Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 24 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220606151504-2.jpeg||height=" 848" width="848"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 ... ... @@ -8,689 +8,641 @@ 8 8 9 9 10 10 11 -= 1. Introduction = 12 12 13 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 14 14 15 -((( 16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 -))) 18 18 19 -((( 20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 21 -))) 14 +**Table of Contents:** 22 22 23 -((( 24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 25 -))) 26 26 27 -((( 28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 29 -))) 30 30 18 + 19 + 20 + 21 += 1. Introduction = 22 + 23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 + 31 31 ((( 32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 -))) 26 + 34 34 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 35 35 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 + 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 + 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 + 36 + 37 +))) 38 + 36 36 [[image:1654503236291-817.png]] 37 37 38 38 39 -[[image:16545 03265560-120.png]]42 +[[image:1657245163077-232.png]] 40 40 41 41 42 42 43 43 == 1.2 Features == 44 44 45 -* LoRaWAN 1.0.3 Class A 46 -* Ultra low power consumption 48 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 47 47 * Monitor Soil Moisture 48 48 * Monitor Soil Temperature 49 49 * Monitor Soil Conductivity 50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 51 * AT Commands to change parameters 52 52 * Uplink on periodically 53 53 * Downlink to change configure 54 54 * IP66 Waterproof Enclosure 55 -* 4000mAh or 8500mAh Battery for long term use 56 +* Ultra-Low Power consumption 57 +* AT Commands to change parameters 58 +* Micro SIM card slot for NB-IoT SIM 59 +* 8500mAh Battery for long term use 56 56 57 -== 1.3 Specification == 58 58 59 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 60 60 61 -[[image:image-20220606162220-5.png]] 62 62 64 +== 1.3 Specification == 63 63 64 64 65 - ==1.4 Applications==67 +(% style="color:#037691" %)**Common DC Characteristics:** 66 66 67 -* Smart Agriculture 69 +* Supply Voltage: 2.1v ~~ 3.6v 70 +* Operating Temperature: -40 ~~ 85°C 68 68 69 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 70 - 71 71 72 -== 1.5 Firmware Change log == 73 73 74 +(% style="color:#037691" %)**NB-IoT Spec:** 74 74 75 -**LSE01 v1.0 :** Release 76 +* - B1 @H-FDD: 2100MHz 77 +* - B3 @H-FDD: 1800MHz 78 +* - B8 @H-FDD: 900MHz 79 +* - B5 @H-FDD: 850MHz 80 +* - B20 @H-FDD: 800MHz 81 +* - B28 @H-FDD: 700MHz 76 76 77 77 78 78 79 - = 2. ConfigureLSE01to connect toLoRaWANnetwork =85 +Probe(% style="color:#037691" %)** Specification:** 80 80 81 - ==2.1Howitworks==87 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 82 82 83 -((( 84 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 85 -))) 89 +[[image:image-20220708101224-1.png]] 86 86 87 -((( 88 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 89 -))) 90 90 91 91 93 +== 1.4 Applications == 92 92 93 - ==2.2Quick guideto connect to LoRaWAN server (OTAA) ==95 +* Smart Agriculture 94 94 95 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 97 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 98 + 96 96 100 +== 1.5 Pin Definitions == 97 97 98 -[[image:1654503992078-669.png]] 99 99 103 +[[image:1657246476176-652.png]] 100 100 101 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 102 102 103 103 104 - **Step1**:Createa devicein TTNwiththe OTAAkeys fromLSE01.107 += 2. Use NSE01 to communicate with IoT Server = 105 105 106 - EachLSE01is shippedwitha sticker withthe default device EUI asbelow:109 +== 2.1 How it works == 107 107 108 -[[image:image-20220606163732-6.jpeg]] 109 109 110 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 112 +((( 113 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 114 +))) 111 111 112 -**Add APP EUI in the application** 113 113 117 +((( 118 +The diagram below shows the working flow in default firmware of NSE01: 119 +))) 114 114 115 -[[image:1 654504596150-405.png]]121 +[[image:image-20220708101605-2.png]] 116 116 117 - 118 - 119 -**Add APP KEY and DEV EUI** 120 - 121 -[[image:1654504683289-357.png]] 122 - 123 - 124 - 125 -**Step 2**: Power on LSE01 126 - 127 - 128 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 129 - 130 -[[image:image-20220606163915-7.png]] 131 - 132 - 133 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 134 - 135 -[[image:1654504778294-788.png]] 136 - 137 - 138 - 139 -== 2.3 Uplink Payload == 140 - 141 -=== 2.3.1 MOD~=0(Default Mode) === 142 - 143 -LSE01 will uplink payload via LoRaWAN with below payload format: 144 - 145 - 146 -Uplink payload includes in total 11 bytes. 