisture ===
208 208  
209 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
87 +== ​1. Applications ==
210 210  
211 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
89 +* Smart Agriculture
212 212  
91 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92 +​
213 213  
214 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
94 +== 1.5  Pin Definitions ==
215 215  
216 216  
97 +[[image:1657246476176-652.png]]
217 217  
218 -=== 2.3.5 Soil Temperature ===
219 219  
220 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
221 221  
222 -**Example**:
101 += 2.  Use NSE01 to communicate with IoT Server =
223 223  
224 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
103 +== 2.1  How it works ==
225 225  
226 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
227 227  
228 -
229 -
230 -=== 2.3.6 Soil Conductivity (EC) ===
231 -
232 232  (((
233 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
234 234  )))
235 235  
236 -(((
237 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
238 -)))
239 239  
240 240  (((
241 -Generally, the EC value of irrigation water is less than 800uS / cm.
112 +The diagram below shows the working flow in default firmware of NSE01:
242 242  )))
243 243  
244 -(((
245 -
246 -)))
115 +[[image:image-20220708101605-2.png]]
247 247  
248 248  (((
249 249  
250 250  )))
251 251  
252 -=== 2.3.7 MOD ===
253 253  
254 -Firmware version at least v2.1 supports changing mode.
255 255  
256 -For example, bytes[10]=90
123 +== 2.2 ​ Configure the NSE01 ==
257 257  
258 -mod=(bytes[10]>>7)&0x01=1.
259 259  
126 +=== 2.2.1 Test Requirement ===
260 260  
261 -**Downlink Command:**
262 262  
263 -If payload = 0x0A00, workmode=0
129 +To use NSE01 in your city, make sure meet below requirements:
264 264  
265 -If** **payload =** **0x0A01, workmode=1
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
266 266  
135 +(((
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 +)))
267 267  
268 268  
269 -=== 2.3.8 ​Decode payload in The Things Network ===
140 +[[image:1657249419225-449.png]]
270 270  
271 -While using TTN network, you can add the payload format to decode the payload.
272 272  
273 273  
274 -[[image:1654505570700-128.png]]
144 +=== 2.2.2 Insert SIM card ===
275 275  
276 -The payload decoder function for TTN is here:
146 +Insert the NB-IoT Card get from your provider.
277 277  
278 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
148 +User need to take out the NB-IoT module and insert the SIM card like below:
279 279  
280 280  
151 +[[image:1657249468462-536.png]]
281 281  
282 -== 2.4 Uplink Interval ==
283 283  
284 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
285 285  
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
286 286  
157 +(((
158 +(((
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
160 +)))
161 +)))
287 287  
288 -== 2.5 Downlink Payload ==
289 289  
290 -By default, LSE50 prints the downlink payload to console port.
164 +**Connection:**
291 291  
292 -[[image:image-20220606165544-8.png]]
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
293 293  
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
294 294  
295 -**Examples:**
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
296 296  
297 297  
298 -* **Set TDC**
173 +In the PC, use below serial tool settings:
299 299  
300 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
301 301  
302 -Payload:    01 00 00 1E    TDC=30S
181 +(((
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 +)))
303 303  
304 -Payload:    01 00 00 3C    TDC=60S
185 +[[image:image-20220708110657-3.png]]
305 305  
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
306 306  
307 -* **Reset**
308 308  
309 -If payload = 0x04FF, it will reset the LSE01
310 310  
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
311 311  
312 -* **CFM**
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
313 313  
314 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
315 315  
196 +**Use below commands:**
316 316  
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
317 317  
318 -== 2.6 ​Show Data in DataCake IoT Server ==
202 +For parameter description, please refer to AT command set
319 319  
320 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
204 +[[image:1657249793983-486.png]]
321 321  
322 322  
323 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
324 324  
325 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
209 +[[image:1657249831934-534.png]]
326 326  
327 327  
328 -[[image:1654505857935-743.png]]
329 329  
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
330 330  
331 -[[image:1654505874829-548.png]]
215 +This feature is supported since firmware version v1.0.1
332 332  
333 -Step 3: Create an account or log in Datacake.
334 334  
335 -Step 4: Search the LSE01 and add DevEUI.
