Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 24 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,8 +3,16 @@ 3 3 4 4 5 5 6 -**Contents:** 7 7 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 +**Table of Contents:** 15 + 8 8 {{toc/}} 9 9 10 10 ... ... @@ -12,1018 +12,806 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 -= =1.1Whatis LoRaWAN Soil Moisture & EC Sensor==24 += 1. Introduction = 18 18 26 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 27 + 19 19 ((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 29 + 22 22 23 23 ((( 24 - Itdetects (% style="color:#4f81bd" %)**SoilMoisture**(%%),(%style="color:#4f81bd"%)**Soil Temperature**(%%)and(%style="color:#4f81bd"%)**SoilConductivity**(%%),anduploadsthevalueviawirelesstoLoRaWANIoT Server.32 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 25 25 ))) 26 26 27 27 ((( 28 - TheLoRawirelesstechnologyusedin LES01 allows devicetoend data andreachextremely longrangesatlowdata-rates. It provides ultra-longrangespreadspectrumcommunicationandhighinterferenceimmunitywhilst minimizing current consumption.36 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 29 29 ))) 30 30 31 31 ((( 32 - LES01is powered by (%style="color:#4f81bd"%)**4000mAor8500mAhLi-SOCI2battery**(%%),Itisdesignedfor long termuseup to10 years.40 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 33 ))) 34 34 35 35 ((( 36 - Each LES01ispre-loadwithasetfuniquekeys for LoRaWANregistrations,register thesekeys to localLoRaWANserver anditwill autoconnectafterpower on.44 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 37 37 ))) 38 38 47 + 48 +))) 39 39 40 40 [[image:1654503236291-817.png]] 41 41 42 42 43 -[[image:16545 03265560-120.png]]53 +[[image:1657245163077-232.png]] 44 44 45 45 46 46 47 -== 1.2 Features == 57 +== 1.2 Features == 48 48 49 -* LoRaWAN 1.0.3 Class A 50 -* Ultra low power consumption 59 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 51 51 * Monitor Soil Moisture 52 52 * Monitor Soil Temperature 53 53 * Monitor Soil Conductivity 54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 55 55 * AT Commands to change parameters 56 56 * Uplink on periodically 57 57 * Downlink to change configure 58 58 * IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 67 +* Ultra-Low Power consumption 68 +* AT Commands to change parameters 69 +* Micro SIM card slot for NB-IoT SIM 70 +* 8500mAh Battery for long term use 60 60 61 -== 1.3 Specification == 62 62 63 - MeasureVolume:Baseon thecentra pin ofthe probe, a cylinder with 7cm diameter and10cm height.73 +== 1.3 Specification == 64 64 65 -[[image:image-20220606162220-5.png]] 66 66 76 +(% style="color:#037691" %)**Common DC Characteristics:** 67 67 78 +* Supply Voltage: 2.1v ~~ 3.6v 79 +* Operating Temperature: -40 ~~ 85°C 68 68 69 - ==1.4 Applications==81 +(% style="color:#037691" %)**NB-IoT Spec:** 70 70 71 -* Smart Agriculture 83 +* - B1 @H-FDD: 2100MHz 84 +* - B3 @H-FDD: 1800MHz 85 +* - B8 @H-FDD: 900MHz 86 +* - B5 @H-FDD: 850MHz 87 +* - B20 @H-FDD: 800MHz 88 +* - B28 @H-FDD: 700MHz 72 72 73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 - 90 +Probe(% style="color:#037691" %)** Specification:** 75 75 76 - == 1.5 FirmwareChangelog==92 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 77 77 94 +[[image:image-20220708101224-1.png]] 78 78 79 -**LSE01 v1.0 :** Release 80 80 81 81 98 +== 1.4 Applications == 82 82 83 - =2. Configure LSE01toconnectto LoRaWAN network =100 +* Smart Agriculture 84 84 85 -== 2.1 How it works == 102 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 103 + 86 86 87 -((( 88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 -))) 105 +== 1.5 Pin Definitions == 90 90 91 -((( 92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 -))) 94 94 108 +[[image:1657246476176-652.png]] 95 95 96 96 97 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 98 98 99 - Followingisanexamplefor how to join the [[TTNv3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Belowis the network structure;we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]]as a LoRaWANgateway in thisexample.112 += 2. Use NSE01 to communicate with IoT Server = 100 100 114 +== 2.1 How it works == 101 101 102 -[[image:1654503992078-669.png]] 103 103 117 +((( 118 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 119 +))) 104 104 105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 106 106 122 +((( 123 +The diagram below shows the working flow in default firmware of NSE01: 124 +))) 107 107 108 - **Step 1**: Createa device in TTN with the OTAA keys fromLSE01.126 +[[image:image-20220708101605-2.png]] 109 109 110 -Each LSE01 is shipped with a sticker with the default device EUI as below: 111 - 112 -[[image:image-20220606163732-6.jpeg]] 113 - 114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 115 - 116 -**Add APP EUI in the application** 117 - 118 - 119 -[[image:1654504596150-405.png]] 120 - 121 - 122 - 123 -**Add APP KEY and DEV EUI** 124 - 125 -[[image:1654504683289-357.png]] 126 - 127 - 128 - 129 -**Step 2**: Power on LSE01 130 - 131 - 132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 - 134 -[[image:image-20220606163915-7.png]] 135 - 136 - 137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 - 139 -[[image:1654504778294-788.png]] 140 - 141 - 142 - 143 -== 2.3 Uplink Payload == 144 - 145 -=== 2.3.1 MOD~=0(Default Mode) === 146 - 147 -LSE01 will uplink payload via LoRaWAN with below payload format: 148 - 149 - 150 -Uplink payload includes in total 11 bytes. 