Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 20 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,9 +3,7 @@ 3 3 4 4 5 5 6 -**Contents:** 7 7 8 -{{toc/}} 9 9 10 10 11 11 ... ... @@ -12,715 +12,616 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 - == 1.1 Whatis LoRaWANSoil Moisture& EC Sensor ==14 +**Table of Contents:** 18 18 19 -((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 22 22 23 -((( 24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 -))) 26 26 27 -((( 28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 -))) 34 34 35 -((( 36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 -))) 38 38 21 += 1. Introduction = 39 39 40 - [[image:1654503236291-817.png]]23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 41 41 42 - 43 -[[image:1654503265560-120.png]] 44 - 45 - 46 - 47 -== 1.2 Features == 48 - 49 -* LoRaWAN 1.0.3 Class A 50 -* Ultra low power consumption 51 -* Monitor Soil Moisture 52 -* Monitor Soil Temperature 53 -* Monitor Soil Conductivity 54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 55 -* AT Commands to change parameters 56 -* Uplink on periodically 57 -* Downlink to change configure 58 -* IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 60 - 61 -== 1.3 Specification == 62 - 63 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 64 - 65 -[[image:image-20220606162220-5.png]] 66 - 67 - 68 - 69 -== 1.4 Applications == 70 - 71 -* Smart Agriculture 72 - 73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 - 75 - 76 -== 1.5 Firmware Change log == 77 - 78 - 79 -**LSE01 v1.0 :** Release 80 - 81 - 82 - 83 -= 2. Configure LSE01 to connect to LoRaWAN network = 84 - 85 -== 2.1 How it works == 86 - 87 87 ((( 88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 -))) 26 + 90 90 91 -((( 92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 -))) 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 94 94 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 95 95 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 96 96 97 - ==2.2QuickguidetoconnecttoLoRaWANserver(OTAA) ==34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 98 98 99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 100 - 101 - 102 -[[image:1654503992078-669.png]] 103 - 104 - 105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 106 - 107 - 108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 109 - 110 -Each LSE01 is shipped with a sticker with the default device EUI as below: 111 - 112 -[[image:image-20220606163732-6.jpeg]] 113 - 114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 115 - 116 -**Add APP EUI in the application** 117 - 118 - 119 -[[image:1654504596150-405.png]] 120 - 121 - 122 - 123 -**Add APP KEY and DEV EUI** 124 - 125 -[[image:1654504683289-357.png]] 126 - 127 - 128 - 129 -**Step 2**: Power on LSE01 130 - 131 - 132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 - 134 -[[image:image-20220606163915-7.png]] 135 - 136 - 137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 - 139 -[[image:1654504778294-788.png]] 140 - 141 - 142 - 143 -== 2.3 Uplink Payload == 144 - 145 -=== 2.3.1 MOD~=0(Default Mode) === 146 - 147 -LSE01 will uplink payload via LoRaWAN with below payload format: 148 - 149 - 150 -Uplink payload includes in total 11 bytes. 151 151 152 - 153 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 154 -|=((( 155 -**Size** 156 - 157 -**(bytes)** 158 -)))|=(% style="width: 45px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1** 159 -|**Value**|(% style="width:45px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:80px" %)((( 160 -Temperature 161 - 162 -(Reserve, Ignore now) 163 -)))|(% style="width:80px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:80px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:80px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:80px" %)((( 164 -MOD & Digital Interrupt 165 - 166 -(Optional) 167 167 ))) 168 168 169 -[[image:165450 4881641-514.png]]39 +[[image:1654503236291-817.png]] 170 170 171 171 42 +[[image:1657245163077-232.png]] 172 172 173 -=== 2.3.2 MOD~=1(Original value) === 174 174 175 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 176 