123 +((( 147 147 148 - 149 -|((( 150 -**Size** 151 - 152 -**(bytes)** 153 -)))|**2**|**2**|**2**|**2**|**2**|**1** 154 -|**Value**|[[BAT>>path:#bat]]|((( 155 -Temperature 156 - 157 -(Reserve, Ignore now) 158 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|((( 159 -MOD & Digital Interrupt 160 - 161 -(Optional) 162 162 ))) 163 163 164 -[[image:1654504881641-514.png]] 165 165 166 166 129 +== 2.2 Configure the NSE01 == 167 167 168 -=== 2.3.2 MOD~=1(Original value) === 169 169 170 - Thismodecangettheoriginal AD value of moistureand original conductivity (with temperature drift compensation).132 +=== 2.2.1 Test Requirement === 171 171 172 -|((( 173 -**Size** 174 174 175 -**(bytes)** 176 -)))|**2**|**2**|**2**|**2**|**2**|**1** 177 -|**Value**|[[BAT>>path:#bat]]|((( 178 -Temperature 135 +To use NSE01 in your city, make sure meet below requirements: 179 179 180 - (Reserve,Ignorenow)181 - )))|[[SoilMoisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[SoilConductivity(EC)>>path:#EC]](raw)|(((182 - MOD&DigitalInterrupt137 +* Your local operator has already distributed a NB-IoT Network there. 138 +* The local NB-IoT network used the band that NSE01 supports. 139 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 183 183 184 -(Optional) 141 +((( 142 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 185 185 ))) 186 186 187 -[[image:1654504907647-967.png]] 188 188 146 +[[image:1657249419225-449.png]] 189 189 190 190 191 -=== 2.3.3 Battery Info === 192 192 193 - Checkthebattery voltageforLSE01.150 +=== 2.2.2 Insert SIM card === 194 194 195 - Ex1:0x0B45=2885mV152 +Insert the NB-IoT Card get from your provider. 196 196 197 - Ex2:0x0B49=2889mV154 +User need to take out the NB-IoT module and insert the SIM card like below: 198 198 199 199 157 +[[image:1657249468462-536.png]] 200 200 201 -=== 2.3.4 Soil Moisture === 202 202 203 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 204 204 205 - Forexample,ifthedatayougetfromtheregister is __0x050xDC__,themoisturecontentinthesoil is161 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 206 206 207 - 208 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 209 - 210 - 211 - 212 -=== 2.3.5 Soil Temperature === 213 - 214 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 215 - 216 -**Example**: 217 - 218 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 219 - 220 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 221 - 222 - 223 - 224 -=== 2.3.6 Soil Conductivity (EC) === 225 - 226 226 ((( 227 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 228 -))) 229 - 230 230 ((( 231 - For example,ifthedatayougetfromtheregister is 0x000xC8,the soilconductivityis00C8(H)=200(D)=200uS/cm.165 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 232 232 ))) 233 - 234 -((( 235 -Generally, the EC value of irrigation water is less than 800uS / cm. 236 236 ))) 237 237 238 -((( 239 - 240 -))) 241 241 242 -((( 243 - 244 -))) 170 +**Connection:** 245 245 246 -= ==2.3.7MOD===172 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 247 247 248 - Firmwareversionatst v2.1 supportschanging mode.174 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 249 249 250 - Forexample,bytes[10]=90176 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 251 251 252 -mod=(bytes[10]>>7)&0x01=1. 253 253 179 +In the PC, use below serial tool settings: 254 254 255 -Downlink Command: 181 +* Baud: (% style="color:green" %)**9600** 182 +* Data bits:** (% style="color:green" %)8(%%)** 183 +* Stop bits: (% style="color:green" %)**1** 184 +* Parity: (% style="color:green" %)**None** 185 +* Flow Control: (% style="color:green" %)**None** 256 256 257 -If payload = 0x0A00, workmode=0 187 +((( 188 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 189 +))) 258 258 259 - If** **payload =** **0x0A01, workmode=1191 +[[image:image-20220708110657-3.png]] 260 260 193 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 261 261 262 262 263 -=== 2.3.8 Decode payload in The Things Network === 264 264 265 - WhileusingTTNnetwork,youcan add thepayload formattodecodethepayload.197 +=== 2.2.4 Use CoAP protocol to uplink data === 266 266 199 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 267 267 268 -[[image:1654505570700-128.png]] 269 269 270 - Thepayloaddecoder function for TTN ishere:202 +**Use below commands:** 271 271 272 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 204 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 205 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 206 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 273 273 208 +For parameter description, please refer to AT command set 274 274 275 - ==2.4Uplink Interval ==210 +[[image:1657249793983-486.png]] 276 276 277 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: 278 278 279 - [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]213 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 280 280 215 +[[image:1657249831934-534.png]] 281 281 282 282 283 -== 2.5 Downlink Payload == 284 284 285 - Bydefault,LSE50printsthe downlinkpayloadtonsoleport.219 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 286 286 287 - [[image:image-20220606165544-8.png]]221 +This feature is supported since firmware version v1.0.1 288 288 289 289 290 -**Examples:** 224 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 225 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 226 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 291 291 228 +[[image:1657249864775-321.png]] 292 292 293 -* **Set TDC** 294 294 295 - If the payload=0100003C,itmeans set the END Node’s TDC to 0x00003C=60(S), while type code is 01.231 +[[image:1657249930215-289.png]] 296 296 297 -Payload: 01 00 00 1E TDC=30S 298 298 299 -Payload: 01 00 00 3C TDC=60S 300 300 235 +=== 2.2.6 Use MQTT protocol to uplink data === 301 301 302 - ***Reset**237 +This feature is supported since firmware version v110 303 303 304 -If payload = 0x04FF, it will reset the LSE01 305 305 240 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 241 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 242 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 243 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 244 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 245 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 246 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 306 306 307 - * **CFM**248 +[[image:1657249978444-674.png]] 308 308 309 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 310 310 251 +[[image:1657249990869-686.png]] 311 311 312 312 313 -== 2.6 Show Data in DataCake IoT Server == 254 +((( 255 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 256 +))) 314 314 315 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 316 316 317 317 318 - **Step1**:Besurethatyour device isprogrammed and properlyconnectedtothenetwork atthis time.260 +=== 2.2.7 Use TCP protocol to uplink data === 319 319 320 - **Step 2**:ToconfiguretheApplication to forward data to DATACAKE you will needto addintegration. To add theDATACAKE integration,perform the following steps:262 +This feature is supported since firmware version v110 321 321 322 322 323 -[[image:1654505857935-743.png]] 265 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 266 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 324 324 268 +[[image:1657250217799-140.png]] 325 325 326 -[[image:1654505874829-548.png]] 327 327 328 - Step 3: Create an account or login Datacake.271 +[[image:1657250255956-604.png]] 329 329 330 -Step 4: Search the LSE01 and add DevEUI. 331 331 332 332 333 - [[image:1654505905236-553.png]]275 +=== 2.2.8 Change Update Interval === 334 334 277 +User can use below command to change the (% style="color:green" %)**uplink interval**. 335 335 336 - Afteradded,thesensordata arrive TTN,itwillalsoarriveandshow inMydevices.279 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 337 337 338 -[[image:1654505925508-181.png]] 281 +((( 282 +(% style="color:red" %)**NOTE:** 283 +))) 339 339 285 +((( 286 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 287 +))) 340 340 341 341 342 -== 2.7 Frequency Plans == 343 343 344 - TheLSE01uses OTAA mode and below frequencyplans by default. If user want to useit with differentfrequencyplan, please refer the AT commandsets.291 +== 2.3 Uplink Payload == 345 345 293 +In this mode, uplink payload includes in total 18 bytes 346 346 347 -=== 2.7.1 EU863-870 (EU868) === 295 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 296 +|=(% style="width: 50px;" %)((( 297 +**Size(bytes)** 298 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 299 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 348 348 349 - (%style="color:#037691"%)** Uplink:**301 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 350 350 351 -868.1 - SF7BW125 to SF12BW125 352 352 353 - 868.3-SF7BW125 to SF12BW125 and SF7BW250304 +[[image:image-20220708111918-4.png]] 354 354 355 -868.5 - SF7BW125 to SF12BW125 356 356 357 - 867.1-SF7BW125toSF12BW125307 +The payload is ASCII string, representative same HEX: 358 358 359 - 867.3- SF7BW125to SF12BW125309 +0x72403155615900640c7817075e0a8c02f900 where: 360 360 361 -867.5 - SF7BW125 to SF12BW125 311 +* Device ID: 0x 724031556159 = 724031556159 312 +* Version: 0x0064=100=1.0.0 362 362 363 -867.7 - SF7BW125 to SF12BW125 314 +* BAT: 0x0c78 = 3192 mV = 3.192V 315 +* Singal: 0x17 = 23 316 +* Soil Moisture: 0x075e= 1886 = 18.86 % 317 +* Soil Temperature:0x0a8c =2700=27 °C 318 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 319 +* Interrupt: 0x00 = 0 364 364 365 -867.9 - SF7BW125 to SF12BW125 366 366 