128 +((( 151 151 152 - 153 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 154 -|=((( 155 -**Size** 156 - 157 -**(bytes)** 158 -)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1** 159 -|**Value**|(% style="width:46px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:160px" %)((( 160 -Temperature 161 - 162 -(Reserve, Ignore now) 163 -)))|(% style="width:104px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:126px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:114px" %)((( 164 -MOD & Digital Interrupt 165 - 166 -(Optional) 167 167 ))) 168 168 169 -[[image:1654504881641-514.png]] 170 170 171 171 134 +== 2.2 Configure the NSE01 == 172 172 173 -=== 2.3.2 MOD~=1(Original value) === 174 174 175 - Thismodecangettheoriginal AD value of moistureand original conductivity (with temperature drift compensation).137 +=== 2.2.1 Test Requirement === 176 176 177 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 178 -|=((( 179 -**Size** 180 180 181 -**(bytes)** 182 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1** 183 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 184 -Temperature 140 +((( 141 +To use NSE01 in your city, make sure meet below requirements: 142 +))) 185 185 186 - (Reserve,Ignorenow)187 - )))|[[SoilMoisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[SoilConductivity(EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((188 - MOD&DigitalInterrupt144 +* Your local operator has already distributed a NB-IoT Network there. 145 +* The local NB-IoT network used the band that NSE01 supports. 146 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 189 189 190 -(Optional) 148 +((( 149 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 191 191 ))) 192 192 193 -[[image:1654504907647-967.png]] 194 194 153 +[[image:1657249419225-449.png]] 195 195 196 196 197 -=== 2.3.3 Battery Info === 198 198 199 - Checkthebattery voltageforLSE01.157 +=== 2.2.2 Insert SIM card === 200 200 201 -Ex1: 0x0B45 = 2885mV 159 +((( 160 +Insert the NB-IoT Card get from your provider. 161 +))) 202 202 203 -Ex2: 0x0B49 = 2889mV 163 +((( 164 +User need to take out the NB-IoT module and insert the SIM card like below: 165 +))) 204 204 205 205 168 +[[image:1657249468462-536.png]] 206 206 207 -=== 2.3.4 Soil Moisture === 208 208 209 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 210 210 211 - Forexample,ifthedatayougetfromtheregister is __0x050xDC__,themoisturecontentinthesoil is172 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 212 212 174 +((( 175 +((( 176 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 177 +))) 178 +))) 213 213 214 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 215 215 181 +**Connection:** 216 216 183 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 217 217 218 - ===2.3.5SoilTemperature===185 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 219 219 220 - Getthetemperature in the soil. The value range of the register is-4000 - +800(Decimal), divide this value by 100 toget the temperature in the soil. Forxample, if the data yougetfromtheregisteris 0x09 0xEC, the temperature content in the soil is187 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 221 221 222 -**Example**: 223 223 224 -I fpayload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp=0105(H)/100=2.61°C190 +In the PC, use below serial tool settings: 225 225 226 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 192 +* Baud: (% style="color:green" %)**9600** 193 +* Data bits:** (% style="color:green" %)8(%%)** 194 +* Stop bits: (% style="color:green" %)**1** 195 +* Parity: (% style="color:green" %)**None** 196 +* Flow Control: (% style="color:green" %)**None** 227 227 228 - 229 - 230 -=== 2.3.6 Soil Conductivity (EC) === 231 - 232 232 ((( 233 - Obtain(%style="color:#4f81bd"%)**__solublesaltconcentration__**(%%)insoil or(%style="color:#4f81bd" %)**__soluble ionconcentrationinliquidfertilizer__**(%%)or(% style="color:#4f81bd" %)**__planting medium__**(%%).Thevaluerange of the register is0- 20000(Decimal)( Canbe greater than20000).199 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 234 234 ))) 235 235 236 -((( 237 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 238 -))) 202 +[[image:image-20220708110657-3.png]] 239 239 240 240 ((( 241 - Generally,theECvalueofirrigationwaterisless than800uS/205 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 242 242 ))) 243 243 244 -((( 245 - 246 -))) 247 247 248 -((( 249 - 250 -))) 251 251 252 -=== 2. 