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
336 336  
222 +[[image:1657249864775-321.png]]
337 337  
338 -[[image:1654505905236-553.png]]
339 339  
225 +[[image:1657249930215-289.png]]
340 340  
341 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
342 342  
343 -[[image:1654505925508-181.png]]
344 344  
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
345 345  
231 +This feature is supported since firmware version v110
346 346  
347 -== 2.7 Frequency Plans ==
348 348  
349 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
350 350  
242 +[[image:1657249978444-674.png]]
351 351  
352 -=== 2.7.1 EU863-870 (EU868) ===
353 353  
354 -(% style="color:#037691" %)** Uplink:**
245 +[[image:1657249990869-686.png]]
355 355  
356 -868.1 - SF7BW125 to SF12BW125
357 357  
358 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
248 +(((
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
250 +)))
359 359  
360 -868.5 - SF7BW125 to SF12BW125
361 361  
362 -867.1 - SF7BW125 to SF12BW125
363 363  
364 -867.3 - SF7BW125 to SF12BW125
254 +=== 2.2.7 Use TCP protocol to uplink data ===
365 365  
366 -867.5 - SF7BW125 to SF12BW125
256 +This feature is supported since firmware version v110
367 367  
368 -867.7 - SF7BW125 to SF12BW125
369 369  
370 -867.9 - SF7BW125 to SF12BW125
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
371 371  
372 -868.8 - FSK
262 +[[image:1657250217799-140.png]]
373 373  
374 374  
375 -(% style="color:#037691" %)** Downlink:**
265 +[[image:1657250255956-604.png]]
376 376  
377 -Uplink channels 1-9 (RX1)
378 378  
379 -869.525 - SF9BW125 (RX2 downlink only)
380 380  
269 +=== 2.2.8 Change Update Interval ===
381 381  
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
382 382  
383 -=== 2.7.2 US902-928(US915) ===
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
384 384  
385 -Used in USA, Canada and South America. Default use CHE=2
275 +(((
276 +(% style="color:red" %)**NOTE:**
277 +)))
386 386  
387 -(% style="color:#037691" %)**Uplink:**
279 +(((
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
281 +)))
388 388  
389 -903.9 - SF7BW125 to SF10BW125
390 390  
391 -904.1 - SF7BW125 to SF10BW125
392 392  
393 -904.3 - SF7BW125 to SF10BW125
285 +== 2.3  Uplink Payload ==
394 394  
395 -904.5 - SF7BW125 to SF10BW125
287 +In this mode, uplink payload includes in total 18 bytes
396 396  
397 -904.7 - SF7BW125 to SF10BW125
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
398 398  
399 -904.9 - SF7BW125 to SF10BW125
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
400 400  
401 -905.1 - SF7BW125 to SF10BW125
402 402  
403 -905.3 - SF7BW125 to SF10BW125
298 +[[image:image-20220708111918-4.png]]
404 404  
405 405  
406 -(% style="color:#037691" %)**Downlink:**
301 +The payload is ASCII string, representative same HEX:
407 407  
408 -923.3 - SF7BW500 to SF12BW500
303 +0x72403155615900640c7817075e0a8c02f900 where:
409 409  
410 -923.9 - SF7BW500 to SF12BW500
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
411 411  
412 -924.5 - SF7BW500 to SF12BW500
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
413 413  
414 -925.1 - SF7BW500 to SF12BW500
315 +== 2. Payload Explanation and Sensor Interface ==
415 415  
416 -925.7 - SF7BW500 to SF12BW500
417 417  
418 -926.3 - SF7BW500 to SF12BW500
318 +=== 2.4.1  Device ID ===
419 419  
420 -926.9 - SF7BW500 to SF12BW500
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
421 421  
422 -927.5 - SF7BW500 to SF12BW500
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
423 423  
424 -923.3 - SF12BW500(RX2 downlink only)
324 +**Example:**
425 425  
326 +AT+DEUI=A84041F15612
426 426  
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
427 427  
428 -=== 2.7.3 CN470-510 (CN470) ===
429 429  
430 -Used in China, Default use CHE=1
431 431  
432 -(% style="color:#037691" %)**Uplink:**
332 +=== 2.4.2  Version Info ===
433 433  
434 -486.3 - SF7BW125 to SF12BW125
334 +Specify the software version: 0x64=100, means firmware version 1.00.