176 177 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 178 -|=((( 179 -**Size** 46 +== 1.2 Features == 180 180 181 -**(bytes)** 182 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1** 183 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 184 -Temperature 185 185 186 -(Reserve, Ignore now) 187 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 188 -MOD & Digital Interrupt 49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 50 +* Monitor Soil Moisture 51 +* Monitor Soil Temperature 52 +* Monitor Soil Conductivity 53 +* AT Commands to change parameters 54 +* Uplink on periodically 55 +* Downlink to change configure 56 +* IP66 Waterproof Enclosure 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 59 +* Micro SIM card slot for NB-IoT SIM 60 +* 8500mAh Battery for long term use 189 189 190 -(Optional) 191 -))) 62 +== 1.3 Specification == 192 192 193 -[[image:1654504907647-967.png]] 194 194 65 +(% style="color:#037691" %)**Common DC Characteristics:** 195 195 67 +* Supply Voltage: 2.1v ~~ 3.6v 68 +* Operating Temperature: -40 ~~ 85°C 196 196 197 - ===2.3.3 BatteryInfo===70 +(% style="color:#037691" %)**NB-IoT Spec:** 198 198 199 -Check the battery voltage for LSE01. 72 +* - B1 @H-FDD: 2100MHz 73 +* - B3 @H-FDD: 1800MHz 74 +* - B8 @H-FDD: 900MHz 75 +* - B5 @H-FDD: 850MHz 76 +* - B20 @H-FDD: 800MHz 77 +* - B28 @H-FDD: 700MHz 200 200 201 - Ex1:0x0B45=2885mV79 +(% style="color:#037691" %)**Probe Specification:** 202 202 203 - Ex2:0x0B49=2889mV81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 204 204 83 +[[image:image-20220708101224-1.png]] 205 205 206 206 207 -=== 2.3.4 Soil Moisture === 208 208 209 - Getthe moisture content of the soil.The value range of the register is 0-10000(Decimal), dividethis value by 100 toget the percentage of moisturein the soil.87 +== 1.4 Applications == 210 210 211 - Forexample, if the data you get fromtheregisters __0x05 0xDC__,the moisturecontent in the soil is89 +* Smart Agriculture 212 212 91 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 92 + 213 213 214 - (% style="color:#4f81bd" %)**05DC(H)= 1500(D)/100=15%.**94 +== 1.5 Pin Definitions == 215 215 216 216 97 +[[image:1657246476176-652.png]] 217 217 218 -=== 2.3.5 Soil Temperature === 219 219 220 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 221 221 222 - **Example**:101 += 2. Use NSE01 to communicate with IoT Server = 223 223 224 - If payload is 0105H: ((0x0105 & 0x8000)>>15===0),temp = 0105(H)/100=2.61°C103 +== 2.1 How it works == 225 225 226 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 227 227 228 - 229 - 230 -=== 2.3.6 Soil Conductivity (EC) === 231 - 232 232 ((( 233 - Obtain(%style="color:#4f81bd"%)**__solublesaltconcentration__**(%%)insoil or (% style="color:#4f81bd"%)**__soluble ionconcentrationinliquidfertilizer__**(%%)or(% style="color:#4f81bd"%)**__plantingmedium__**(%%). Thevaluerangeftheregister is0 - 20000(Decimal)(Canbegreaterthan20000).107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 234 234 ))) 235 235 236 -((( 237 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 238 -))) 239 239 240 240 ((( 241 - Generally,theEC valueof irrigationwateris lessthan800uS/ cm.112 +The diagram below shows the working flow in default firmware of NSE01: 242 242 ))) 243 243 244 -((( 245 - 246 -))) 115 +[[image:image-20220708101605-2.png]] 247 247 248 248 ((( 249 249 250 250 ))) 251 251 252 -=== 2.3.7 MOD === 253 253 254 -Firmware version at least v2.1 supports changing mode. 255 255 256 - Forxample,bytes[10]=90123 +== 2.2 Configure the NSE01 == 257 257 258 -mod=(bytes[10]>>7)&0x01=1. 259 259 126 +=== 2.2.1 Test Requirement === 260 260 261 -**Downlink Command:** 262 262 263 - If payload=0x0A00,workmode=0129 +To use NSE01 in your city, make sure meet below requirements: 264 264 265 -If** **payload =** **0x0A01, workmode=1 131 +* Your local operator has already distributed a NB-IoT Network there. 132 +* The local NB-IoT network used the band that NSE01 supports. 133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 266 266 135 +((( 136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 137 +))) 267 267 268 268 269 - ===2.3.8 Decodepayload inThe Things Network ===140 +[[image:1657249419225-449.png]] 270 270 271 -While using TTN network, you can add the payload format to decode the payload. 