Last modified by Mengting Qiu on 2024/04/02 16:44

From version 31.42
edited by Xiaoling
on 2022/06/07 11:13
Change comment: There is no comment for this version
To version 60.2
edited by Xiaoling
on 2022/07/08 14:12
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,9 +3,7 @@
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
... ... @@ -12,715 +12,616 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 +**Table of Contents:**
18 18  
19 -(((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
22 22  
23 -(((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 -)))
26 26  
27 -(((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 -)))
34 34  
35 -(((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 -)))
38 38  
21 += 1.  Introduction =
39 39  
40 -[[image:1654503236291-817.png]]
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
41 41  
42 -
43 -[[image:1654503265560-120.png]]
44 -
45 -
46 -
47 -== 1.2 ​Features ==
48 -
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
51 -* Monitor Soil Moisture
52 -* Monitor Soil Temperature
53 -* Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 -* AT Commands to change parameters
56 -* Uplink on periodically
57 -* Downlink to change configure
58 -* IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
60 -
61 -== 1.3 Specification ==
62 -
63 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
64 -
65 -[[image:image-20220606162220-5.png]]
66 -
67 -
68 -
69 -== ​1.4 Applications ==
70 -
71 -* Smart Agriculture
72 -
73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
74 -​
75 -
76 -== 1.5 Firmware Change log ==
77 -
78 -
79 -**LSE01 v1.0 :**  Release
80 -
81 -
82 -
83 -= 2. Configure LSE01 to connect to LoRaWAN network =
84 -
85 -== 2.1 How it works ==
86 -
87 87  (((
88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
89 -)))
26 +
90 90  
91 -(((
92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
93 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
94 94  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
95 95  
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
96 96  
97 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
98 98  
99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
100 -
101 -
102 -[[image:1654503992078-669.png]]
103 -
104 -
105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
106 -
107 -
108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
109 -
110 -Each LSE01 is shipped with a sticker with the default device EUI as below:
111 -
112 -[[image:image-20220606163732-6.jpeg]]
113 -
114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
115 -
116 -**Add APP EUI in the application**
117 -
118 -
119 -[[image:1654504596150-405.png]]
120 -
121 -
122 -
123 -**Add APP KEY and DEV EUI**
124 -
125 -[[image:1654504683289-357.png]]
126 -
127 -
128 -
129 -**Step 2**: Power on LSE01
130 -
131 -
132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
133 -
134 -[[image:image-20220606163915-7.png]]
135 -
136 -
137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
138 -
139 -[[image:1654504778294-788.png]]
140 -
141 -
142 -
143 -== 2.3 Uplink Payload ==
144 -
145 -=== 2.3.1 MOD~=0(Default Mode) ===
146 -
147 -LSE01 will uplink payload via LoRaWAN with below payload format: 
148 -
149 -
150 -Uplink payload includes in total 11 bytes.
151 151  
152 -
153 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
154 -|=(((
155 -**Size**
156 -
157 -**(bytes)**
158 -)))|=(% style="width: 45px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**
159 -|**Value**|(% style="width:45px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:80px" %)(((
160 -Temperature
161 -
162 -(Reserve, Ignore now)
163 -)))|(% style="width:80px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:80px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:80px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:80px" %)(((
164 -MOD & Digital Interrupt
165 -
166 -(Optional)
167 167  )))
168 168  
169 -[[image:1654504881641-514.png]]
39 +[[image:1654503236291-817.png]]
170 170  
171 171  
42 +[[image:1657245163077-232.png]]
172 172  
173 -=== 2.3.2 MOD~=1(Original value) ===
174 174  
175 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
176 176  
177 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
178 -|=(((
179 -**Size**
46 +== 1.2 ​Features ==
180 180  
181 -**(bytes)**
182 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1**
183 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
184 -Temperature
185 185  
186 -(Reserve, Ignore now)
187 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
188 -MOD & Digital Interrupt
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
53 +* AT Commands to change parameters
54 +* Uplink on periodically
55 +* Downlink to change configure
56 +* IP66 Waterproof Enclosure
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
189 189  
190 -(Optional)
191 -)))
62 +== 1.3  Specification ==
192 192  
193 -[[image:1654504907647-967.png]]
194 194  
65 +(% style="color:#037691" %)**Common DC Characteristics:**
195 195  
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
196 196  
197 -=== 2.3.3 Battery Info ===
70 +(% style="color:#037691" %)**NB-IoT Spec:**
198 198  
199 -Check the battery voltage for LSE01.