435 435  
436 -486.5 - SF7BW125 to SF12BW125
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
437 437  
438 -486.7 - SF7BW125 to SF12BW125
439 439  
440 -486.9 - SF7BW125 to SF12BW125
441 441  
442 -487.1 - SF7BW125 to SF12BW125
340 +=== 2.4. Battery Info ===
443 443  
444 -487.3 - SF7BW125 to SF12BW125
342 +(((
343 +Check the battery voltage for LSE01.
344 +)))
445 445  
446 -487.5 - SF7BW125 to SF12BW125
346 +(((
347 +Ex1: 0x0B45 = 2885mV
348 +)))
447 447  
448 -487.7 - SF7BW125 to SF12BW125
350 +(((
351 +Ex2: 0x0B49 = 2889mV
352 +)))
449 449  
450 450  
451 -(% style="color:#037691" %)**Downlink:**
452 452  
453 -506.7 - SF7BW125 to SF12BW125
356 +=== 2.4.4  Signal Strength ===
454 454  
455 -506.9 - SF7BW125 to SF12BW125
358 +NB-IoT Network signal Strength.
456 456  
457 -507.1 - SF7BW125 to SF12BW125
360 +**Ex1: 0x1d = 29**
458 458  
459 -507.3 - SF7BW125 to SF12BW125
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
460 460  
461 -507.5 - SF7BW125 to SF12BW125
364 +(% style="color:blue" %)**1**(%%)  -111dBm
462 462  
463 -507.7 - SF7BW125 to SF12BW125
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
464 464  
465 -507.9 - SF7BW125 to SF12BW125
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
466 466  
467 -508.1 - SF7BW125 to SF12BW125
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
468 468  
469 -505.3 - SF12BW125 (RX2 downlink only)
470 470  
471 471  
374 +=== 2.4.5  Soil Moisture ===
472 472  
473 -=== 2.7.4 AU915-928(AU915) ===
376 +(((
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 +)))
474 474  
475 -Default use CHE=2
380 +(((
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 +)))
476 476  
477 -(% style="color:#037691" %)**Uplink:**
384 +(((
385 +
386 +)))
478 478  
479 -916.8 - SF7BW125 to SF12BW125
388 +(((
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 +)))
480 480  
481 -917.0 - SF7BW125 to SF12BW125
482 482  
483 -917.2 - SF7BW125 to SF12BW125
484 484  
485 -917.4 - SF7BW125 to SF12BW125
394 +=== 2.4.6  Soil Temperature ===
486 486  
487 -917.6 - SF7BW125 to SF12BW125
396 +(((
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 +)))
488 488  
489 -917.8 - SF7BW125 to SF12BW125
400 +(((
401 +**Example**:
402 +)))
490 490  
491 -918.0 - SF7BW125 to SF12BW125
404 +(((
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 +)))
492 492  
493 -918.2 - SF7BW125 to SF12BW125
408 +(((
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 +)))
494 494  
495 495  
496 -(% style="color:#037691" %)**Downlink:**
497 497  
498 -923.3 - SF7BW500 to SF12BW500
414 +=== 2.4.7  Soil Conductivity (EC) ===
499 499  
500 -923.9 - SF7BW500 to SF12BW500
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
501 501  
502 -924.5 - SF7BW500 to SF12BW500
420 +(((
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +)))
503 503  
504 -925.1 - SF7BW500 to SF12BW500
424 +(((
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
426 +)))
505 505  
506 -925.7 - SF7BW500 to SF12BW500
428 +(((
429 +
430 +)))
507 507  
508 -926.3 - SF7BW500 to SF12BW500
432 +(((
433 +
434 +)))
509 509  
510 -926.9 - SF7BW500 to SF12BW500
436 +=== 2.4.8  Digital Interrupt ===
511 511  
512 -927.5 - SF7BW500 to SF12BW500
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
513 513  
514 -923.3 - SF12BW500(RX2 downlink only)
440 +The command is:
515 515  
442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
516 516  
517 517  
518 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
519 519  
520 -(% style="color:#037691" %)**Default Uplink channel:**
521 521  
522 -923.2 - SF7BW125 to SF10BW125
448 +Example:
523 523  
524 -923.4 - SF7BW125 to SF10BW125
450 +0x(00): Normal uplink packet.