367 -868.8 - FSK 368 368 369 369 370 - (%style="color:#037691"%)**Downlink:**324 +== 2.4 Payload Explanation and Sensor Interface == 371 371 372 -Uplink channels 1-9 (RX1) 373 373 374 - 869.525- SF9BW125 (RX2 downlinkonly)327 +=== 2.4.1 Device ID === 375 375 329 +By default, the Device ID equal to the last 6 bytes of IMEI. 376 376 331 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 377 377 378 - === 2.7.2 US902-928(US915) ===333 +**Example:** 379 379 380 - Used in USA, Canada and South America.Default use CHE=2335 +AT+DEUI=A84041F15612 381 381 382 - (%style="color:#037691"%)**Uplink:**337 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 383 383 384 -903.9 - SF7BW125 to SF10BW125 385 385 386 -904.1 - SF7BW125 to SF10BW125 387 387 388 - 904.3 - SF7BW125toSF10BW125341 +=== 2.4.2 Version Info === 389 389 390 - 904.5-SF7BW125toSF10BW125343 +Specify the software version: 0x64=100, means firmware version 1.00. 391 391 392 - 904.7-SF7BW125toSF10BW125345 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 393 393 394 -904.9 - SF7BW125 to SF10BW125 395 395 396 -905.1 - SF7BW125 to SF10BW125 397 397 398 - 905.3- SF7BW125toSF10BW125349 +=== 2.4.3 Battery Info === 399 399 351 +((( 352 +Check the battery voltage for LSE01. 353 +))) 400 400 401 -(% style="color:#037691" %)**Downlink:** 355 +((( 356 +Ex1: 0x0B45 = 2885mV 357 +))) 402 402 403 -923.3 - SF7BW500 to SF12BW500 359 +((( 360 +Ex2: 0x0B49 = 2889mV 361 +))) 404 404 405 -923.9 - SF7BW500 to SF12BW500 406 406 407 -924.5 - SF7BW500 to SF12BW500 408 408 409 - 925.1-SF7BW500toSF12BW500365 +=== 2.4.4 Signal Strength === 410 410 411 - 925.7-SF7BW500to SF12BW500367 +NB-IoT Network signal Strength. 412 412 413 - 926.3- SF7BW500toSF12BW500369 +**Ex1: 0x1d = 29** 414 414 415 - 926.9-SF7BW500toSF12BW500371 +(% style="color:blue" %)**0**(%%) -113dBm or less 416 416 417 - 927.5- SF7BW500toSF12BW500373 +(% style="color:blue" %)**1**(%%) -111dBm 418 418 419 - 923.3 -SF12BW500(RX2downlinkonly)375 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 420 420 377 +(% style="color:blue" %)**31** (%%) -51dBm or greater 421 421 379 +(% style="color:blue" %)**99** (%%) Not known or not detectable 422 422 423 -=== 2.7.3 CN470-510 (CN470) === 424 424 425 -Used in China, Default use CHE=1 426 426 427 - (% style="color:#037691"%)**Uplink:**383 +=== 2.4.5 Soil Moisture === 428 428 429 -486.3 - SF7BW125 to SF12BW125 385 +((( 386 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 387 +))) 430 430 431 -486.5 - SF7BW125 to SF12BW125 389 +((( 390 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 391 +))) 432 432 433 -486.7 - SF7BW125 to SF12BW125 393 +((( 394 + 395 +))) 434 434 435 -486.9 - SF7BW125 to SF12BW125 397 +((( 398 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 399 +))) 436 436 437 -487.1 - SF7BW125 to SF12BW125 438 438 439 -487.3 - SF7BW125 to SF12BW125 440 440 441 -4 87.5-SF7BW125toSF12BW125403 +=== 2.4.6 Soil Temperature === 442 442 443 -487.7 - SF7BW125 to SF12BW125 405 +((( 406 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 407 +))) 444 444 409 +((( 410 +**Example**: 411 +))) 445 445 446 -(% style="color:#037691" %)**Downlink:** 413 +((( 414 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 415 +))) 447 447 448 -506.7 - SF7BW125 to SF12BW125 417 +((( 418 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 419 +))) 449 449 450 -506.9 - SF7BW125 to SF12BW125 451 451 452 -507.1 - SF7BW125 to SF12BW125 453 453 454 - 507.3-SF7BW125toSF12BW125423 +=== 2.4.7 Soil Conductivity (EC) === 455 455 456 -507.5 - SF7BW125 to SF12BW125 425 +((( 426 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 427 +))) 457 457 458 -507.7 - SF7BW125 to SF12BW125 429 +((( 430 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 431 +))) 459 459 460 -507.9 - SF7BW125 to SF12BW125 433 +((( 434 +Generally, the EC value of irrigation water is less than 800uS / cm. 435 +))) 461 461 462 -508.1 - SF7BW125 to SF12BW125 437 +((( 438 + 439 +))) 463 463 464 -505.3 - SF12BW125 (RX2 downlink only) 441 +((( 442 + 443 +))) 465 465 445 +=== 2.4.8 Digital Interrupt === 466 466 447 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 467 467 468 - ===2.7.4AU915-928(AU915) ===449 +The command is: 469 469 470 -Defau ltuse CHE=2451 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 471 471 472 -(% style="color:#037691" %)**Uplink:** 473 473 474 - 916.8-SF7BW125toSF12BW125454 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 475 475 476 -917.0 - SF7BW125 to SF12BW125 477 477 478 - 917.2 - SF7BW125 to SF12BW125457 +Example: 479 479 480 - 917.4-SF7BW125to SF12BW125459 +0x(00): Normal uplink packet. 481 481 482 - 917.6-SF7BW125to SF12BW125461 +0x(01): Interrupt Uplink Packet. 