272 272 273 273 274 - [[image:1654505570700-128.png]]144 +=== 2.2.2 Insert SIM card === 275 275 276 - ThepayloaddecoderfunctionforTTNis here:146 +Insert the NB-IoT Card get from your provider. 277 277 278 - LSE01 TTN Payload Decoder:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]148 +User need to take out the NB-IoT module and insert the SIM card like below: 279 279 280 280 151 +[[image:1657249468462-536.png]] 281 281 282 -== 2.4 Uplink Interval == 283 283 284 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 285 285 155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 286 286 157 +((( 158 +((( 159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 160 +))) 161 +))) 287 287 288 -== 2.5 Downlink Payload == 289 289 290 - By default, LSE50 prints the downlink payloadtoconsole port.164 +**Connection:** 291 291 292 - [[image:image-20220606165544-8.png]]166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 293 293 168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 294 294 295 - **Examples:**170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 296 296 297 297 298 - ***SetTDC**173 +In the PC, use below serial tool settings: 299 299 300 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 175 +* Baud: (% style="color:green" %)**9600** 176 +* Data bits:** (% style="color:green" %)8(%%)** 177 +* Stop bits: (% style="color:green" %)**1** 178 +* Parity: (% style="color:green" %)**None** 179 +* Flow Control: (% style="color:green" %)**None** 301 301 302 -Payload: 01 00 00 1E TDC=30S 181 +((( 182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 183 +))) 303 303 304 - Payload:1000 3C TDC=60S185 +[[image:image-20220708110657-3.png]] 305 305 187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 306 306 307 -* **Reset** 308 308 309 -If payload = 0x04FF, it will reset the LSE01 310 310 191 +=== 2.2.4 Use CoAP protocol to uplink data === 311 311 312 - ***CFM**193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 313 313 314 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 315 315 196 +**Use below commands:** 316 316 198 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 317 317 318 - == 2.6 ShowData inDataCakeIoT Server==202 +For parameter description, please refer to AT command set 319 319 320 -[[ DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]]to connect to TTN and see the data in DATACAKE. Below are the steps:204 +[[image:1657249793983-486.png]] 321 321 322 322 323 - **Step1**: Be sure thatyour deviceis programmed andproperlyconnectedtothenetworkat this time.207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 324 324 325 - **Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add theDATACAKE integration,perform the followingsteps:209 +[[image:1657249831934-534.png]] 326 326 327 327 328 -[[image:1654505857935-743.png]] 329 329 213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 330 330 331 - [[image:1654505874829-548.png]]215 +This feature is supported since firmware version v1.0.1 332 332 333 -Step 3: Create an account or log in Datacake. 334 334 335 -Step 4: Search the LSE01 and add DevEUI. 218 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 336 336 222 +[[image:1657249864775-321.png]] 337 337 338 -[[image:1654505905236-553.png]] 339 339 225 +[[image:1657249930215-289.png]] 340 340 341 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 342 342 343 -[[image:1654505925508-181.png]] 344 344 229 +=== 2.2.6 Use MQTT protocol to uplink data === 345 345 231 +This feature is supported since firmware version v110 346 346 347 -== 2.7 Frequency Plans == 348 348 349 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 234 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 237 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 238 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 350 350 242 +[[image:1657249978444-674.png]] 351 351 352 -=== 2.7.1 EU863-870 (EU868) === 353 353 354 - (% style="color:#037691" %)** Uplink:**245 +[[image:1657249990869-686.png]] 355 