525 525  
452 +0x(01): Interrupt Uplink Packet.
526 526  
527 -(% style="color:#037691" %)**Additional Uplink Channel**:
528 528  
529 -(OTAA mode, channel added by JoinAccept message)
530 530  
531 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
456 +=== 2.4.9  ​+5V Output ===
532 532  
533 -922.2 - SF7BW125 to SF10BW125
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
534 534  
535 -922.4 - SF7BW125 to SF10BW125
536 536  
537 -922.6 - SF7BW125 to SF10BW125
461 +The 5V output time can be controlled by AT Command.
538 538  
539 -922.8 - SF7BW125 to SF10BW125
463 +(% style="color:blue" %)**AT+5VT=1000**
540 540  
541 -923.0 - SF7BW125 to SF10BW125
465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
542 542  
543 -922.0 - SF7BW125 to SF10BW125
544 544  
545 545  
546 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
469 +== 2.5  Downlink Payload ==
547 547  
548 -923.6 - SF7BW125 to SF10BW125
471 +By default, NSE01 prints the downlink payload to console port.
549 549  
550 -923.8 - SF7BW125 to SF10BW125
473 +[[image:image-20220708133731-5.png]]
551 551  
552 -924.0 - SF7BW125 to SF10BW125
553 553  
554 -924.2 - SF7BW125 to SF10BW125
476 +(((
477 +(% style="color:blue" %)**Examples:**
478 +)))
555 555  
556 -924.4 - SF7BW125 to SF10BW125
480 +(((
481 +
482 +)))
557 557  
558 -924.6 - SF7BW125 to SF10BW125
484 +* (((
485 +(% style="color:blue" %)**Set TDC**
486 +)))
559 559  
488 +(((
489 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
490 +)))
560 560  
561 -(% style="color:#037691" %)** Downlink:**
492 +(((
493 +Payload:    01 00 00 1E    TDC=30S
494 +)))
562 562  
563 -Uplink channels 1-8 (RX1)
496 +(((
497 +Payload:    01 00 00 3C    TDC=60S
498 +)))
564 564  
565 -923.2 - SF10BW125 (RX2)
500 +(((
501 +
502 +)))
566 566  
504 +* (((
505 +(% style="color:blue" %)**Reset**
506 +)))
567 567  
508 +(((
509 +If payload = 0x04FF, it will reset the NSE01
510 +)))
568 568  
569 -=== 2.7.6 KR920-923 (KR920) ===
570 570  
571 -Default channel:
513 +* (% style="color:blue" %)**INTMOD**
572 572  
573 -922.1 - SF7BW125 to SF12BW125
515 +Downlink Payload: 06000003, Set AT+INTMOD=3
574 574  
575 -922.3 - SF7BW125 to SF12BW125
576 576  
577 -922.5 - SF7BW125 to SF12BW125
578 578  
519 +== 2.6  ​LED Indicator ==
579 579  
580 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
521 +(((
522 +The NSE01 has an internal LED which is to show the status of different state.
581 581  
582 -922.1 - SF7BW125 to SF12BW125
583 583  
584 -922.3 - SF7BW125 to SF12BW125
525 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
526 +* Then the LED will be on for 1 second means device is boot normally.
527 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
528 +* For each uplink probe, LED will be on for 500ms.
529 +)))
585 585  
586 -922.5 - SF7BW125 to SF12BW125
587 587  
588 -922.7 - SF7BW125 to SF12BW125
589 589  
590 -922.9 - SF7BW125 to SF12BW125
591 591  
592 -923.1 - SF7BW125 to SF12BW125
534 +== 2.7  Installation in Soil ==
593 593  
594 -923.3 - SF7BW125 to SF12BW125
536 +__**Measurement the soil surface**__
595 595  
538 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
596 596  
597 -(% style="color:#037691" %)**Downlink:**
540 +[[image:1657259653666-883.png]] ​
598 598  
599 -Uplink channels 1-7(RX1)
600 600  
601 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
543 +(((
544 +
602 602  
546 +(((
547 +Dig a hole with diameter > 20CM.