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
200 200  
201 -Ex1: 0x0B45 = 2885mV
79 +(% style="color:#037691" %)**Probe Specification:**
202 202  
203 -Ex2: 0x0B49 = 2889mV
81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
204 204  
83 +[[image:image-20220708101224-1.png]]
205 205  
206 206  
207 -=== 2.3.4 Soil Moisture ===
208 208  
209 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
87 +== ​1. Applications ==
210 210  
211 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
89 +* Smart Agriculture
212 212  
91 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92 +​
213 213  
214 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
94 +== 1.5  Pin Definitions ==
215 215  
216 216  
97 +[[image:1657246476176-652.png]]
217 217  
218 -=== 2.3.5 Soil Temperature ===
219 219  
220 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
221 221  
222 -**Example**:
101 += 2.  Use NSE01 to communicate with IoT Server =
223 223  
224 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
103 +== 2.1  How it works ==
225 225  
226 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
227 227  
228 -
229 -
230 -=== 2.3.6 Soil Conductivity (EC) ===
231 -
232 232  (((
233 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
234 234  )))
235 235  
236 -(((
237 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
238 -)))
239 239  
240 240  (((
241 -Generally, the EC value of irrigation water is less than 800uS / cm.
112 +The diagram below shows the working flow in default firmware of NSE01:
242 242  )))
243 243  
244 -(((
245 -
246 -)))
115 +[[image:image-20220708101605-2.png]]
247 247  
248 248  (((
249 249  
250 250  )))
251 251  
252 -=== 2.3.7 MOD ===
253 253  
254 -Firmware version at least v2.1 supports changing mode.
255 255  
256 -For example, bytes[10]=90
123 +== 2.2 ​ Configure the NSE01 ==
257 257  
258 -mod=(bytes[10]>>7)&0x01=1.
259 259  
126 +=== 2.2.1 Test Requirement ===
260 260  
261 -**Downlink Command:**
262 262  
263 -If payload = 0x0A00, workmode=0
129 +To use NSE01 in your city, make sure meet below requirements:
264 264  
265 -If** **payload =** **0x0A01, workmode=1
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
266 266  
135 +(((
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 +)))
267 267  
268 268  
269 -=== 2.3.8 ​Decode payload in The Things Network ===
140 +[[image:1657249419225-449.png]]
270 270  
271 -While using TTN network, you can add the payload format to decode the payload.
272 272  
273 273  
274 -[[image:1654505570700-128.png]]
144 +=== 2.2.2 Insert SIM card ===
275 275  
276 -The payload decoder function for TTN is here:
146 +Insert the NB-IoT Card get from your provider.
277 277  
278 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
148 +User need to take out the NB-IoT module and insert the SIM card like below:
279 279  
280 280  
151 +[[image:1657249468462-536.png]]
281 281  
282 -== 2.4 Uplink Interval ==
283 283  
284 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
285 285  
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
286 286  
157 +(((
158 +(((
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
160 +)))
161 +)))
287 287  
288 -== 2.5 Downlink Payload ==
289 289  
290 -By default, LSE50 prints the downlink payload to console port.