3.7MOD===210 +=== 2.2.4 Use CoAP protocol to uplink data === 253 253 254 - Firmwareversion atleastv2.1supportschangingmode.212 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 255 255 256 -For example, bytes[10]=90 257 257 258 - mod=(bytes[10]>>7)&0x01=1.215 +**Use below commands:** 259 259 217 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 218 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 219 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 260 260 261 - **DownlinkCommand:**221 +For parameter description, please refer to AT command set 262 262 263 - If payload = 0x0A00, workmode=0223 +[[image:1657249793983-486.png]] 264 264 265 -If** **payload =** **0x0A01, workmode=1 266 266 226 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 267 267 228 +[[image:1657249831934-534.png]] 268 268 269 -=== 2.3.8 Decode payload in The Things Network === 270 270 271 -While using TTN network, you can add the payload format to decode the payload. 272 272 232 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 273 273 274 - [[image:1654505570700-128.png]]234 +This feature is supported since firmware version v1.0.1 275 275 276 -The payload decoder function for TTN is here: 277 277 278 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 237 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 238 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 239 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 279 279 241 +[[image:1657249864775-321.png]] 280 280 281 281 282 - ==2.4Uplink Interval ==244 +[[image:1657249930215-289.png]] 283 283 284 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 285 285 286 286 248 +=== 2.2.6 Use MQTT protocol to uplink data === 287 287 288 - ==2.5DownlinkPayload==250 +This feature is supported since firmware version v110 289 289 290 -By default, LSE50 prints the downlink payload to console port. 291 291 292 -[[image:image-20220606165544-8.png]] 253 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 254 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 255 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 256 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 257 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 258 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 259 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 293 293 261 +[[image:1657249978444-674.png]] 294 294 295 -**Examples:** 296 296 264 +[[image:1657249990869-686.png]] 297 297 298 -* **Set TDC** 299 299 300 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 267 +((( 268 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 269 +))) 301 301 302 -Payload: 01 00 00 1E TDC=30S 303 303 304 -Payload: 01 00 00 3C TDC=60S 305 305 273 +=== 2.2.7 Use TCP protocol to uplink data === 306 306 307 - ***Reset**275 +This feature is supported since firmware version v110 308 308 309 -If payload = 0x04FF, it will reset the LSE01 310 310 278 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 279 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 311 311 312 - * **CFM**281 +[[image:1657250217799-140.png]] 313 313 314 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 315 315 284 +[[image:1657250255956-604.png]] 316 316 317 317 318 -== 2.6 Show Data in DataCake IoT Server == 319 319 320 - [[DATACAKE>>url:https://datacake.co/]]providesahumanfriendlyinterface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]]to connectto TTN and see the data in DATACAKE. Beloware the steps:288 +=== 2.2.8 Change Update Interval === 321 321 290 +User can use below command to change the (% style="color:green" %)**uplink interval**. 322 322 323 -* *Step1**:Besurethatyour device is programmedandproperlyconnectedto the networkatthistime.292 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 324 324 325 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 294 +((( 295 +(% style="color:red" %)**NOTE:** 296 +))) 326 326 298 +((( 299 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 300 +))) 327 327 328 -[[image:1654505857935-743.png]] 329 329 330 330 331 - [[image:1654505874829-548.png]]304 +== 2.3 Uplink Payload == 332 332 333 - Step3: Createan accountorloginDatacake.306 +In this mode, uplink payload includes in total 18 bytes 334 334 335 -Step 4: Search the LSE01 and add DevEUI. 308 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 309 +|=(% style="width: 60px;" %)((( 310 +**Size(bytes)** 311 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 312 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 336 336 314 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 337 337 338 -[[image:1654505905236-553.png]] 339 339 317 +[[image:image-20220708111918-4.png]] 340 340 341 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 342 342 343 - [[image:1654505925508-181.png]]320 +The payload is ASCII string, representative same HEX: 344 344 322 +0x72403155615900640c7817075e0a8c02f900 where: 345 345 324 +* Device ID: 0x 724031556159 = 724031556159 325 +* Version: 0x0064=100=1.0.0 346 346 347 -== 2.7 Frequency Plans == 327 +* BAT: 0x0c78 = 3192 mV = 3.192V 328 +* Singal: 0x17 = 23 329 +* Soil Moisture: 