548 +)))
603 603  
550 +(((
551 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
552 +)))
553 +)))
604 604  
605 -=== 2.7.7 IN865-867 (IN865) ===
555 +[[image:1654506665940-119.png]]
606 606  
607 -(% style="color:#037691" %)** Uplink:**
557 +(((
558 +
559 +)))
608 608  
609 -865.0625 - SF7BW125 to SF12BW125
610 610  
611 -865.4025 - SF7BW125 to SF12BW125
562 +== 2.8  Firmware Change Log ==
612 612  
613 -865.9850 - SF7BW125 to SF12BW125
614 614  
565 +Download URL & Firmware Change log
615 615  
616 -(% style="color:#037691" %) **Downlink:**
567 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
617 617  
618 -Uplink channels 1-3 (RX1)
619 619  
620 -866.550 - SF10BW125 (RX2)
570 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
621 621  
622 622  
623 623  
574 +== 2.9  ​Battery Analysis ==
624 624  
625 -== 2.8 LED Indicator ==
576 +=== 2.9.1  ​Battery Type ===
626 626  
627 -The LSE01 has an internal LED which is to show the status of different state.
628 628  
629 -* Blink once when device power on.
630 -* Solid ON for 5 seconds once device successful Join the network.
631 -* Blink once when device transmit a packet.
579 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
632 632  
633 633  
634 -== 2.9 Installation in Soil ==
582 +The battery is designed to last for several years depends on the actually use environment and update interval
635 635  
636 -**Measurement the soil surface**
637 637  
585 +The battery related documents as below:
638 638  
639 -[[image:1654506634463-199.png]] ​
587 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
588 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
640 640  
641 641  (((
642 -(((
643 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
592 +[[image:image-20220708140453-6.png]]
644 644  )))
645 -)))
646 646  
647 647  
648 -[[image:1654506665940-119.png]]
649 649  
650 -(((
651 -Dig a hole with diameter > 20CM.
652 -)))
597 +=== 2.9.2  Power consumption Analyze ===
653 653  
654 654  (((
655 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
656 656  )))
657 657  
658 658  
659 -== 2.10 ​Firmware Change Log ==
660 -
661 661  (((
662 -**Firmware download link:**
605 +Instruction to use as below:
663 663  )))
664 664  
665 665  (((
666 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
609 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
667 667  )))
668 668  
669 -(((
670 -
671 -)))
672 672  
673 673  (((
674 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
614 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
675 675  )))
676 676  
677 -(((
678 -
617 +* (((
618 +Product Model
679 679  )))
680 -
681 -(((
682 -**V1.0.**
620 +* (((
621 +Uplink Interval
683 683  )))
623 +* (((
624 +Working Mode
625 +)))
684 684  
685 685  (((
686 -Release
628 +And the Life expectation in difference case will be shown on the right.
687 687  )))
688 688  
631 +[[image:image-20220708141352-7.jpeg]]
689 689  
690 -== 2.11 ​Battery Analysis ==
691 691  
692 -=== 2.11.1 ​Battery Type ===
693 693  
694 -(((
695 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
696 -)))
635 +=== 2.9.3  ​Battery Note ===
697 697  
698 698  (((
699 -The battery is designed to last for more than 5 years for the LSN50.
638 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
700 700  )))
701 701  
702 -(((
703 -(((
704 -The battery-related documents are as below:
705 -)))
706 -)))
707 707  
708 -* (((
709 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
710 -)))
711 -* (((
712 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
713 -)))
714 -* (((
715 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
716 -)))
717 717  
718 - [[image:image-20220606171726-9.png]]
643 +=== 2.9.4  Replace the battery ===
719 719  
720 -
721 -
722 -=== 2.11.2 ​Battery Note ===
723 -
724 724  (((
725 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
646 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
726 726  )))
727 727  
728 728  
729 729  
730 -=== 2.11.3 Replace the battery ===
651 += 3. ​ Access NB-IoT Module =
731 731  
732 732  (((
733 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
654 +Users can directly access the AT command set of the NB-IoT module.