483 483 484 -917.8 - SF7BW125 to SF12BW125 485 485 486 -918.0 - SF7BW125 to SF12BW125 487 487 488 - 918.2- SF7BW125 toSF12BW125465 +=== 2.4.9 +5V Output === 489 489 467 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 490 490 491 -(% style="color:#037691" %)**Downlink:** 492 492 493 - 923.3- SF7BW500toSF12BW500470 +The 5V output time can be controlled by AT Command. 494 494 495 - 923.9- SF7BW500toSF12BW500472 +(% style="color:blue" %)**AT+5VT=1000** 496 496 497 - 924.5-SF7BW500 toSF12BW500474 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 498 498 499 -925.1 - SF7BW500 to SF12BW500 500 500 501 -925.7 - SF7BW500 to SF12BW500 502 502 503 - 926.3 - SF7BW500toSF12BW500478 +== 2.5 Downlink Payload == 504 504 505 - 926.9-SF7BW500toSF12BW500480 +By default, NSE01 prints the downlink payload to console port. 506 506 507 - 927.5-SF7BW500 to SF12BW500482 +[[image:image-20220708133731-5.png]] 508 508 509 -923.3 - SF12BW500(RX2 downlink only) 510 510 485 +((( 486 +(% style="color:blue" %)**Examples:** 487 +))) 511 511 489 +((( 490 + 491 +))) 512 512 513 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 493 +* ((( 494 +(% style="color:blue" %)**Set TDC** 495 +))) 514 514 515 -(% style="color:#037691" %)**Default Uplink channel:** 497 +((( 498 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 499 +))) 516 516 517 -923.2 - SF7BW125 to SF10BW125 501 +((( 502 +Payload: 01 00 00 1E TDC=30S 503 +))) 518 518 519 -923.4 - SF7BW125 to SF10BW125 505 +((( 506 +Payload: 01 00 00 3C TDC=60S 507 +))) 520 520 509 +((( 510 + 511 +))) 521 521 522 -(% style="color:#037691" %)**Additional Uplink Channel**: 513 +* ((( 514 +(% style="color:blue" %)**Reset** 515 +))) 523 523 524 -(OTAA mode, channel added by JoinAccept message) 517 +((( 518 +If payload = 0x04FF, it will reset the NSE01 519 +))) 525 525 526 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 527 527 528 - 922.2-SF7BW125toSF10BW125522 +* (% style="color:blue" %)**INTMOD** 529 529 530 - 922.4-SF7BW125toSF10BW125524 +Downlink Payload: 06000003, Set AT+INTMOD=3 531 531 532 -922.6 - SF7BW125 to SF10BW125 533 533 534 -922.8 - SF7BW125 to SF10BW125 535 535 536 - 923.0-SF7BW125toSF10BW125528 +== 2.6 LED Indicator == 537 537 538 -922.0 - SF7BW125 to SF10BW125 530 +((( 531 +The NSE01 has an internal LED which is to show the status of different state. 539 539 540 540 541 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 534 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 535 +* Then the LED will be on for 1 second means device is boot normally. 536 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 537 +* For each uplink probe, LED will be on for 500ms. 538 +))) 542 542 543 -923.6 - SF7BW125 to SF10BW125 544 544 545 -923.8 - SF7BW125 to SF10BW125 546 546 547 -924.0 - SF7BW125 to SF10BW125 548 548 549 - 924.2 - SF7BW125to SF10BW125543 +== 2.7 Installation in Soil == 550 550 551 - 924.4- SF7BW125toSF10BW125545 +__**Measurement the soil surface**__ 552 552 553 - 924.6-SF7BW125SF10BW125547 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 554 554 549 +[[image:1657259653666-883.png]] 555 555 556 -(% style="color:#037691" %)** Downlink:** 557 557 558 -Uplink channels 1-8 (RX1) 552 +((( 553 + 559 559 560 -923.2 - SF10BW125 (RX2) 555 +((( 556 +Dig a hole with diameter > 20CM. 557 +))) 561 561 559 +((( 560 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 561 +))) 562 +))) 562 562 564 +[[image:1654506665940-119.png]] 563 563 564 -=== 2.7.6 KR920-923 (KR920) === 566 +((( 567 + 568 +))) 565 565 566 -Default channel: 567 567 568 - 922.1- SF7BW125toSF12BW125571 +== 2.8 Firmware Change Log == 569 569 570 -922.3 - SF7BW125 to SF12BW125 571 571 572 - 922.5-SF7BW125toSF12BW125574 +Download URL & Firmware Change log 573 573 576 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 574 574 575 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 576 576 577 - 922.1- SF7BW125toSF12BW125579 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 578 578 579 -922.3 - SF7BW125 to SF12BW125 580 580 581 -922.5 - SF7BW125 to SF12BW125 582 582 583 - 922.7- SF7BW125toSF12BW125583 +== 2.9 Battery Analysis == 584 584 585 - 922.9- SF7BW125toSF12BW125585 +=== 2.9.1 Battery Type === 586 586 587 -923.1 - SF7BW125 to SF12BW125 588 588 589 - 923.3-SF7BW125to SF12BW125588 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 590 590 591 591 592 - (%style="color:#037691"%)**Downlink:**591 +The battery is designed to last for several years depends on the actually use environment and update interval. 