0x075e= 1886 = 18.86 % 330 +* Soil Temperature:0x0a8c =2700=27 °C 331 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 332 +* Interrupt: 0x00 = 0 348 348 349 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 350 350 335 +== 2.4 Payload Explanation and Sensor Interface == 351 351 352 -=== 2.7.1 EU863-870 (EU868) === 353 353 354 - (%style="color:#037691"%)**Uplink:**338 +=== 2.4.1 Device ID === 355 355 356 - 868.1-SF7BW125toSF12BW125340 +By default, the Device ID equal to the last 6 bytes of IMEI. 357 357 358 - 868.3-SF7BW125toSF12BW125andSF7BW250342 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 359 359 360 - 868.5 - SF7BW125 to SF12BW125344 +**Example:** 361 361 362 -8 67.1- SF7BW125to SF12BW125346 +AT+DEUI=A84041F15612 363 363 364 - 867.3-SF7BW125toSF12BW125348 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 365 365 366 -867.5 - SF7BW125 to SF12BW125 367 367 368 -867.7 - SF7BW125 to SF12BW125 369 369 370 - 867.9- SF7BW125toSF12BW125352 +=== 2.4.2 Version Info === 371 371 372 - 868.8 -FSK354 +Specify the software version: 0x64=100, means firmware version 1.00. 373 373 356 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 374 374 375 -(% style="color:#037691" %)** Downlink:** 376 376 377 -Uplink channels 1-9 (RX1) 378 378 379 - 869.525- SF9BW125(RX2 downlinkonly)360 +=== 2.4.3 Battery Info === 380 380 362 +((( 363 +Check the battery voltage for LSE01. 364 +))) 381 381 366 +((( 367 +Ex1: 0x0B45 = 2885mV 368 +))) 382 382 383 -=== 2.7.2 US902-928(US915) === 370 +((( 371 +Ex2: 0x0B49 = 2889mV 372 +))) 384 384 385 -Used in USA, Canada and South America. Default use CHE=2 386 386 387 -(% style="color:#037691" %)**Uplink:** 388 388 389 - 903.9-SF7BW125toSF10BW125376 +=== 2.4.4 Signal Strength === 390 390 391 - 904.1-SF7BW125to SF10BW125378 +NB-IoT Network signal Strength. 392 392 393 - 904.3 - SF7BW125to SF10BW125380 +**Ex1: 0x1d = 29** 394 394 395 - 904.5-SF7BW125toSF10BW125382 +(% style="color:blue" %)**0**(%%) -113dBm or less 396 396 397 - 904.7-SF7BW125toSF10BW125384 +(% style="color:blue" %)**1**(%%) -111dBm 398 398 399 - 904.9- SF7BW125toSF10BW125386 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 400 400 401 - 905.1-SF7BW125toSF10BW125388 +(% style="color:blue" %)**31** (%%) -51dBm or greater 402 402 403 -9 05.3-SF7BW125toSF10BW125390 +(% style="color:blue" %)**99** (%%) Not known or not detectable 404 404 405 405 406 -(% style="color:#037691" %)**Downlink:** 407 407 408 - 923.3-SF7BW500toSF12BW500394 +=== 2.4.5 Soil Moisture === 409 409 410 -923.9 - SF7BW500 to SF12BW500 396 +((( 397 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 398 +))) 411 411 412 -924.5 - SF7BW500 to SF12BW500 400 +((( 401 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 402 +))) 413 413 414 -925.1 - SF7BW500 to SF12BW500 404 +((( 405 + 406 +))) 415 415 416 -925.7 - SF7BW500 to SF12BW500 408 +((( 409 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 410 +))) 417 417 418 -926.3 - SF7BW500 to SF12BW500 419 419 420 -926.9 - SF7BW500 to SF12BW500 421 421 422 - 927.5-SF7BW500toSF12BW500414 +=== 2.4.6 Soil Temperature === 423 423 424 -923.3 - SF12BW500(RX2 downlink only) 416 +((( 417 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 418 +))) 425 425 420 +((( 421 +**Example**: 422 +))) 426 426 424 +((( 425 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 426 +))) 427 427 428 -=== 2.7.3 CN470-510 (CN470) === 428 +((( 429 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 430 +))) 429 429 430 -Used in China, Default use CHE=1 431 431 432 -(% style="color:#037691" %)**Uplink:** 433 433 434 -4 86.3-SF7BW125toSF12BW125434 +=== 2.4.7 Soil Conductivity (EC) === 435 435 436 -486.5 - SF7BW125 to SF12BW125 436 +((( 437 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 438 +))) 437 437 438 -486.7 - SF7BW125 to SF12BW125 440 +((( 441 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 442 +))) 439 439 440 -486.9 - SF7BW125 to SF12BW125 444 +((( 445 +Generally, the EC value of irrigation water is less than 800uS / cm. 446 +))) 441 441 442 -487.1 - SF7BW125 to SF12BW125 448 +((( 449 + 450 +))) 443 443 444 -487.3 - SF7BW125 to SF12BW125 452 +((( 453 + 454 +))) 445 445 446 -4 87.5-SF7BW125toSF12BW125456 +=== 2.4.8 Digital Interrupt === 447 447 448 - 487.7-SF7BW125toSF12BW125458 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 449 449 460 +The command is: 450 450 451 -(% style="color: #037691" %)**Downlink:**462 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 452 452 453 -506.7 - SF7BW125 to SF12BW125 454 454 455 - 506.9-SF7BW125toSF12BW125465 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 456 456 457 -507.1 - SF7BW125 to SF12BW125 458 458 459 - 507.3 - SF7BW125 to SF12BW125468 +Example: 460 460 461 - 507.5-SF7BW125to SF12BW125470 +0x(00): Normal uplink packet. 462 462 463 - 507.7 - SF7BW125toSF12BW125472 +0x(01): Interrupt Uplink Packet. 