Last modified by Mengting Qiu on 2024/04/02 16:44

From version 31.39
edited by Xiaoling
on 2022/06/07 10:36
Change comment: There is no comment for this version
To version 61.1
edited by Xiaoling
on 2022/07/08 14:13
Change comment: Uploaded new attachment "1657260785982-288.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,9 +3,7 @@
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
... ... @@ -12,62 +12,81 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 +**Table of Contents:**
18 18  
19 -(((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
22 22  
23 -(((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 -)))
26 26  
27 -(((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 -)))
34 34  
20 +
21 += 1.  Introduction =
22 +
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 +
35 35  (((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 -)))
26 +
38 38  
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
39 39  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
36 +
37 +)))
38 +
40 40  [[image:1654503236291-817.png]]
41 41  
42 42  
43 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
44 44  
45 45  
46 46  
47 47  == 1.2 ​Features ==
48 48  
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
51 51  * Monitor Soil Moisture
52 52  * Monitor Soil Temperature
53 53  * Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 55  * AT Commands to change parameters
56 56  * Uplink on periodically
57 57  * Downlink to change configure
58 58  * IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
60 60  
62 +== 1.3  Specification ==
61 61  
62 -== 1.3 Specification ==
63 63  
65 +(% style="color:#037691" %)**Common DC Characteristics:**
66 +
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
69 +
70 +(% style="color:#037691" %)**NB-IoT Spec:**
71 +
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
78 +
79 +(% style="color:#037691" %)**Probe Specification:**
80 +
64 64  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
65 65  
66 -[[image:image-20220606162220-5.png]]
83 +[[image:image-20220708101224-1.png]]
67 67  
68 68  
69 69  
70 -== ​1.4 Applications ==
87 +== ​1.4  Applications ==
71 71  
72 72  * Smart Agriculture
73 73  
... ... @@ -74,677 +74,547 @@
74 74  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
75 75  ​
76 76  
77 -== 1.5 Firmware Change log ==
94 +== 1.5  Pin Definitions ==
78 78  
79 79  
80 -**LSE01 v1.0 :**  Release
97 +[[image:1657246476176-652.png]]
81 81  
82 82  
83 83  
84 -= 2. Configure LSE01 to connect to LoRaWAN network =
101 += 2.  Use NSE01 to communicate with IoT Server =
85 85  
86 -== 2.1 How it works ==
103 +== 2.1  How it works ==
87 87  
105 +
88 88  (((
89 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
90 90  )))
91 91  
110 +
92 92  (((
93 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
112 +The diagram below shows the working flow in default firmware of NSE01:
94 94  )))
95 95  
115 +[[image:image-20220708101605-2.png]]
96 96  
97 -
98 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
99 -
100 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
101 -
102 -
103 -[[image:1654503992078-669.png]]
104 -
105 -
106 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
107 -
108 -
109 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
110 -
111 -Each LSE01 is shipped with a sticker with the default device EUI as below:
112 -
113 -[[image:image-20220606163732-6.jpeg]]
114 -
115 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
116 -
117 -**Add APP EUI in the application**
118 -
119 -
120 -[[image:1654504596150-405.png]]
121 -
122 -
123 -
124 -**Add APP KEY and DEV EUI**
125 -
126 -[[image:1654504683289-357.png]]
127 -
128 -
129 -
130 -**Step 2**: Power on LSE01
131 -
132 -
133 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
134 -
135 -[[image:image-20220606163915-7.png]]
136 -
137 -
138 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
139 -
140 -[[image:1654504778294-788.png]]
141 -
142 -
143 -
144 -== 2.3 Uplink Payload ==
145 -
146 -=== 2.3.1 MOD~=0(Default Mode) ===
147 -
148 -LSE01 will uplink payload via LoRaWAN with below payload format: 
149 -
150 -
151 -Uplink payload includes in total 11 bytes.