164 +**Connection:**
291 291  
292 -[[image:image-20220606165544-8.png]]
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
293 293  
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
294 294  
295 -**Examples:**
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
296 296  
297 297  
298 -* **Set TDC**
173 +In the PC, use below serial tool settings:
299 299  
300 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
301 301  
302 -Payload:    01 00 00 1E    TDC=30S
181 +(((
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 +)))
303 303  
304 -Payload:    01 00 00 3C    TDC=60S
185 +[[image:image-20220708110657-3.png]]
305 305  
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
306 306  
307 -* **Reset**
308 308  
309 -If payload = 0x04FF, it will reset the LSE01
310 310  
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
311 311  
312 -* **CFM**
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
313 313  
314 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
315 315  
196 +**Use below commands:**
316 316  
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
317 317  
318 -== 2.6 ​Show Data in DataCake IoT Server ==
202 +For parameter description, please refer to AT command set
319 319  
320 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
204 +[[image:1657249793983-486.png]]
321 321  
322 322  
323 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
324 324  
325 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
209 +[[image:1657249831934-534.png]]
326 326  
327 327  
328 -[[image:1654505857935-743.png]]
329 329  
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
330 330  
331 -[[image:1654505874829-548.png]]
215 +This feature is supported since firmware version v1.0.1
332 332  
333 -Step 3: Create an account or log in Datacake.
334 334  
335 -Step 4: Search the LSE01 and add DevEUI.
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
336 336  
222 +[[image:1657249864775-321.png]]
337 337  
338 -[[image:1654505905236-553.png]]
339 339  
225 +[[image:1657249930215-289.png]]
340 340  
341 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
342 342  
343 -[[image:1654505925508-181.png]]
344 344  
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
345 345  
231 +This feature is supported since firmware version v110
346 346  
347 -== 2.7 Frequency Plans ==
348 348  
349 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
350 350  
242 +[[image:1657249978444-674.png]]
351 351  
352 -=== 2.7.1 EU863-870 (EU868) ===
353 353  
354 -(% style="color:#037691" %)** Uplink:**
245 +[[image:1657249990869-686.png]]
355 355  
356 -868.1 - SF7BW125 to SF12BW125
357 357  
358 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
248 +(((
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
250 +)))
359 359  
360 -868.5 - SF7BW125 to SF12BW125
361 361  
362 -867.1 - SF7BW125 to SF12BW125
363 363  
364 -867.3 - SF7BW125 to SF12BW125
254 +=== 2.2.7 Use TCP protocol to uplink data ===
365 365  
366 -867.5 - SF7BW125 to SF12BW125
256 +This feature is supported since firmware version v110
367 367  
368 -867.7 - SF7BW125 to SF12BW125
369 369  
370 -867.9 - SF7BW125 to SF12BW125
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
371 371  
372 -868.8 - FSK
262 +[[image:1657250217799-140.png]]
373 373  
374 374  