464 464 465 -507.9 - SF7BW125 to SF12BW125 466 466 467 -508.1 - SF7BW125 to SF12BW125 468 468 469 - 505.3- SF12BW125(RX2downlink only)476 +=== 2.4.9 +5V Output === 470 470 478 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 471 471 472 472 473 - ===2.7.4AU915-928(AU915)===481 +The 5V output time can be controlled by AT Command. 474 474 475 - DefaultuseCHE=2483 +(% style="color:blue" %)**AT+5VT=1000** 476 476 477 - (%style="color:#037691"%)**Uplink:**485 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 478 478 479 -916.8 - SF7BW125 to SF12BW125 480 480 481 -917.0 - SF7BW125 to SF12BW125 482 482 483 - 917.2- SF7BW125toSF12BW125489 +== 2.5 Downlink Payload == 484 484 485 - 917.4-SF7BW125toSF12BW125491 +By default, NSE01 prints the downlink payload to console port. 486 486 487 - 917.6-SF7BW125 to SF12BW125493 +[[image:image-20220708133731-5.png]] 488 488 489 -917.8 - SF7BW125 to SF12BW125 490 490 491 -918.0 - SF7BW125 to SF12BW125 496 +((( 497 +(% style="color:blue" %)**Examples:** 498 +))) 492 492 493 -918.2 - SF7BW125 to SF12BW125 500 +((( 501 + 502 +))) 494 494 504 +* ((( 505 +(% style="color:blue" %)**Set TDC** 506 +))) 495 495 496 -(% style="color:#037691" %)**Downlink:** 508 +((( 509 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 510 +))) 497 497 498 -923.3 - SF7BW500 to SF12BW500 512 +((( 513 +Payload: 01 00 00 1E TDC=30S 514 +))) 499 499 500 -923.9 - SF7BW500 to SF12BW500 516 +((( 517 +Payload: 01 00 00 3C TDC=60S 518 +))) 501 501 502 -924.5 - SF7BW500 to SF12BW500 520 +((( 521 + 522 +))) 503 503 504 -925.1 - SF7BW500 to SF12BW500 524 +* ((( 525 +(% style="color:blue" %)**Reset** 526 +))) 505 505 506 -925.7 - SF7BW500 to SF12BW500 528 +((( 529 +If payload = 0x04FF, it will reset the NSE01 530 +))) 507 507 508 -926.3 - SF7BW500 to SF12BW500 509 509 510 - 926.9-SF7BW500toSF12BW500533 +* (% style="color:blue" %)**INTMOD** 511 511 512 - 927.5-SF7BW500 toSF12BW500535 +Downlink Payload: 06000003, Set AT+INTMOD=3 513 513 514 -923.3 - SF12BW500(RX2 downlink only) 515 515 516 516 539 +== 2.6 LED Indicator == 517 517 518 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 541 +((( 542 +The NSE01 has an internal LED which is to show the status of different state. 519 519 520 -(% style="color:#037691" %)**Default Uplink channel:** 521 521 522 -923.2 - SF7BW125 to SF10BW125 545 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 546 +* Then the LED will be on for 1 second means device is boot normally. 547 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 548 +* For each uplink probe, LED will be on for 500ms. 549 +))) 523 523 524 -923.4 - SF7BW125 to SF10BW125 525 525 526 526 527 -(% style="color:#037691" %)**Additional Uplink Channel**: 528 528 529 - (OTAAmode,channelddedbyJoinAcceptmessage)554 +== 2.7 Installation in Soil == 530 530 531 - (% style="color:#037691" %)**AS920~~AS923 for Japan,Malaysia,Singapore**:556 +__**Measurement the soil surface**__ 532 532 533 - 922.2-SF7BW125SF10BW125558 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 534 534 535 - 922.4 - SF7BW125to SF10BW125560 +[[image:1657259653666-883.png]] 536 536 537 -922.6 - SF7BW125 to SF10BW125 538 538 539 -922.8 - SF7BW125 to SF10BW125 563 +((( 564 + 540 540 541 -923.0 - SF7BW125 to SF10BW125 566 +((( 567 +Dig a hole with diameter > 20CM. 568 +))) 542 542 543 -922.0 - SF7BW125 to SF10BW125 570 +((( 571 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 572 +))) 573 +))) 544 544 575 +[[image:1654506665940-119.png]] 545 545 546 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 577 +((( 578 + 579 +))) 547 547 548 -923.6 - SF7BW125 to SF10BW125 549 549 550 - 923.8- SF7BW125toSF10BW125582 +== 2.8 Firmware Change Log == 551 551 552 -924.0 - SF7BW125 to SF10BW125 553 553 554 - 924.2-SF7BW125toSF10BW125585 +Download URL & Firmware Change log 555 555 556 - 924.4-F7BW125toSF10BW125587 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 557 557 558 -924.6 - SF7BW125 to SF10BW125 559 559 590 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 560 560 561 -(% style="color:#037691" %)** Downlink:** 562 562 563 -Uplink channels 1-8 (RX1) 564 564 565 - 923.2- SF10BW125(RX2)594 +== 2.9 Battery Analysis == 566 566 596 +=== 2.9.1 Battery Type === 567 567 568 568 569 - ===2.7.6KR920-923(KR920)===599 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 570 570 571 -Default channel: 572 572 573 - 922.1-SF7BW125toSF12BW125602 +The battery is designed to last for several years depends on the actually use environment and update interval. 574 574 575 -922.3 - SF7BW125 to SF12BW125 576 576 577 - 922.5-SF7BW125toSF12BW125605 +The battery related documents as below: 578 578 607 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 608 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 609 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 579 579 580 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 581 - 582 -922.1 - SF7BW125 to SF12BW125 583 - 584 -922.3 - SF7BW125 to SF12BW125 585 - 586 -922.5 - SF7BW125 to SF12BW125 587 - 588 -922.7 - SF7BW125 to SF12BW125 589 - 590 -922.9 - SF7BW125 to SF12BW125 591 - 592 -923.1 - SF7BW125 to SF12BW125 593 - 594 -923.3 - SF7BW125 to SF12BW125 595 - 596 - 597 -(% style="color:#037691" %)**Downlink:** 598 - 599 -Uplink channels 1-7(RX1) 600 - 601 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 602 - 603 - 604 - 605 -=== 2.7.7 IN865-867 (IN865) === 606 - 607 -(% style="color:#037691" %)** Uplink:** 608 - 609 -865.0625 - SF7BW125 to SF12BW125 610 - 611 -865.4025 - SF7BW125 to SF12BW125 612 - 613 -865.9850 - SF7BW125 to SF12BW125 614 - 615 - 616 -(% style="color:#037691" %) **Downlink:** 617 - 618 -Uplink channels 1-3 (RX1) 619 - 620 -866.550 - SF10BW125 (RX2) 621 - 622 - 623 - 624 - 625 -== 2.8 LED Indicator == 626 - 627 -The LSE01 has an internal LED which is to show the status of different state. 