117 +(((
152 152  
153 -
154 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
155 -|=(((
156 -**Size**
157 -
158 -**(bytes)**
159 -)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1**
160 -|**Value**|(% style="width:46px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:160px" %)(((
161 -Temperature
162 -
163 -(Reserve, Ignore now)
164 -)))|(% style="width:104px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:126px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:114px" %)(((
165 -MOD & Digital Interrupt
166 -
167 -(Optional)
168 168  )))
169 169  
170 -[[image:1654504881641-514.png]]
171 171  
172 172  
123 +== 2.2 ​ Configure the NSE01 ==
173 173  
174 -=== 2.3.2 MOD~=1(Original value) ===
175 175  
176 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
126 +=== 2.2.1 Test Requirement ===
177 177  
178 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
179 -|=(((
180 -**Size**
181 181  
182 -**(bytes)**
183 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1**
184 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
185 -Temperature
129 +To use NSE01 in your city, make sure meet below requirements:
186 186  
187 -(Reserve, Ignore now)
188 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
189 -MOD & Digital Interrupt
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
190 190  
191 -(Optional)
135 +(((
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
192 192  )))
193 193  
194 -[[image:1654504907647-967.png]]
195 195  
140 +[[image:1657249419225-449.png]]
196 196  
197 197  
198 -=== 2.3.3 Battery Info ===
199 199  
200 -Check the battery voltage for LSE01.
144 +=== 2.2.2 Insert SIM card ===
201 201  
202 -Ex1: 0x0B45 = 2885mV
146 +Insert the NB-IoT Card get from your provider.
203 203  
204 -Ex2: 0x0B49 = 2889mV
148 +User need to take out the NB-IoT module and insert the SIM card like below:
205 205  
206 206  
151 +[[image:1657249468462-536.png]]
207 207  
208 -=== 2.3.4 Soil Moisture ===
209 209  
210 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
211 211  
212 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
155 +=== 2.2.3 Connect USB TTL to NSE01 to configure it ===
213 213  
214 -
215 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
216 -
217 -
218 -
219 -=== 2.3.5 Soil Temperature ===
220 -
221 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
222 -
223 -**Example**:
224 -
225 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
226 -
227 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
228 -
229 -
230 -
231 -=== 2.3.6 Soil Conductivity (EC) ===
232 -
233 233  (((
234 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
235 -)))
236 -
237 237  (((
238 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
239 239  )))
240 -
241 -(((
242 -Generally, the EC value of irrigation water is less than 800uS / cm.
243 243  )))
244 244  
245 -(((
246 -
247 -)))
248 248  
249 -(((
250 -
251 -)))
164 +**Connection:**
252 252  
253 -=== 2.3.7 MOD ===
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
254 254  
255 -Firmware version at least v2.1 supports changing mode.
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
256 256  
257 -For example, bytes[10]=90
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
258 258  
259 -mod=(bytes[10]>>7)&0x01=1.
260 260  
173 +In the PC, use below serial tool settings:
261 261  
262 -**Downlink Command:**
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
263 263  
264 -If payload = 0x0A00, workmode=0
181 +(((
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 +)))
265 265  
266 -If** **payload =** **0x0A01, workmode=1
185 +[[image:image-20220708110657-3.png]]
267 267  
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
268 268  
269 269  
270 -=== 2.3.8 ​Decode payload in The Things Network ===
271 271  
272 -While using TTN network, you can add the payload format to decode the payload.
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
273 273  
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
274 274  
275 -[[image:1654505570700-128.png]]
276 276  
277 -The payload decoder function for TTN is here:
196 +**Use below commands:**
278 278  
279 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
280 280  
202 +For parameter description, please refer to AT command set
281 281  
204 +[[image:1657249793983-486.png]]
282 282  
283 -== 2.4 Uplink Interval ==
284 284  
285 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
286 286  
209 +[[image:1657249831934-534.png]]
287 287  
288 288  
289 -== 2.5 Downlink Payload ==
290 290  
291 -By default, LSE50 prints the downlink payload to console port.
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
292 292  
293 -[[image:image-20220606165544-8.png]]
215 +This feature is supported since firmware version v1.0.1
294 294  
295 295  
296 -**Examples:**
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
297 297  
222 +[[image:1657249864775-321.png]]
298 298  
299 -* **Set TDC**
300 300  
301 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
225 +[[image:1657249930215-289.png]]
302 302  
303 -Payload:    01 00 00 1E    TDC=30S
304 304  
305 -Payload:    01 00 00 3C    TDC=60S
306 306  
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
307 307  
308 -* **Reset**
231 +This feature is supported since firmware version v110
309 309  
310 -If payload = 0x04FF, it will reset the LSE01
311 311  
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
312 312  
313 -* **CFM**
242 +[[image:1657249978444-674.png]]
314 314  
315 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
316 316  
245 +[[image:1657249990869-686.png]]
317 317  
318 318  
319 -== 2.6 ​Show Data in DataCake IoT Server ==
248 +(((
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
250 +)))
320 320  
321 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
322 322  
323 323  
324 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
254 +=== 2.2.7 Use TCP protocol to uplink data ===
325 325  
326 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
256 +This feature is supported since firmware version v110
327 327  
328 328  
329 -[[image:1654505857935-743.png]]
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
330 330  
262 +[[image:1657250217799-140.png]]
331 331  
332 -[[image:1654505874829-548.png]]
333 333  
334 -Step 3: Create an account or log in Datacake.