355 356 -868.1 - SF7BW125 to SF12BW125 357 357 358 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 248 +((( 249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 250 +))) 359 359 360 -868.5 - SF7BW125 to SF12BW125 361 361 362 -867.1 - SF7BW125 to SF12BW125 363 363 364 - 867.3-SF7BW125toSF12BW125254 +=== 2.2.7 Use TCP protocol to uplink data === 365 365 366 - 867.5-SF7BW125toSF12BW125256 +This feature is supported since firmware version v110 367 367 368 -867.7 - SF7BW125 to SF12BW125 369 369 370 -867.9 - SF7BW125 to SF12BW125 259 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 371 371 372 - 868.8-FSK262 +[[image:1657250217799-140.png]] 373 373 374 374 375 - (% style="color:#037691" %)** Downlink:**265 +[[image:1657250255956-604.png]] 376 376 377 -Uplink channels 1-9 (RX1) 378 378 379 -869.525 - SF9BW125 (RX2 downlink only) 380 380 269 +=== 2.2.8 Change Update Interval === 381 381 271 +User can use below command to change the (% style="color:green" %)**uplink interval**. 382 382 383 -== =2.7.2US902-928(US915)===273 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 384 384 385 -Used in USA, Canada and South America. Default use CHE=2 275 +((( 276 +(% style="color:red" %)**NOTE:** 277 +))) 386 386 387 -(% style="color:#037691" %)**Uplink:** 279 +((( 280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 281 +))) 388 388 389 -903.9 - SF7BW125 to SF10BW125 390 390 391 -904.1 - SF7BW125 to SF10BW125 392 392 393 - 904.3-SF7BW125 toSF10BW125285 +== 2.3 Uplink Payload == 394 394 395 - 904.5-SF7BW125toSF10BW125287 +In this mode, uplink payload includes in total 18 bytes 396 396 397 -904.7 - SF7BW125 to SF10BW125 289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 290 +|=(% style="width: 50px;" %)((( 291 +**Size(bytes)** 292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 398 398 399 - 904.9-SF7BW125to SF10BW125295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 400 400 401 -905.1 - SF7BW125 to SF10BW125 402 402 403 - 905.3-SF7BW125 to SF10BW125298 +[[image:image-20220708111918-4.png]] 404 404 405 405 406 - (%style="color:#037691"%)**Downlink:**301 +The payload is ASCII string, representative same HEX: 407 407 408 - 923.3 - SF7BW500to SF12BW500303 +0x72403155615900640c7817075e0a8c02f900 where: 409 409 410 -923.9 - SF7BW500 to SF12BW500 305 +* Device ID: 0x 724031556159 = 724031556159 306 +* Version: 0x0064=100=1.0.0 411 411 412 -924.5 - SF7BW500 to SF12BW500 308 +* BAT: 0x0c78 = 3192 mV = 3.192V 309 +* Singal: 0x17 = 23 310 +* Soil Moisture: 0x075e= 1886 = 18.86 % 311 +* Soil Temperature:0x0a8c =2700=27 °C 312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 313 +* Interrupt: 0x00 = 0 413 413 414 - 925.1-SF7BW500to SF12BW500315 +== 2.4 Payload Explanation and Sensor Interface == 415 415 416 -925.7 - SF7BW500 to SF12BW500 417 417 418 - 926.3-SF7BW500 to SF12BW500318 +=== 2.4.1 Device ID === 419 419 420 - 926.9-SF7BW500toSF12BW500320 +By default, the Device ID equal to the last 6 bytes of IMEI. 421 421 422 - 927.5-SF7BW500toSF12BW500322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 423 423 424 - 923.3 - SF12BW500(RX2 downlink only)324 +**Example:** 425 425 326 +AT+DEUI=A84041F15612 426 426 328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 427 427 428 -=== 2.7.3 CN470-510 (CN470) === 429 429 430 -Used in China, Default use CHE=1 431 431 432 - (%style="color:#037691" %)**Uplink:**332 +=== 2.4.2 Version Info === 433 433 434 - 486.3-SF7BW125toSF12BW125334 +Specify the software version: 0x64=100, means firmware version 1.00. 435 435 436 - 486.5-SF7BW125toSF12BW125336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 437 437 438 -486.7 - SF7BW125 to SF12BW125 439 439 440 -486.9 - SF7BW125 to SF12BW125 441 441 442 -4 87.1- SF7BW125toSF12BW125340 +=== 2.4.3 Battery Info === 443 443 444 -487.3 - SF7BW125 to SF12BW125 342 +((( 343 +Check the battery voltage for LSE01. 344 +))) 445 445 446 -487.5 - SF7BW125 to SF12BW125 346 +((( 347 +Ex1: 0x0B45 = 2885mV 348 +))) 447 447 448 -487.7 - SF7BW125 to SF12BW125 350 +((( 351 +Ex2: 0x0B49 = 2889mV 352 +))) 449 449 450 450 451 -(% style="color:#037691" %)**Downlink:** 452 452 453 - 506.7-SF7BW125toSF12BW125356 +=== 2.4.4 Signal Strength === 454 454 455 - 506.9-SF7BW125to SF12BW125358 +NB-IoT Network signal Strength. 