593 593 594 -Uplink channels 1-7(RX1) 595 595 596 - 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 mightbechangedtoSF9BW125)594 +The battery related documents as below: 597 597 596 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 597 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 598 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 598 598 600 +((( 601 +[[image:image-20220708140453-6.png]] 602 +))) 599 599 600 -=== 2.7.7 IN865-867 (IN865) === 601 601 602 -(% style="color:#037691" %)** Uplink:** 603 603 604 - 865.0625-SF7BW125toSF12BW125606 +=== 2.9.2 Power consumption Analyze === 605 605 606 -865.4025 - SF7BW125 to SF12BW125 608 +((( 609 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 610 +))) 607 607 608 -865.9850 - SF7BW125 to SF12BW125 609 609 613 +((( 614 +Instruction to use as below: 615 +))) 610 610 611 -(% style="color:#037691" %) **Downlink:** 612 - 613 -Uplink channels 1-3 (RX1) 614 - 615 -866.550 - SF10BW125 (RX2) 616 - 617 - 618 - 619 - 620 -== 2.8 LED Indicator == 621 - 622 -The LSE01 has an internal LED which is to show the status of different state. 623 - 624 -* Blink once when device power on. 625 -* Solid ON for 5 seconds once device successful Join the network. 626 -* Blink once when device transmit a packet. 627 - 628 - 629 -== 2.9 Installation in Soil == 630 - 631 -**Measurement the soil surface** 632 - 633 - 634 -[[image:1654506634463-199.png]] 635 - 636 636 ((( 637 - Choose theropermeasuringposition.Avoidthe probe totouchrocks orhardhings.Splitthesurface soil according tothe measureddeep.Keepthe measuredas originaldensity. Verticalinsertheprobeintothe soiltobe measured. Makesure not shake wheninserting.618 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 638 638 ))) 639 639 640 640 641 - 642 -[[image:1654506665940-119.png]] 643 - 644 -Dig a hole with diameter > 20CM. 645 - 646 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 647 - 648 - 649 -== 2.10 Firmware Change Log == 650 - 651 -**Firmware download link:** 652 - 653 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 654 - 655 - 656 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 657 - 658 - 659 -**V1.0.** 660 - 661 -Release 662 - 663 - 664 -== 2.11 Battery Analysis == 665 - 666 -=== 2.11.1 Battery Type === 667 - 668 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 669 - 670 - 671 -The battery is designed to last for more than 5 years for the LSN50. 672 - 673 - 674 674 ((( 675 - Thebattery-relateddocumentsareasbelow:623 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 676 676 ))) 677 677 678 678 * ((( 679 - [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],627 +Product Model 680 680 ))) 681 681 * ((( 682 - [[Lithium-ThionylChloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],630 +Uplink Interval 683 683 ))) 684 684 * ((( 685 - [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]],[[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]633 +Working Mode 686 686 ))) 687 687 688 - [[image:image-20220606171726-9.png]] 636 +((( 637 +And the Life expectation in difference case will be shown on the right. 638 +))) 689 689 640 +[[image:image-20220708141352-7.jpeg]] 690 690 691 691 692 -=== 2.11.2 Battery Note === 693 693 644 +=== 2.9.3 Battery Note === 645 + 694 694 ((( 695 695 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 696 696 ))) ... ... @@ -697,291 +697,186 @@ 697 697 698 698 699 699 700 -=== 2. 11.3Replace the battery ===652 +=== 2.9.4 Replace the battery === 701 701 702 702 ((( 703 - IfBattery is lower than 2.7v,usershouldreplace the battery ofLSE01.655 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 704 704 ))) 705 705 658 + 659 + 660 += 3. Access NB-IoT Module = 661 + 706 706 ((( 707 - You can changethe battery in the LSE01.The type of battery isnot limitedas longas the outputis between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the maincircuit. If you need to use a battery with lessthan 3.3v, pleaseremovethe D1and shortcut thewopadsofitso therewon’tbe voltage drop between battery andmain board.663 +Users can directly access the AT command set of the NB-IoT module. 708 708 ))) 709 709 710 710 ((( 711 -The defaultbattery packof LSE01 includesa ER18505 plussupercapacitor.Ifusercan’tfind this pack locally, theycan find ER18505orequivalence,whichwillalsoworkinmostcase.The SPC can enlargethebattery lifeforigh frequency use(updateperiod below5minutes)667 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 712 712 ))) 713 713 670 +[[image:1657261278785-153.png]] 714 714 715 715 716 -= 3. Using the AT Commands = 717 717 718 -= =3.1AccessAT Commands ==674 += 4. Using the AT Commands = 719 719 676 +== 4.1 Access AT Commands == 720 720 721 - LSE01supportsATCommandsetn the stock firmware.Youcanuse a USB toTTLadaptertoconnect to LSE01forusing ATcommand,asbelow.678 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 722 722 723 -[[image:1654501986557-872.png]] 724 724 681 +AT+<CMD>? : Help on <CMD> 725 725 726 - Orifyouhavebelowboard,usebelowconnection:683 +AT+<CMD> : Run <CMD> 727 727 685 +AT+<CMD>=<value> : Set the value 728 728 729 - [[image:1654502005655-729.png]]687 +AT+<CMD>=? : Get the value 730 730 731 731 732 - 733 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 734 - 735 - 736 - [[image:1654502050864-459.png]] 737 - 738 - 739 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 740 - 741 - 742 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 743 - 744 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 745 - 746 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 747 - 748 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 749 - 750 - 751 751 (% style="color:#037691" %)**General Commands**(%%) 752 752 753 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention692 +AT : Attention 754 754 755 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help694 +AT? : Short Help 756 756 757 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset696 +ATZ : MCU Reset 758 758 759 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval698 +AT+TDC : Application Data Transmission Interval 760 760 700 +AT+CFG : Print all configurations 761 761 762 - (%style="color:#037691"%)**Keys,IDsand EUIs management**702 +AT+CFGMOD : Working mode selection 763 763 764 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI704 +AT+INTMOD : Set the trigger interrupt mode 765 765 766 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey706 +AT+5VT : Set extend the time of 5V power 767 767 768 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key708 +AT+PRO : Choose agreement 769 769 770 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress710 +AT+WEIGRE : Get weight or set weight to 0 771 771 772 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI712 +AT+WEIGAP : Get or Set the GapValue of weight 773 773 774 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)714 +AT+RXDL : Extend the sending and receiving time 775 775 776 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network716 +AT+CNTFAC : Get or set counting parameters 777 777 778 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode718 +AT+SERVADDR : Server Address 779 779 780 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 781 781 782 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network721 +(% style="color:#037691" %)**COAP Management** 783 783 784 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode723 +AT+URI : Resource parameters 785 785 786 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 787 787 788 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format726 +(% style="color:#037691" %)**UDP Management** 789 789 790 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat728 +AT+CFM : Upload confirmation mode (only valid for UDP) 791 791 792 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 793 793 794 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data731 +(% style="color:#037691" %)**MQTT Management** 795 795 733 +AT+CLIENT : Get or Set MQTT client 796 796 797 - (%style="color:#037691"%)**LoRaNetworkManagement**735 +AT+UNAME : Get or Set MQTT Username 798 798 799 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate737 +AT+PWD : Get or Set MQTT password 800 800 801 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA739 +AT+PUBTOPIC : Get or Set MQTT publish topic 802 802 803 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting741 +AT+SUBTOPIC : Get or Set MQTT subscription topic 804 804 805 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 806 806 807 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink744 +(% style="color:#037691" %)**Information** 808 808 809 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink746 +AT+FDR : Factory Data Reset 810 810 811 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1748 +AT+PWORD : Serial Access Password 812 812 813 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 814 814 815 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 816 816 817 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1752 += 5. FAQ = 818 818 819 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2754 +== 5.1 How to Upgrade Firmware == 820 820 821 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 822 822 823 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 757 +((( 758 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 759 +))) 824 824 825 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 826 - 827 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 828 - 829 - 830 -(% style="color:#037691" %)**Information** 831 - 832 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 833 - 834 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 835 - 836 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 837 - 838 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 839 - 840 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 841 - 842 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 843 - 844 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 845 - 846 - 847 -= 4. FAQ = 848 - 849 -== 4.1 How to change the LoRa Frequency Bands/Region? == 850 - 851 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]]. 