265 +[[image:1657250255956-604.png]]
335 335  
336 -Step 4: Search the LSE01 and add DevEUI.
337 337  
338 338  
339 -[[image:1654505905236-553.png]]
269 +=== 2.2.8 Change Update Interval ===
340 340  
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
341 341  
342 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
343 343  
344 -[[image:1654505925508-181.png]]
275 +(((
276 +(% style="color:red" %)**NOTE:**
277 +)))
345 345  
279 +(((
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
281 +)))
346 346  
347 347  
348 -== 2.7 Frequency Plans ==
349 349  
350 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
285 +== 2.3  Uplink Payload ==
351 351  
287 +In this mode, uplink payload includes in total 18 bytes
352 352  
353 -=== 2.7.1 EU863-870 (EU868) ===
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
354 354  
355 -(% style="color:#037691" %)** Uplink:**
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
356 356  
357 -868.1 - SF7BW125 to SF12BW125
358 358  
359 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
298 +[[image:image-20220708111918-4.png]]
360 360  
361 -868.5 - SF7BW125 to SF12BW125
362 362  
363 -867.1 - SF7BW125 to SF12BW125
301 +The payload is ASCII string, representative same HEX:
364 364  
365 -867.3 - SF7BW125 to SF12BW125
303 +0x72403155615900640c7817075e0a8c02f900 where:
366 366  
367 -867.5 - SF7BW125 to SF12BW125
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
368 368  
369 -867.7 - SF7BW125 to SF12BW125
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
370 370  
371 -867.9 - SF7BW125 to SF12BW125
315 +== 2.4  Payload Explanation and Sensor Interface ==
372 372  
373 -868.8 - FSK
374 374  
318 +=== 2.4.1  Device ID ===
375 375  
376 -(% style="color:#037691" %)** Downlink:**
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
377 377  
378 -Uplink channels 1-9 (RX1)
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
379 379  
380 -869.525 - SF9BW125 (RX2 downlink only)
324 +**Example:**
381 381  
326 +AT+DEUI=A84041F15612
382 382  
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
383 383  
384 -=== 2.7.2 US902-928(US915) ===
385 385  
386 -Used in USA, Canada and South America. Default use CHE=2
387 387  
388 -(% style="color:#037691" %)**Uplink:**
332 +=== 2.4.2  Version Info ===
389 389  
390 -903.9 - SF7BW125 to SF10BW125
334 +Specify the software version: 0x64=100, means firmware version 1.00.
391 391  
392 -904.1 - SF7BW125 to SF10BW125
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
393 393  
394 -904.3 - SF7BW125 to SF10BW125
395 395  
396 -904.5 - SF7BW125 to SF10BW125
397 397  
398 -904.7 - SF7BW125 to SF10BW125
340 +=== 2.4. Battery Info ===
399 399  
400 -904.9 - SF7BW125 to SF10BW125
342 +(((
343 +Check the battery voltage for LSE01.
344 +)))
401 401  
402 -905.1 - SF7BW125 to SF10BW125
346 +(((
347 +Ex1: 0x0B45 = 2885mV
348 +)))
403 403  
404 -905.3 - SF7BW125 to SF10BW125
350 +(((
351 +Ex2: 0x0B49 = 2889mV
352 +)))
405 405  
406 406  
407 -(% style="color:#037691" %)**Downlink:**
408 408  
409 -923.3 - SF7BW500 to SF12BW500
356 +=== 2.4.4  Signal Strength ===
410 410  
411 -923.9 - SF7BW500 to SF12BW500
358 +NB-IoT Network signal Strength.