456 456 457 - 507.1- SF7BW125toSF12BW125360 +**Ex1: 0x1d = 29** 458 458 459 - 507.3-SF7BW125toSF12BW125362 +(% style="color:blue" %)**0**(%%) -113dBm or less 460 460 461 - 507.5-SF7BW125toSF12BW125364 +(% style="color:blue" %)**1**(%%) -111dBm 462 462 463 - 507.7- SF7BW125toSF12BW125366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 464 464 465 - 507.9-SF7BW125toSF12BW125368 +(% style="color:blue" %)**31** (%%) -51dBm or greater 466 466 467 - 508.1-SF7BW125toSF12BW125370 +(% style="color:blue" %)**99** (%%) Not known or not detectable 468 468 469 -505.3 - SF12BW125 (RX2 downlink only) 470 470 471 471 374 +=== 2.4.5 Soil Moisture === 472 472 473 -=== 2.7.4 AU915-928(AU915) === 376 +((( 377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 378 +))) 474 474 475 -Default use CHE=2 380 +((( 381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 382 +))) 476 476 477 -(% style="color:#037691" %)**Uplink:** 384 +((( 385 + 386 +))) 478 478 479 -916.8 - SF7BW125 to SF12BW125 388 +((( 389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 390 +))) 480 480 481 -917.0 - SF7BW125 to SF12BW125 482 482 483 -917.2 - SF7BW125 to SF12BW125 484 484 485 - 917.4-SF7BW125toSF12BW125394 +=== 2.4.6 Soil Temperature === 486 486 487 -917.6 - SF7BW125 to SF12BW125 396 +((( 397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 398 +))) 488 488 489 -917.8 - SF7BW125 to SF12BW125 400 +((( 401 +**Example**: 402 +))) 490 490 491 -918.0 - SF7BW125 to SF12BW125 404 +((( 405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 406 +))) 492 492 493 -918.2 - SF7BW125 to SF12BW125 408 +((( 409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 410 +))) 494 494 495 495 496 -(% style="color:#037691" %)**Downlink:** 497 497 498 - 923.3-SF7BW500toSF12BW500414 +=== 2.4.7 Soil Conductivity (EC) === 499 499 500 -923.9 - SF7BW500 to SF12BW500 416 +((( 417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 418 +))) 501 501 502 -924.5 - SF7BW500 to SF12BW500 420 +((( 421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 422 +))) 503 503 504 -925.1 - SF7BW500 to SF12BW500 424 +((( 425 +Generally, the EC value of irrigation water is less than 800uS / cm. 426 +))) 505 505 506 -925.7 - SF7BW500 to SF12BW500 428 +((( 429 + 430 +))) 507 507 508 -926.3 - SF7BW500 to SF12BW500 432 +((( 433 + 434 +))) 509 509 510 - 926.9-SF7BW500toSF12BW500436 +=== 2.4.8 Digital Interrupt === 511 511 512 - 927.5-SF7BW500toSF12BW500438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 513 513 514 - 923.3- SF12BW500(RX2 downlinkonly)440 +The command is: 515 515 442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 516 516 517 517 518 - ===2.7.5AS920-923&AS923-925(AS923)===445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 519 519 520 -(% style="color:#037691" %)**Default Uplink channel:** 521 521 522 - 923.2 - SF7BW125 to SF10BW125448 +Example: 523 523 524 - 923.4-SF7BW125to SF10BW125450 +0x(00): Normal uplink packet. 525 525 452 +0x(01): Interrupt Uplink Packet. 526 526 527 -(% style="color:#037691" %)**Additional Uplink Channel**: 528 528 529 -(OTAA mode, channel added by JoinAccept message) 530 530 531 - (% style="color:#037691"%)**AS920~~AS923forJapan,Malaysia, Singapore**:456 +=== 2.4.9 +5V Output === 532 532 533 - 922.2 -SF7BW125 toSF10BW125458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 534 534 535 -922.4 - SF7BW125 to SF10BW125 536 536 537 - 922.6- SF7BW125 toSF10BW125461 +The 5V output time can be controlled by AT Command. 