375 -(% style="color:#037691" %)** Downlink:**
265 +[[image:1657250255956-604.png]]
376 376  
377 -Uplink channels 1-9 (RX1)
378 378  
379 -869.525 - SF9BW125 (RX2 downlink only)
380 380  
269 +=== 2.2.8 Change Update Interval ===
381 381  
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
382 382  
383 -=== 2.7.2 US902-928(US915) ===
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
384 384  
385 -Used in USA, Canada and South America. Default use CHE=2
275 +(((
276 +(% style="color:red" %)**NOTE:**
277 +)))
386 386  
387 -(% style="color:#037691" %)**Uplink:**
279 +(((
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
281 +)))
388 388  
389 -903.9 - SF7BW125 to SF10BW125
390 390  
391 -904.1 - SF7BW125 to SF10BW125
392 392  
393 -904.3 - SF7BW125 to SF10BW125
285 +== 2.3  Uplink Payload ==
394 394  
395 -904.5 - SF7BW125 to SF10BW125
287 +In this mode, uplink payload includes in total 18 bytes
396 396  
397 -904.7 - SF7BW125 to SF10BW125
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
398 398  
399 -904.9 - SF7BW125 to SF10BW125
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
400 400  
401 -905.1 - SF7BW125 to SF10BW125
402 402  
403 -905.3 - SF7BW125 to SF10BW125
298 +[[image:image-20220708111918-4.png]]
404 404  
405 405  
406 -(% style="color:#037691" %)**Downlink:**
301 +The payload is ASCII string, representative same HEX:
407 407  
408 -923.3 - SF7BW500 to SF12BW500
303 +0x72403155615900640c7817075e0a8c02f900 where:
409 409  
410 -923.9 - SF7BW500 to SF12BW500
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
411 411  
412 -924.5 - SF7BW500 to SF12BW500
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
413 413  
414 -925.1 - SF7BW500 to SF12BW500
315 +== 2. Payload Explanation and Sensor Interface ==
415 415  
416 -925.7 - SF7BW500 to SF12BW500
417 417  
418 -926.3 - SF7BW500 to SF12BW500
318 +=== 2.4.1  Device ID ===
419 419  
420 -926.9 - SF7BW500 to SF12BW500
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
421 421  
422 -927.5 - SF7BW500 to SF12BW500
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
423 423  
424 -923.3 - SF12BW500(RX2 downlink only)
324 +**Example:**
425 425  
326 +AT+DEUI=A84041F15612
426 426  
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
427 427  
428 -=== 2.7.3 CN470-510 (CN470) ===
429 429  
430 -Used in China, Default use CHE=1
431 431  
432 -(% style="color:#037691" %)**Uplink:**
332 +=== 2.4.2  Version Info ===
433 433  
434 -486.3 - SF7BW125 to SF12BW125
334 +Specify the software version: 0x64=100, means firmware version 1.00.
435 435  
436 -486.5 - SF7BW125 to SF12BW125
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
437 437  
438 -486.7 - SF7BW125 to SF12BW125
439 439  
440 -486.9 - SF7BW125 to SF12BW125
441 441  
442 -487.1 - SF7BW125 to SF12BW125
340 +=== 2.4. Battery Info ===
443 443  
444 -487.3 - SF7BW125 to SF12BW125
342 +(((
343 +Check the battery voltage for LSE01.
344 +)))
445 445  
446 -487.5 - SF7BW125 to SF12BW125
346 +(((
347 +Ex1: 0x0B45 = 2885mV
348 +)))
447 447  
448 -487.7 - SF7BW125 to SF12BW125
350 +(((
351 +Ex2: 0x0B49 = 2889mV
352 +)))
449 449  
450 450  
451 -(% style="color:#037691" %)**Downlink:**
452 452  
453 -506.7 - SF7BW125 to SF12BW125
356 +=== 2.4.4  Signal Strength ===
454 454  
455 -506.9 - SF7BW125 to SF12BW125
358 +NB-IoT Network signal Strength.