628 - 629 -* Blink once when device power on. 630 -* Solid ON for 5 seconds once device successful Join the network. 631 -* Blink once when device transmit a packet. 632 - 633 - 634 -== 2.9 Installation in Soil == 635 - 636 -**Measurement the soil surface** 637 - 638 - 639 -[[image:1654506634463-199.png]] 640 - 641 641 ((( 642 -((( 643 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 612 +[[image:image-20220708140453-6.png]] 644 644 ))) 645 -))) 646 646 647 647 648 -[[image:1654506665940-119.png]] 649 649 650 -((( 651 -Dig a hole with diameter > 20CM. 652 -))) 617 +=== 2.9.2 Power consumption Analyze === 653 653 654 654 ((( 655 - Horizontalinsertthe probeto the soil andfill the holefor longtermmeasurement.620 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 656 656 ))) 657 657 658 658 659 -== 2.10 Firmware Change Log == 660 - 661 661 ((( 662 - **Firmware downloadlink:**625 +Instruction to use as below: 663 663 ))) 664 664 665 665 ((( 666 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/ LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]629 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 667 667 ))) 668 668 669 -((( 670 - 671 -))) 672 672 673 673 ((( 674 - **FirmwareUpgradeMethod: **[[FirmwareUpgradeInstruction>>doc:Main.FirmwareUpgradeInstruction for STM32 baseproducts.WebHome]]634 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 675 675 ))) 676 676 677 -((( 678 - 637 +* ((( 638 +Product Model 679 679 ))) 680 - 681 -((( 682 -**V1.0.** 640 +* ((( 641 +Uplink Interval 683 683 ))) 643 +* ((( 644 +Working Mode 645 +))) 684 684 685 685 ((( 686 - Release648 +And the Life expectation in difference case will be shown on the right. 687 687 ))) 688 688 651 +[[image:image-20220708141352-7.jpeg]] 689 689 690 -== 2.11 Battery Analysis == 691 691 692 -=== 2.11.1 Battery Type === 693 693 694 -((( 695 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 696 -))) 655 +=== 2.9.3 Battery Note === 697 697 698 698 ((( 699 -The battery is designed to last for more than5 yearsfor theLSN50.658 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 700 700 ))) 701 701 702 -((( 703 -((( 704 -The battery-related documents are as below: 705 -))) 706 -))) 707 707 708 -* ((( 709 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 710 -))) 711 -* ((( 712 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 713 -))) 714 -* ((( 715 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 716 -))) 717 717 718 - [[image:image-20220606171726-9.png]]663 +=== 2.9.4 Replace the battery === 719 719 720 - 721 - 722 -=== 2.11.2 Battery Note === 723 - 724 724 ((( 725 -The Li-SICObatteryisdesigned forsmallcurrent/longperiodapplication. Itis notgood to use ahigh current,shortperiodtransmitmethod. Therecommendedminimum periodfor use ofthisbatteryis5minutes.If you useahorterperiodtimeto transmitLoRa, then the battery lifemaybe decreased.666 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 726 726 ))) 727 727 728 728 729 729 730 -= ==2.11.3Replacethebattery===671 += 3. Access NB-IoT Module = 731 731 732 732 ((( 733 - If Battery islower than2.7v, user shouldplace thebatteryofLSE01.674 +Users can directly access the AT command set of the NB-IoT module. 734 734 ))) 735 735 736 736 ((( 737 - Youcan changethebatteryintheLSE01.Thetypeofbattery is notlimitedaslongas the outputisbetween3v to3.6v. On themainboard, there isa diode(D1) between the battery andthe main circuit. If you needo usea battery with lessthan 3.3v, pleaseremovethe D1 andshortcut thetwopadsofit sothere won’t be voltageop between battery andmain board.678 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 738 738 ))) 739 739 740 -((( 741 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 742 -))) 681 +[[image:1657261278785-153.png]] 743 743 744 744 745 745 746 -= 3.Using the AT Commands =685 += 4. Using the AT Commands = 747 747 748 -== 3.1 Access AT Commands ==687 +== 4.1 Access AT Commands == 749 749 689 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 750 750 751 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 752 752 753 - [[image:1654501986557-872.png||height="391"width="800"]]692 +AT+<CMD>? : Help on <CMD> 754 754 694 +AT+<CMD> : Run <CMD> 755 755 756 - Orifyouhavebelowboard,usebelowconnection:696 +AT+<CMD>=<value> : Set the value 757 757 698 +AT+<CMD>=? : Get the value 758 758 759 -[[image:1654502005655-729.png||height="503" width="801"]] 