734 734  )))
735 735  
736 736  (((
737 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
658 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
738 738  )))
739 739  
740 -(((
741 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
742 -)))
661 +[[image:1657261278785-153.png]]
743 743  
744 744  
745 745  
746 -= 3. Using the AT Commands =
665 += 4.  Using the AT Commands =
747 747  
748 -== 3.1 Access AT Commands ==
667 +== 4.1  Access AT Commands ==
749 749  
669 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
750 750  
751 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
752 752  
753 -[[image:1654501986557-872.png||height="391" width="800"]]
672 +AT+<CMD>?  : Help on <CMD>
754 754  
674 +AT+<CMD>         : Run <CMD>
755 755  
756 -Or if you have below board, use below connection:
676 +AT+<CMD>=<value> : Set the value
757 757  
678 +AT+<CMD>=?  : Get the value
758 758  
759 -[[image:1654502005655-729.png||height="503" width="801"]]
760 760  
761 -
762 -
763 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
764 -
765 -
766 - [[image:1654502050864-459.png||height="564" width="806"]]
767 -
768 -
769 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
770 -
771 -
772 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
773 -
774 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
775 -
776 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
777 -
778 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
779 -
780 -
781 781  (% style="color:#037691" %)**General Commands**(%%)      
782 782  
783 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
683 +AT  : Attention       
784 784  
785 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
685 +AT?  : Short Help     
786 786  
787 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
687 +ATZ  : MCU Reset    
788 788  
789 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
689 +AT+TDC  : Application Data Transmission Interval
790 790  
691 +AT+CFG  : Print all configurations
791 791  
792 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
693 +AT+CFGMOD           : Working mode selection
793 793  
794 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
695 +AT+INTMOD            : Set the trigger interrupt mode
795 795  
796 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
697 +AT+5VT  : Set extend the time of 5V power  
797 797  
798 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
699 +AT+PRO  : Choose agreement
799 799  
800 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
701 +AT+WEIGRE  : Get weight or set weight to 0
801 801  
802 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
703 +AT+WEIGAP  : Get or Set the GapValue of weight
803 803  
804 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
705 +AT+RXDL  : Extend the sending and receiving time
805 805  
806 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
707 +AT+CNTFAC  : Get or set counting parameters
807 807  
808 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
709 +AT+SERVADDR  : Server Address
809 809  
810 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
811 811  
812 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
712 +(% style="color:#037691" %)**COAP Management**      
813 813  
814 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
714 +AT+URI            : Resource parameters
815 815  
816 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
817 817  
818 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
717 +(% style="color:#037691" %)**UDP Management**
819 819  
820 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
719 +AT+CFM          : Upload confirmation mode (only valid for UDP)
821 821  
822 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
823 823  
824 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
722 +(% style="color:#037691" %)**MQTT Management**
825 825  
724 +AT+CLIENT               : Get or Set MQTT client
826 826  
827 -(% style="color:#037691" %)**LoRa Network Management**
726 +AT+UNAME  : Get or Set MQTT Username
828 828  
829 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
728 +AT+PWD                  : Get or Set MQTT password
830 830  
831 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
730 +AT+PUBTOPI : Get or Set MQTT publish topic
832 832  
833 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
732 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
834 834  
835 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
836 836  
837 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
735 +(% style="color:#037691" %)**Information**          
838 838  
839 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
737 +AT+FDR  : Factory Data Reset
840 840  
841 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
739 +AT+PWOR : Serial Access Password
842 842  
843 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
844 844  
845 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
846 846  
847 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
743 += ​5.  FAQ =
848 848  
849 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
745 +== 5.1 How to Upgrade Firmware ==
850 850  
851 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
852 852  
853 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
854 -
855 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
856 -
857 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
858 -
859 -
860 -(% style="color:#037691" %)**Information** 