538 538 539 - 922.8- SF7BW125toSF10BW125463 +(% style="color:blue" %)**AT+5VT=1000** 540 540 541 - 923.0-SF7BW125 toSF10BW125465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 542 542 543 -922.0 - SF7BW125 to SF10BW125 544 544 545 545 546 - (% style="color:#037691"%)**AS923 ~~ AS925for Brunei, Cambodia, HongKong, Indonesia, Laos, Taiwan, Thailand,Vietnam**:469 +== 2.5 Downlink Payload == 547 547 548 - 923.6-SF7BW125toSF10BW125471 +By default, NSE01 prints the downlink payload to console port. 549 549 550 - 923.8- SF7BW125to SF10BW125473 +[[image:image-20220708133731-5.png]] 551 551 552 -924.0 - SF7BW125 to SF10BW125 553 553 554 -924.2 - SF7BW125 to SF10BW125 555 555 556 -924.4 - SF7BW125 to SF10BW125 477 +((( 478 +(% style="color:blue" %)**Examples:** 479 +))) 557 557 558 -924.6 - SF7BW125 to SF10BW125 481 +((( 482 + 483 +))) 559 559 485 +* ((( 486 +(% style="color:blue" %)**Set TDC** 487 +))) 560 560 561 -(% style="color:#037691" %)** Downlink:** 489 +((( 490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 491 +))) 562 562 563 -Uplink channels 1-8 (RX1) 493 +((( 494 +Payload: 01 00 00 1E TDC=30S 495 +))) 564 564 565 -923.2 - SF10BW125 (RX2) 497 +((( 498 +Payload: 01 00 00 3C TDC=60S 499 +))) 566 566 501 +((( 502 + 503 +))) 567 567 505 +* ((( 506 +(% style="color:blue" %)**Reset** 507 +))) 568 568 569 -=== 2.7.6 KR920-923 (KR920) === 509 +((( 510 +If payload = 0x04FF, it will reset the NSE01 511 +))) 570 570 571 -Default channel: 572 572 573 - 922.1-SF7BW125toSF12BW125514 +* (% style="color:blue" %)**INTMOD** 574 574 575 - 922.3-SF7BW125toSF12BW125516 +Downlink Payload: 06000003, Set AT+INTMOD=3 576 576 577 -922.5 - SF7BW125 to SF12BW125 578 578 579 579 580 - (% style="color:#037691"%)**Uplink:(OTAA mode, channel added by JoinAcceptmessage)**520 +== 2.6 LED Indicator == 581 581 582 -922.1 - SF7BW125 to SF12BW125 522 +((( 523 +The NSE01 has an internal LED which is to show the status of different state. 583 583 584 -922.3 - SF7BW125 to SF12BW125 585 585 586 -922.5 - SF7BW125 to SF12BW125 526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 527 +* Then the LED will be on for 1 second means device is boot normally. 528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 529 +* For each uplink probe, LED will be on for 500ms. 530 +))) 587 587 588 -922.7 - SF7BW125 to SF12BW125 589 589 590 -922.9 - SF7BW125 to SF12BW125 591 591 592 -923.1 - SF7BW125 to SF12BW125 593 593 594 - 923.3 - SF7BW125to SF12BW125535 +== 2.7 Installation in Soil == 595 595 537 +__**Measurement the soil surface**__ 596 596 597 - (%style="color:#037691" %)**Downlink:**539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 598 598 599 - Uplink channels1-7(RX1)541 +[[image:1657259653666-883.png]] 600 600 601 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 602 602 544 +((( 545 + 603 603 547 +((( 548 +Dig a hole with diameter > 20CM. 549 +))) 604 604 605 -=== 2.7.7 IN865-867 (IN865) === 551 +((( 552 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 553 +))) 554 +))) 606 606 607 - (% style="color:#037691" %)** Uplink:**556 +[[image:1654506665940-119.png]] 608 608 609 -865.0625 - SF7BW125 to SF12BW125 558 +((( 559 + 560 +))) 610 610 611 -865.4025 - SF7BW125 to SF12BW125 612 612 613 - 865.9850- SF7BW125toSF12BW125563 +== 2.8 Firmware Change Log == 614 614 615 615 616 - (% style="color:#037691"%)**Downlink:**566 +Download URL & Firmware Change log 617 617 618 - Uplinkchannels1-3 (RX1)568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 619 619 620 -866.550 - SF10BW125 (RX2) 621 621 571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 622 622 623 623 624 624 625 -== 2. 8LED Indicator ==575 +== 2.9 Battery Analysis == 626 626 627 - TheLSE01has an internal LED which isto show thestatus of differentstate.577 +=== 2.9.1 Battery Type === 628 628 629 -* Blink once when device power on. 630 -* Solid ON for 5 seconds once device successful Join the network. 631 -* Blink once when device transmit a packet. 632 632 580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 633 633 634 -== 2.9 Installation in Soil == 635 635 636 - **Measurement the soilsurface**583 +The battery is designed to last for several years depends on the actually use environment and update interval. 