456 456  
457 -507.1 - SF7BW125 to SF12BW125
360 +**Ex1: 0x1d = 29**
458 458  
459 -507.3 - SF7BW125 to SF12BW125
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
460 460  
461 -507.5 - SF7BW125 to SF12BW125
364 +(% style="color:blue" %)**1**(%%)  -111dBm
462 462  
463 -507.7 - SF7BW125 to SF12BW125
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
464 464  
465 -507.9 - SF7BW125 to SF12BW125
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
466 466  
467 -508.1 - SF7BW125 to SF12BW125
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
468 468  
469 -505.3 - SF12BW125 (RX2 downlink only)
470 470  
471 471  
374 +=== 2.4.5  Soil Moisture ===
472 472  
473 -=== 2.7.4 AU915-928(AU915) ===
376 +(((
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 +)))
474 474  
475 -Default use CHE=2
380 +(((
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 +)))
476 476  
477 -(% style="color:#037691" %)**Uplink:**
384 +(((
385 +
386 +)))
478 478  
479 -916.8 - SF7BW125 to SF12BW125
388 +(((
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 +)))
480 480  
481 -917.0 - SF7BW125 to SF12BW125
482 482  
483 -917.2 - SF7BW125 to SF12BW125
484 484  
485 -917.4 - SF7BW125 to SF12BW125
394 +=== 2.4.6  Soil Temperature ===
486 486  
487 -917.6 - SF7BW125 to SF12BW125
396 +(((
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 +)))
488 488  
489 -917.8 - SF7BW125 to SF12BW125
400 +(((
401 +**Example**:
402 +)))
490 490  
491 -918.0 - SF7BW125 to SF12BW125
404 +(((
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 +)))
492 492  
493 -918.2 - SF7BW125 to SF12BW125
408 +(((
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 +)))
494 494  
495 495  
496 -(% style="color:#037691" %)**Downlink:**
497 497  
498 -923.3 - SF7BW500 to SF12BW500
414 +=== 2.4.7  Soil Conductivity (EC) ===
499 499  
500 -923.9 - SF7BW500 to SF12BW500
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
501 501  
502 -924.5 - SF7BW500 to SF12BW500
420 +(((
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +)))
503 503  
504 -925.1 - SF7BW500 to SF12BW500
424 +(((
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
426 +)))
505 505  
506 -925.7 - SF7BW500 to SF12BW500
428 +(((
429 +
430 +)))
507 507  
508 -926.3 - SF7BW500 to SF12BW500
432 +(((
433 +
434 +)))
509 509  
510 -926.9 - SF7BW500 to SF12BW500
436 +=== 2.4.8  Digital Interrupt ===
511 511  
512 -927.5 - SF7BW500 to SF12BW500
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
513 513  
514 -923.3 - SF12BW500(RX2 downlink only)
440 +The command is:
515 515  
442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
516 516  
517 517  
518 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
519 519  
520 -(% style="color:#037691" %)**Default Uplink channel:**
521 521  
522 -923.2 - SF7BW125 to SF10BW125
448 +Example:
523 523  
524 -923.4 - SF7BW125 to SF10BW125
450 +0x(00): Normal uplink packet.
525 525  
452 +0x(01): Interrupt Uplink Packet.
526 526  
527 -(% style="color:#037691" %)**Additional Uplink Channel**:
528 528  
529 -(OTAA mode, channel added by JoinAccept message)
530 530  
531 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
456 +=== 2.4.9  ​+5V Output ===
532 532  
533 -922.2 - SF7BW125 to SF10BW125
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
534 534  
535 -922.4 - SF7BW125 to SF10BW125
536 536  
537 -922.6 - SF7BW125 to SF10BW125
461 +The 5V output time can be controlled by AT Command.
538 538  
539 -922.8 - SF7BW125 to SF10BW125
463 +(% style="color:blue" %)**AT+5VT=1000**
540 540  
541 -923.0 - SF7BW125 to SF10BW125
465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
542 542  
543 -922.0 - SF7BW125 to SF10BW125
544 544  
545 545  
546 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
469 +== 2.5  Downlink Payload ==
547 547  
548 -923.6 - SF7BW125 to SF10BW125
471 +By default, NSE01 prints the downlink payload to console port.