412 412  
413 -924.5 - SF7BW500 to SF12BW500
360 +**Ex1: 0x1d = 29**
414 414  
415 -925.1 - SF7BW500 to SF12BW500
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
416 416  
417 -925.7 - SF7BW500 to SF12BW500
364 +(% style="color:blue" %)**1**(%%)  -111dBm
418 418  
419 -926.3 - SF7BW500 to SF12BW500
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
420 420  
421 -926.9 - SF7BW500 to SF12BW500
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
422 422  
423 -927.5 - SF7BW500 to SF12BW500
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
424 424  
425 -923.3 - SF12BW500(RX2 downlink only)
426 426  
427 427  
374 +=== 2.4.5  Soil Moisture ===
428 428  
429 -=== 2.7.3 CN470-510 (CN470) ===
376 +(((
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 +)))
430 430  
431 -Used in China, Default use CHE=1
380 +(((
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 +)))
432 432  
433 -(% style="color:#037691" %)**Uplink:**
384 +(((
385 +
386 +)))
434 434  
435 -486.3 - SF7BW125 to SF12BW125
388 +(((
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 +)))
436 436  
437 -486.5 - SF7BW125 to SF12BW125
438 438  
439 -486.7 - SF7BW125 to SF12BW125
440 440  
441 -486.9 - SF7BW125 to SF12BW125
394 +=== 2.4. Soil Temperature ===
442 442  
443 -487.1 - SF7BW125 to SF12BW125
396 +(((
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 +)))
444 444  
445 -487.3 - SF7BW125 to SF12BW125
400 +(((
401 +**Example**:
402 +)))
446 446  
447 -487.5 - SF7BW125 to SF12BW125
404 +(((
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 +)))
448 448  
449 -487.7 - SF7BW125 to SF12BW125
408 +(((
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 +)))
450 450  
451 451  
452 -(% style="color:#037691" %)**Downlink:**
453 453  
454 -506.7 - SF7BW125 to SF12BW125
414 +=== 2.4.7  Soil Conductivity (EC) ===
455 455  
456 -506.9 - SF7BW125 to SF12BW125
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
457 457  
458 -507.1 - SF7BW125 to SF12BW125
420 +(((
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +)))
459 459  
460 -507.3 - SF7BW125 to SF12BW125
424 +(((
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
426 +)))
461 461  
462 -507.5 - SF7BW125 to SF12BW125
428 +(((
429 +
430 +)))
463 463  
464 -507.7 - SF7BW125 to SF12BW125
432 +(((
433 +
434 +)))
465 465  
466 -507.9 - SF7BW125 to SF12BW125
436 +=== 2.4.8  Digital Interrupt ===
467 467  
468 -508.1 - SF7BW125 to SF12BW125
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
469 469  
470 -505.3 - SF12BW125 (RX2 downlink only)
440 +The command is:
471 471  
442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
472 472  
473 473  
474 -=== 2.7.4 AU915-928(AU915) ===
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
475 475  
476 -Default use CHE=2
477 477  
478 -(% style="color:#037691" %)**Uplink:**
448 +Example:
479 479  
480 -916.8 - SF7BW125 to SF12BW125
450 +0x(00): Normal uplink packet.
481 481  
482 -917.0 - SF7BW125 to SF12BW125
452 +0x(01): Interrupt Uplink Packet.
483 483  
484 -917.2 - SF7BW125 to SF12BW125
485 485  
486 -917.4 - SF7BW125 to SF12BW125
487 487  
488 -917.6 - SF7BW125 to SF12BW125
456 +=== 2.4.9  ​+5V Output ===
489 489  
490 -917.8 - SF7BW125 to SF12BW125
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
491 491  
492 -918.0 - SF7BW125 to SF12BW125
493 493  
494 -918.2 - SF7BW125 to SF12BW125
461 +The 5V output time can be controlled by AT Command.
495 495  
463 +(% style="color:blue" %)**AT+5VT=1000**
496 496  
497 -(% style="color:#037691" %)**Downlink:**
465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
498 498  
499 -923.3 - SF7BW500 to SF12BW500
500 500  
501 -923.9 - SF7BW500 to SF12BW500
502 502  
503 -924.5 - SF7BW500 to SF12BW500
469 +== 2.5  Downlink Payload ==
504 504  
505 -925.1 - SF7BW500 to SF12BW500
471 +By default, NSE01 prints the downlink payload to console port.