637 637 638 638 639 - [[image:1654506634463-199.png]]586 +The battery related documents as below: 640 640 641 -((( 642 -((( 643 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 644 -))) 645 -))) 588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 646 646 647 - 648 -[[image:1654506665940-119.png]] 649 - 650 650 ((( 651 - Digaholewith diameter >20CM.593 +[[image:image-20220708140453-6.png]] 652 652 ))) 653 653 654 -((( 655 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 656 -))) 657 657 658 658 659 - ==2.10Firmware Change Log ==598 +2.9.2 660 660 661 -((( 662 -**Firmware download link:** 663 -))) 600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 664 664 665 -((( 666 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 667 -))) 668 668 669 -((( 670 - 671 -))) 603 +Instruction to use as below: 672 672 673 -((( 674 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 675 -))) 676 676 677 -((( 678 - 679 -))) 606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 680 680 681 -((( 682 -**V1.0.** 683 -))) 608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 684 684 685 -((( 686 -Release 687 -))) 688 688 611 +Step 2: Open it and choose 689 689 690 -== 2.11 Battery Analysis == 613 +* Product Model 614 +* Uplink Interval 615 +* Working Mode 691 691 692 - ===2.11.1BatteryType===617 +And the Life expectation in difference case will be shown on the right. 693 693 694 -((( 695 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 696 -))) 697 697 698 -((( 699 -The battery is designed to last for more than 5 years for the LSN50. 700 -))) 701 701 702 -((( 703 -((( 704 -The battery-related documents are as below: 705 -))) 706 -))) 621 +=== 2.9.3 Battery Note === 707 707 708 -* ((( 709 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 710 -))) 711 -* ((( 712 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 713 -))) 714 -* ((( 715 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 716 -))) 717 - 718 - [[image:image-20220606171726-9.png]] 719 - 720 - 721 - 722 -=== 2.11.2 Battery Note === 723 - 724 724 ((( 725 725 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 726 726 ))) ... ... @@ -727,22 +727,12 @@ 727 727 728 728 729 729 730 -=== 2. 11.3Replace the battery ===629 +=== 2.9.4 Replace the battery === 731 731 732 -((( 733 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 734 -))) 631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 735 735 736 -((( 737 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 738 -))) 739 739 740 -((( 741 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 742 -))) 743 743 744 - 745 - 746 746 = 3. Using the AT Commands = 747 747 748 748 == 3.1 Access AT Commands == ... ... @@ -766,7 +766,7 @@ 766 766 [[image:1654502050864-459.png||height="564" width="806"]] 767 767 768 768 769 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>> url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 770 770 771 771 772 772 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> ... ... @@ -924,19 +924,14 @@ 924 924 925 925 ((( 926 926 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 927 -))) 928 928 929 -(% class="box infomessage" %) 930 -((( 931 -**AT+CHE=2** 817 +* (% style="color:#037691" %)**AT+CHE=2** 818 +* (% style="color:#037691" %)**ATZ** 932 932 ))) 933 933 934 -(% class="box infomessage" %) 935 935 ((( 936 -**ATZ** 937 -))) 822 + 938 938 939 -((( 940 940 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 941 941 ))) 942 942 ... ... @@ -951,18 +951,22 @@ 951 951 [[image:image-20220606154825-4.png]] 952 952 953 953 838 +== 4.2 Can I calibrate LSE01 to different soil types? == 954 954 840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 841 + 842 + 955 955 = 5. Trouble Shooting = 956 956 957 -== 5.1 Why I can ’t join TTN in US915 / AU915 bands? ==845 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 958 958 959 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. LoRaWANCommunication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 960 960 961 961 962 -== 5.2 AT Command input doesn ’t work ==850 +== 5.2 AT Command input doesn't work == 963 963 964 964 ((( 965 -In the case if user can see the console output but can ’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 966 966 ))) 967 967 968 968 ... ... @@ -1044,7 +1044,6 @@ 1044 1044 * ((( 1045 1045 Weight / pcs : g 1046 1046 1047 - 1048 1048 1049 1049 ))) 1050 1050 ... ... @@ -1052,5 +1052,3 @@ 1052 1052 1053 1053 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1054 1054 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1055 - 1056 -
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content