549 549  
550 -923.8 - SF7BW125 to SF10BW125
473 +[[image:image-20220708133731-5.png]]
551 551  
552 -924.0 - SF7BW125 to SF10BW125
553 553  
554 -924.2 - SF7BW125 to SF10BW125
555 555  
556 -924.4 - SF7BW125 to SF10BW125
477 +(((
478 +(% style="color:blue" %)**Examples:**
479 +)))
557 557  
558 -924.6 - SF7BW125 to SF10BW125
481 +(((
482 +
483 +)))
559 559  
485 +* (((
486 +(% style="color:blue" %)**Set TDC**
487 +)))
560 560  
561 -(% style="color:#037691" %)** Downlink:**
489 +(((
490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
491 +)))
562 562  
563 -Uplink channels 1-8 (RX1)
493 +(((
494 +Payload:    01 00 00 1E    TDC=30S
495 +)))
564 564  
565 -923.2 - SF10BW125 (RX2)
497 +(((
498 +Payload:    01 00 00 3C    TDC=60S
499 +)))
566 566  
501 +(((
502 +
503 +)))
567 567  
505 +* (((
506 +(% style="color:blue" %)**Reset**
507 +)))
568 568  
569 -=== 2.7.6 KR920-923 (KR920) ===
509 +(((
510 +If payload = 0x04FF, it will reset the NSE01
511 +)))
570 570  
571 -Default channel:
572 572  
573 -922.1 - SF7BW125 to SF12BW125
514 +* (% style="color:blue" %)**INTMOD**
574 574  
575 -922.3 - SF7BW125 to SF12BW125
516 +Downlink Payload: 06000003, Set AT+INTMOD=3
576 576  
577 -922.5 - SF7BW125 to SF12BW125
578 578  
579 579  
580 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
520 +== 2.6  ​LED Indicator ==
581 581  
582 -922.1 - SF7BW125 to SF12BW125
522 +(((
523 +The NSE01 has an internal LED which is to show the status of different state.
583 583  
584 -922.3 - SF7BW125 to SF12BW125
585 585  
586 -922.5 - SF7BW125 to SF12BW125
526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
527 +* Then the LED will be on for 1 second means device is boot normally.
528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
529 +* For each uplink probe, LED will be on for 500ms.
530 +)))
587 587  
588 -922.7 - SF7BW125 to SF12BW125
589 589  
590 -922.9 - SF7BW125 to SF12BW125
591 591  
592 -923.1 - SF7BW125 to SF12BW125
593 593  
594 -923.3 - SF7BW125 to SF12BW125
535 +== 2.7  Installation in Soil ==
595 595  
537 +__**Measurement the soil surface**__
596 596  
597 -(% style="color:#037691" %)**Downlink:**
539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
598 598  
599 -Uplink channels 1-7(RX1)
541 +[[image:1657259653666-883.png]] ​
600 600  
601 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
602 602  
544 +(((
545 +
603 603  
547 +(((
548 +Dig a hole with diameter > 20CM.
549 +)))
604 604  
605 -=== 2.7.7 IN865-867 (IN865) ===
551 +(((
552 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
553 +)))
554 +)))
606 606  
607 -(% style="color:#037691" %)** Uplink:**
556 +[[image:1654506665940-119.png]]
608 608  
609 -865.0625 - SF7BW125 to SF12BW125
558 +(((
559 +
560 +)))
610 610  
611 -865.4025 - SF7BW125 to SF12BW125
612 612  
613 -865.9850 - SF7BW125 to SF12BW125
563 +== 2.8  Firmware Change Log ==
614 614  
615 615  
616 -(% style="color:#037691" %) **Downlink:**
566 +Download URL & Firmware Change log
617 617  
618 -Uplink channels 1-3 (RX1)
568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
619 619  
620 -866.550 - SF10BW125 (RX2)
621 621  
571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
622 622  
623 623  
624 624  
625 -== 2.8 LED Indicator ==
575 +== 2. ​Battery Analysis ==
626 626  
627 -The LSE01 has an internal LED which is to show the status of different state.
577 +=== 2.9.1  ​Battery Type ===
628 628  
629 -* Blink once when device power on.
630 -* Solid ON for 5 seconds once device successful Join the network.
631 -* Blink once when device transmit a packet.
632 632  
580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
633 633  
634 -== 2.9 Installation in Soil ==
635 635  
636 -**Measurement the soil surface**
583 +The battery is designed to last for several years depends on the actually use environment and update interval.
637 637  
638 638  
639 -[[image:1654506634463-199.png]]
586 +The battery related documents as below:
640 640  
641 -(((
642 -(((
643 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
644 -)))
645 -)))
588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
646 646  
647 -
648 -[[image:1654506665940-119.png]]
649 -
650 650  (((
651 -Dig a hole with diameter > 20CM.