760 760 761 - 762 - 763 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 764 - 765 - 766 - [[image:1654502050864-459.png||height="564" width="806"]] 767 - 768 - 769 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 770 - 771 - 772 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 773 - 774 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 775 - 776 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 777 - 778 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 779 - 780 - 781 781 (% style="color:#037691" %)**General Commands**(%%) 782 782 783 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention703 +AT : Attention 784 784 785 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help705 +AT? : Short Help 786 786 787 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset707 +ATZ : MCU Reset 788 788 789 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval709 +AT+TDC : Application Data Transmission Interval 790 790 711 +AT+CFG : Print all configurations 791 791 792 - (%style="color:#037691"%)**Keys,IDsand EUIs management**713 +AT+CFGMOD : Working mode selection 793 793 794 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI715 +AT+INTMOD : Set the trigger interrupt mode 795 795 796 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey717 +AT+5VT : Set extend the time of 5V power 797 797 798 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key719 +AT+PRO : Choose agreement 799 799 800 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress721 +AT+WEIGRE : Get weight or set weight to 0 801 801 802 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI723 +AT+WEIGAP : Get or Set the GapValue of weight 803 803 804 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)725 +AT+RXDL : Extend the sending and receiving time 805 805 806 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network727 +AT+CNTFAC : Get or set counting parameters 807 807 808 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode729 +AT+SERVADDR : Server Address 809 809 810 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 811 811 812 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network732 +(% style="color:#037691" %)**COAP Management** 813 813 814 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode734 +AT+URI : Resource parameters 815 815 816 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 817 817 818 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format737 +(% style="color:#037691" %)**UDP Management** 819 819 820 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat739 +AT+CFM : Upload confirmation mode (only valid for UDP) 821 821 822 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 823 823 824 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data742 +(% style="color:#037691" %)**MQTT Management** 825 825 744 +AT+CLIENT : Get or Set MQTT client 826 826 827 - (%style="color:#037691"%)**LoRaNetworkManagement**746 +AT+UNAME : Get or Set MQTT Username 828 828 829 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate748 +AT+PWD : Get or Set MQTT password 830 830 831 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA750 +AT+PUBTOPIC : Get or Set MQTT publish topic 832 832 833 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting752 +AT+SUBTOPIC : Get or Set MQTT subscription topic 834 834 835 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 836 836 837 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink755 +(% style="color:#037691" %)**Information** 838 838 839 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink757 +AT+FDR : Factory Data Reset 840 840 841 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1759 +AT+PWORD : Serial Access Password 842 842 843 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 844 844 845 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 846 846 847 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1763 += 5. FAQ = 848 848 849 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2765 +== 5.1 How to Upgrade Firmware == 850 850 851 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 852 852 853 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 854 - 855 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 856 - 857 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 858 - 859 - 860 -(% style="color:#037691" %)**Information** 861 - 862 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 863 - 864 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 865 - 866 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 867 - 868 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 869 - 870 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 871 - 872 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 873 - 874 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 875 - 876 - 877 -= 4. FAQ = 878 - 879 -== 4.1 How to change the LoRa Frequency Bands/Region? == 880 - 881 881 ((( 882 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 883 -When downloading the images, choose the required image file for download. 