506 506  
507 -925.7 - SF7BW500 to SF12BW500
473 +[[image:image-20220708133731-5.png]]
508 508  
509 -926.3 - SF7BW500 to SF12BW500
510 510  
511 -926.9 - SF7BW500 to SF12BW500
512 512  
513 -927.5 - SF7BW500 to SF12BW500
477 +(((
478 +(% style="color:blue" %)**Examples:**
479 +)))
514 514  
515 -923.3 - SF12BW500(RX2 downlink only)
481 +(((
482 +
483 +)))
516 516  
485 +* (((
486 +(% style="color:blue" %)**Set TDC**
487 +)))
517 517  
489 +(((
490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
491 +)))
518 518  
519 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
493 +(((
494 +Payload:    01 00 00 1E    TDC=30S
495 +)))
520 520  
521 -(% style="color:#037691" %)**Default Uplink channel:**
497 +(((
498 +Payload:    01 00 00 3C    TDC=60S
499 +)))
522 522  
523 -923.2 - SF7BW125 to SF10BW125
501 +(((
502 +
503 +)))
524 524  
525 -923.4 - SF7BW125 to SF10BW125
505 +* (((
506 +(% style="color:blue" %)**Reset**
507 +)))
526 526  
509 +(((
510 +If payload = 0x04FF, it will reset the NSE01
511 +)))
527 527  
528 -(% style="color:#037691" %)**Additional Uplink Channel**:
529 529  
530 -(OTAA mode, channel added by JoinAccept message)
514 +* (% style="color:blue" %)**INTMOD**
531 531  
532 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
516 +Downlink Payload: 06000003, Set AT+INTMOD=3
533 533  
534 -922.2 - SF7BW125 to SF10BW125
535 535  
536 -922.4 - SF7BW125 to SF10BW125
537 537  
538 -922.6 - SF7BW125 to SF10BW125
520 +== 2.6  ​LED Indicator ==
539 539  
540 -922.8 - SF7BW125 to SF10BW125
522 +(((
523 +The NSE01 has an internal LED which is to show the status of different state.
541 541  
542 -923.0 - SF7BW125 to SF10BW125
543 543  
544 -922.0 - SF7BW125 to SF10BW125
526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
527 +* Then the LED will be on for 1 second means device is boot normally.
528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
529 +* For each uplink probe, LED will be on for 500ms.
530 +)))
545 545  
546 546  
547 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
548 548  
549 -923.6 - SF7BW125 to SF10BW125
550 550  
551 -923.8 - SF7BW125 to SF10BW125
535 +== 2.7  Installation in Soil ==
552 552  
553 -924.0 - SF7BW125 to SF10BW125
537 +__**Measurement the soil surface**__
554 554  
555 -924.2 - SF7BW125 to SF10BW125
539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
556 556  
557 -924.4 - SF7BW125 to SF10BW125
541 +[[image:1657259653666-883.png]] ​
558 558  
559 -924.6 - SF7BW125 to SF10BW125
560 560  
544 +(((
545 +
561 561  
562 -(% style="color:#037691" %)** Downlink:**
547 +(((
548 +Dig a hole with diameter > 20CM.
549 +)))
563 563  
564 -Uplink channels 1-8 (RX1)
551 +(((
552 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
553 +)))
554 +)))
565 565  
566 -923.2 - SF10BW125 (RX2)
556 +[[image:1654506665940-119.png]]
567 567  
558 +(((
559 +
560 +)))
568 568  
569 569  
570 -=== 2.7.6 KR920-923 (KR920) ===
563 +== 2. ​Firmware Change Log ==
571 571  
572 -Default channel:
573 573  
574 -922.1 - SF7BW125 to SF12BW125
566 +Download URL & Firmware Change log
575 575  
576 -922.3 - SF7BW125 to SF12BW125
568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
577 577  
578 -922.5 - SF7BW125 to SF12BW125
579 579  
571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
580 580  
581 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
582 582  
583 -922.1 - SF7BW125 to SF12BW125
584 584  
585 -922.3 - SF7BW125 to SF12BW125
575 +== 2. Battery Analysis ==
586 586  
587 -922.5 - SF7BW125 to SF12BW125
577 +=== 2.9.1  ​Battery Type ===
588 588  
589 -922.7 - SF7BW125 to SF12BW125
590 590  
591 -922.9 - SF7BW125 to SF12BW125
580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
592 592  
593 -923.1 - SF7BW125 to SF12BW125
594 594  
595 -923.3 - SF7BW125 to SF12BW125
583 +The battery is designed to last for several years depends on the actually use environment and update interval.
596 596  
597 597  
598 -(% style="color:#037691" %)**Downlink:**
586 +The battery related documents as below:
599 599  
600 -Uplink channels 1-7(RX1)
588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
601 601  
602 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
603 -
604 -
605 -
606 -=== 2.7.7 IN865-867 (IN865) ===
607 -
608 -(% style="color:#037691" %)** Uplink:**
609 -
610 -865.0625 - SF7BW125 to SF12BW125
611 -
612 -865.4025 - SF7BW125 to SF12BW125
613 -
614 -865.9850 - SF7BW125 to SF12BW125
615 -
616 -
617 -(% style="color:#037691" %) **Downlink:**
618 -
619 -Uplink channels 1-3 (RX1)
620 -
621 -866.550 - SF10BW125 (RX2)
622 -
623 -
624 -
625 -
626 -== 2.8 LED Indicator ==
627 -
628 -The LSE01 has an internal LED which is to show the status of different state.