861 -
862 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
863 -
864 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
865 -
866 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
867 -
868 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
869 -
870 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
871 -
872 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
873 -
874 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
875 -
876 -
877 -= ​4. FAQ =
878 -
879 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
880 -
881 881  (((
882 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
883 -When downloading the images, choose the required image file for download. ​
749 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
884 884  )))
885 885  
886 886  (((
887 -
753 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
888 888  )))
889 889  
890 890  (((
891 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
757 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
892 892  )))
893 893  
894 -(((
895 -
896 -)))
897 897  
898 -(((
899 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
900 -)))
901 901  
902 -(((
903 -
904 -)))
762 += 6.  Trouble Shooting =
905 905  
906 -(((
907 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
908 -)))
764 +== 6.1  ​Connection problem when uploading firmware ==
909 909  
910 -[[image:image-20220606154726-3.png]]
911 911  
912 -
913 -When you use the TTN network, the US915 frequency bands use are:
914 -
915 -* 903.9 - SF7BW125 to SF10BW125
916 -* 904.1 - SF7BW125 to SF10BW125
917 -* 904.3 - SF7BW125 to SF10BW125
918 -* 904.5 - SF7BW125 to SF10BW125
919 -* 904.7 - SF7BW125 to SF10BW125
920 -* 904.9 - SF7BW125 to SF10BW125
921 -* 905.1 - SF7BW125 to SF10BW125
922 -* 905.3 - SF7BW125 to SF10BW125
923 -* 904.6 - SF8BW500
924 -
767 +(% class="wikigeneratedid" %)
925 925  (((
926 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
769 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
927 927  )))
928 928  
929 -(% class="box infomessage" %)
930 -(((
931 -**AT+CHE=2**
932 -)))
933 933  
934 -(% class="box infomessage" %)
935 -(((
936 -**ATZ**
937 -)))
938 938  
939 -(((
940 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
941 -)))
774 +== 6.2  AT Command input doesn't work ==
942 942  
943 943  (((
944 -
777 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
945 945  )))
946 946  
947 -(((
948 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
949 -)))
950 950  
951 -[[image:image-20220606154825-4.png]]
952 952  
782 += 7. ​ Order Info =
953 953  
954 954  
955 -= 5. Trouble Shooting =
785 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
956 956  
957 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
958 958  
959 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
960 -
961 -
962 -== 5.2 AT Command input doesn’t work ==
963 -
964 -(((
965 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
966 -)))
967 -
968 -
969 -== 5.3 Device rejoin in at the second uplink packet ==
970 -
971 -(% style="color:#4f81bd" %)**Issue describe as below:**
972 -
973 -[[image:1654500909990-784.png]]
974 -
975 -
976 -(% style="color:#4f81bd" %)**Cause for this issue:**
977 -
978 -(((
979 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
980 -)))
981 -
982 -
983 -(% style="color:#4f81bd" %)**Solution: **
984 -
985 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
986 -
987 -[[image:1654500929571-736.png||height="458" width="832"]]
988 -
989 -
990 -= 6. ​Order Info =
991 -
992 -
993 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
994 -
995 -
996 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
997 -
998 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
999 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1000 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1001 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1002 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1003 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1004 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1005 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1006 -
1007 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1008 -
1009 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1010 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1011 -
1012 1012  (% class="wikigeneratedid" %)
1013 1013  (((
1014 1014  
... ... @@ -1020,10 +1020,10 @@
1020 1020  
1021 1021  
1022 1022  (% style="color:#037691" %)**Package Includes**:
1023 -)))
1024 1024  
1025 -* (((
1026 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
800 +
801 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
802 +* External antenna x 1
1027 1027  )))
1028 1028  
1029 1029  (((
... ... @@ -1030,27 +1030,20 @@
1030 1030  
1031 1031  
1032 1032  (% style="color:#037691" %)**Dimension and weight**:
1033 -)))
1034 1034  
1035 -* (((
1036 -Device Size: cm
810 +
811 +* Size: 195 x 125 x 55 mm
812 +* Weight:   420g
1037 1037  )))
1038 -* (((
1039 -Device Weight: g
1040 -)))
1041 -* (((
1042 -Package Size / pcs : cm
1043 -)))
1044 -* (((
1045 -Weight / pcs : g
1046 1046  
815 +(((
816 +
1047 1047  
818 +
1048 1048  
1049 1049  )))
1050 1050  
1051 -= 8. Support =
822 += 9.  Support =
1052 1052  
1053 1053  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1054 1054  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1055 -
1056 -
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content