593 +[[image:image-20220708140453-6.png]]
652 652  )))
653 653  
654 -(((
655 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
656 -)))
657 657  
658 658  
659 -== 2.10 ​Firmware Change Log ==
598 +2.9.2 
660 660  
661 -(((
662 -**Firmware download link:**
663 -)))
600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
664 664  
665 -(((
666 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
667 -)))
668 668  
669 -(((
670 -
671 -)))
603 +Instruction to use as below:
672 672  
673 -(((
674 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
675 -)))
676 676  
677 -(((
678 -
679 -)))
606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
680 680  
681 -(((
682 -**V1.0.**
683 -)))
608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
684 684  
685 -(((
686 -Release
687 -)))
688 688  
611 +Step 2: Open it and choose
689 689  
690 -== 2.11 ​Battery Analysis ==
613 +* Product Model
614 +* Uplink Interval
615 +* Working Mode
691 691  
692 -=== 2.11.1 ​Battery Type ===
617 +And the Life expectation in difference case will be shown on the right.
693 693  
694 -(((
695 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
696 -)))
697 697  
698 -(((
699 -The battery is designed to last for more than 5 years for the LSN50.
700 -)))
701 701  
702 -(((
703 -(((
704 -The battery-related documents are as below:
705 -)))
706 -)))
621 +=== 2.9.3  ​Battery Note ===
707 707  
708 -* (((
709 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
710 -)))
711 -* (((
712 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
713 -)))
714 -* (((
715 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
716 -)))
717 -
718 - [[image:image-20220606171726-9.png]]
719 -
720 -
721 -
722 -=== 2.11.2 ​Battery Note ===
723 -
724 724  (((
725 725  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
726 726  )))
... ... @@ -727,22 +727,12 @@
727 727  
728 728  
729 729  
730 -=== 2.11.3 Replace the battery ===
629 +=== 2.9. Replace the battery ===
731 731  
732 -(((
733 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
734 -)))
631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
735 735  
736 -(((
737 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
738 -)))
739 739  
740 -(((
741 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
742 -)))
743 743  
744 -
745 -
746 746  = 3. ​Using the AT Commands =
747 747  
748 748  == 3.1 Access AT Commands ==
... ... @@ -766,7 +766,7 @@
766 766   [[image:1654502050864-459.png||height="564" width="806"]]
767 767  
768 768  
769 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
770 770  
771 771  
772 772  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -924,19 +924,14 @@
924 924  
925 925  (((
926 926  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
927 -)))
928 928  
929 -(% class="box infomessage" %)
930 -(((
931 -**AT+CHE=2**
817 +* (% style="color:#037691" %)**AT+CHE=2**
818 +* (% style="color:#037691" %)**ATZ**
932 932  )))
933 933  
934 -(% class="box infomessage" %)
935 935  (((
936 -**ATZ**
937 -)))
822 +
938 938  
939 -(((
940 940  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
941 941  )))
942 942  
... ... @@ -951,18 +951,22 @@
951 951  [[image:image-20220606154825-4.png]]
952 952  
953 953  
838 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
954 954  
840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
841 +
842 +
955 955  = 5. Trouble Shooting =
956 956  
957 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
845 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
958 958  
959 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
960 960  
961 961  
962 -== 5.2 AT Command input doesnt work ==
850 +== 5.2 AT Command input doesn't work ==
963 963  
964 964  (((
965 -In the case if user can see the console output but cant type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesnt send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
966 966  )))
967 967  
968 968  
... ... @@ -1044,7 +1044,6 @@
1044 1044  * (((
1045 1045  Weight / pcs : g
1046 1046  
1047 -
1048 1048  
1049 1049  )))
1050 1050  
... ... @@ -1052,5 +1052,3 @@
1052 1052  
1053 1053  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1054 1054  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1055 -
1056 -
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content