769 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 884 884 ))) 885 885 886 886 ((( 887 - 773 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 888 888 ))) 889 889 890 890 ((( 891 - Howtosetup LSE01 towork in 8 channel modeBy default,thefrequency bandsUS915,AU915, CN470 work in 72 frequencies.Many gatewaysare8 channelgateways, andin thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.777 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 892 892 ))) 893 893 894 -((( 895 - 896 -))) 897 897 898 -((( 899 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 900 -))) 901 901 902 -((( 903 - 904 -))) 782 += 6. Trouble Shooting = 905 905 906 -((( 907 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 908 -))) 784 +== 6.1 Connection problem when uploading firmware == 909 909 910 -[[image:image-20220606154726-3.png]] 911 911 912 - 913 -When you use the TTN network, the US915 frequency bands use are: 914 - 915 -* 903.9 - SF7BW125 to SF10BW125 916 -* 904.1 - SF7BW125 to SF10BW125 917 -* 904.3 - SF7BW125 to SF10BW125 918 -* 904.5 - SF7BW125 to SF10BW125 919 -* 904.7 - SF7BW125 to SF10BW125 920 -* 904.9 - SF7BW125 to SF10BW125 921 -* 905.1 - SF7BW125 to SF10BW125 922 -* 905.3 - SF7BW125 to SF10BW125 923 -* 904.6 - SF8BW500 924 - 787 +(% class="wikigeneratedid" %) 925 925 ((( 926 - Becausehe end nodeisnowhopping72 frequency,itmakesitdifficulttheevicestoJointhe TTN networkplink data.solvethisissue,youcanaccess thedeviceviatheATcommandsand run:789 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]] 927 927 ))) 928 928 929 -(% class="box infomessage" %) 930 -((( 931 -**AT+CHE=2** 932 -))) 933 933 934 -(% class="box infomessage" %) 935 -((( 936 -**ATZ** 937 -))) 938 938 939 -((( 940 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 941 -))) 794 +== 6.2 AT Command input doesn't work == 942 942 943 943 ((( 944 - 797 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 945 945 ))) 946 946 947 -((( 948 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 949 -))) 950 950 951 -[[image:image-20220606154825-4.png]] 952 952 802 += 7. Order Info = 953 953 954 954 955 - = 5. TroubleShooting=805 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 956 956 957 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 958 958 959 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 960 - 961 - 962 -== 5.2 AT Command input doesn’t work == 963 - 964 -((( 965 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 966 -))) 967 - 968 - 969 -== 5.3 Device rejoin in at the second uplink packet == 970 - 971 -(% style="color:#4f81bd" %)**Issue describe as below:** 972 - 973 -[[image:1654500909990-784.png]] 974 - 975 - 976 -(% style="color:#4f81bd" %)**Cause for this issue:** 977 - 978 -((( 979 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 980 -))) 981 - 982 - 983 -(% style="color:#4f81bd" %)**Solution: ** 984 - 985 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 986 - 987 -[[image:1654500929571-736.png||height="458" width="832"]] 988 - 989 - 990 -= 6. Order Info = 991 - 992 - 993 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 994 - 995 - 996 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 997 - 998 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 999 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1000 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1001 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1002 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1003 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1004 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1005 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1006 - 1007 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1008 - 1009 -* (% style="color:red" %)**4**(%%): 4000mAh battery 1010 -* (% style="color:red" %)**8**(%%): 8500mAh battery 1011 - 1012 1012 (% class="wikigeneratedid" %) 1013 1013 ((( 1014 1014 1015 1015 ))) 1016 1016 1017 -= 7. Packing Info =813 += 8. Packing Info = 1018 1018 1019 1019 ((( 1020 1020 1021 1021 1022 1022 (% style="color:#037691" %)**Package Includes**: 1023 -))) 1024 1024 1025 -* ((( 1026 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 820 + 821 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 822 +* External antenna x 1 1027 1027 ))) 1028 1028 1029 1029 ((( ... ... @@ -1030,27 +1030,20 @@ 1030 1030 1031 1031 1032 1032 (% style="color:#037691" %)**Dimension and weight**: 1033 -))) 1034 1034 1035 -* ((( 1036 -Device Size: cm 830 + 831 +* Size: 195 x 125 x 55 mm 832 +* Weight: 420g 1037 1037 ))) 1038 -* ((( 1039 -Device Weight: g 1040 -))) 1041 -* ((( 1042 -Package Size / pcs : cm 1043 -))) 1044 -* ((( 1045 -Weight / pcs : g 1046 1046 835 +((( 836 + 1047 1047 838 + 1048 1048 1049 1049 ))) 1050 1050 1051 -= 8. Support =842 += 9. Support = 1052 1052 1053 1053 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1054 1054 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1055 - 1056 -
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content