852 -When downloading the images, choose the required image file for download. 853 - 854 - 855 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 856 - 857 - 858 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 859 - 860 - 861 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 862 - 863 -[[image:image-20220606154726-3.png]] 864 - 865 -When you use the TTN network, the US915 frequency bands use are: 866 - 867 -* 903.9 - SF7BW125 to SF10BW125 868 -* 904.1 - SF7BW125 to SF10BW125 869 -* 904.3 - SF7BW125 to SF10BW125 870 -* 904.5 - SF7BW125 to SF10BW125 871 -* 904.7 - SF7BW125 to SF10BW125 872 -* 904.9 - SF7BW125 to SF10BW125 873 -* 905.1 - SF7BW125 to SF10BW125 874 -* 905.3 - SF7BW125 to SF10BW125 875 -* 904.6 - SF8BW500 876 - 877 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 878 - 879 -(% class="box infomessage" %) 880 880 ((( 881 - **AT+CHE=2**762 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 882 882 ))) 883 883 884 -(% class="box infomessage" %) 885 885 ((( 886 - **ATZ**766 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 887 887 ))) 888 888 889 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 890 890 891 891 892 - The**AU915**band is similar. Beloware the AU915 UplinkChannels.771 += 6. Trouble Shooting = 893 893 894 - [[image:image-20220606154825-4.png]]773 +== 6.1 Connection problem when uploading firmware == 895 895 896 896 776 +(% class="wikigeneratedid" %) 777 +((( 778 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]] 779 +))) 897 897 898 -= 5. Trouble Shooting = 899 899 900 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 901 901 902 - Itis due to channel mapping.Please see the [[Eight Channel Mode>>doc:Main.LoRaWANCommunicationDebug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]sectionabove fordetails.783 +== 6.2 AT Command input doesn't work == 903 903 785 +((( 786 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 787 +))) 904 904 905 -== 5.2 AT Command input doesn’t work == 906 906 907 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 908 908 791 += 7. Order Info = 909 909 910 -== 5.3 Device rejoin in at the second uplink packet == 911 911 912 -(% style="color:#4f81bd" %)** Issue describe as below:**794 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 913 913 914 -[[image:1654500909990-784.png]] 915 915 797 +(% class="wikigeneratedid" %) 798 +((( 799 + 800 +))) 916 916 917 - (% style="color:#4f81bd"%)**Causeforthis issue:**802 += 8. Packing Info = 918 918 919 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 804 +((( 805 + 920 920 807 +(% style="color:#037691" %)**Package Includes**: 921 921 922 -(% style="color:#4f81bd" %)**Solution: ** 923 923 924 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 810 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 811 +* External antenna x 1 812 +))) 925 925 926 -[[image:1654500929571-736.png]] 814 +((( 815 + 927 927 817 +(% style="color:#037691" %)**Dimension and weight**: 928 928 929 -= 6. Order Info = 930 930 931 - 932 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 933 - 934 - 935 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 936 - 937 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 938 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 939 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 940 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 941 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 942 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 943 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 944 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 945 - 946 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 947 - 948 -* (% style="color:red" %)**4**(%%): 4000mAh battery 949 -* (% style="color:red" %)**8**(%%): 8500mAh battery 950 - 951 -= 7. Packing Info = 952 - 953 -((( 954 -**Package Includes**: 820 +* Size: 195 x 125 x 55 mm 821 +* Weight: 420g 955 955 ))) 956 956 957 -* ((( 958 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 959 -))) 960 - 961 961 ((( 962 962 963 -))) 964 964 965 -((( 966 -**Dimension and weight**: 967 -))) 968 968 969 -* ((( 970 -Device Size: cm 828 + 971 971 ))) 972 -* ((( 973 -Device Weight: g 974 -))) 975 -* ((( 976 -Package Size / pcs : cm 977 -))) 978 -* ((( 979 -Weight / pcs : g 980 -))) 981 981 982 -= 8. Support =831 += 9. Support = 983 983 984 984 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 985 985 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 986 - 987 -
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content