629 -
630 -* Blink once when device power on.
631 -* Solid ON for 5 seconds once device successful Join the network.
632 -* Blink once when device transmit a packet.
633 -
634 -
635 -
636 -== 2.9 Installation in Soil ==
637 -
638 -**Measurement the soil surface**
639 -
640 -
641 -[[image:1654506634463-199.png]] ​
642 -
643 643  (((
644 -(((
645 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
593 +[[image:image-20220708140453-6.png]]
646 646  )))
647 -)))
648 648  
649 649  
650 -[[image:1654506665940-119.png]]
651 651  
652 -(((
653 -Dig a hole with diameter > 20CM.
654 -)))
598 +2.9.2 
655 655  
656 -(((
657 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
658 -)))
600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
659 659  
660 660  
661 -== 2.10 ​Firmware Change Log ==
603 +Instruction to use as below:
662 662  
663 -(((
664 -**Firmware download link:**
665 -)))
666 666  
667 -(((
668 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
669 -)))
606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
670 670  
671 -(((
672 -
673 -)))
608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
674 674  
675 -(((
676 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
677 -)))
678 678  
679 -(((
680 -
681 -)))
611 +Step 2: Open it and choose
682 682  
683 -(((
684 -**V1.0.**
685 -)))
613 +* Product Model
614 +* Uplink Interval
615 +* Working Mode
686 686  
687 -(((
688 -Release
689 -)))
617 +And the Life expectation in difference case will be shown on the right.
690 690  
691 691  
692 -== 2.11 ​Battery Analysis ==
693 693  
694 -=== 2.11.1 ​Battery Type ===
621 +=== 2.9. ​Battery Note ===
695 695  
696 696  (((
697 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
698 -)))
699 -
700 -(((
701 -The battery is designed to last for more than 5 years for the LSN50.
702 -)))
703 -
704 -(((
705 -(((
706 -The battery-related documents are as below:
707 -)))
708 -)))
709 -
710 -* (((
711 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
712 -)))
713 -* (((
714 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
715 -)))
716 -* (((
717 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
718 -)))
719 -
720 - [[image:image-20220606171726-9.png]]
721 -
722 -
723 -
724 -=== 2.11.2 ​Battery Note ===
725 -
726 -(((
727 727  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
728 728  )))
729 729  
730 730  
731 731  
732 -=== 2.11.3 Replace the battery ===
629 +=== 2.9. Replace the battery ===
733 733  
734 -(((
735 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
736 -)))
631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
737 737  
738 -(((
739 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
740 -)))
741 741  
742 -(((
743 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
744 -)))
745 745  
746 -
747 -
748 748  = 3. ​Using the AT Commands =
749 749  
750 750  == 3.1 Access AT Commands ==
... ... @@ -768,7 +768,7 @@
768 768   [[image:1654502050864-459.png||height="564" width="806"]]
769 769  
770 770  
771 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
772 772  
773 773  
774 774  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -926,19 +926,14 @@
926 926  
927 927  (((
928 928  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
929 -)))
930 930  
931 -(% class="box infomessage" %)
932 -(((
933 -**AT+CHE=2**
817 +* (% style="color:#037691" %)**AT+CHE=2**
818 +* (% style="color:#037691" %)**ATZ**
934 934  )))
935 935  
936 -(% class="box infomessage" %)
937 937  (((
938 -**ATZ**
939 -)))
822 +
940 940  
941 -(((
942 942  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
943 943  )))
944 944  
... ... @@ -953,18 +953,22 @@
953 953  [[image:image-20220606154825-4.png]]
954 954  
955 955  
838 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
956 956  
840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
841 +
842 +
957 957  = 5. Trouble Shooting =
958 958  
959 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
845 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
960 960  
961 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
962 962  
963 963  
964 -== 5.2 AT Command input doesnt work ==
850 +== 5.2 AT Command input doesn't work ==
965 965  
966 966  (((
967 -In the case if user can see the console output but cant type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesnt send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
968 968  )))
969 969  
970 970  
... ... @@ -1021,7 +1021,7 @@
1021 1021  (((
1022 1022  
1023 1023  
1024 -**Package Includes**:
910 +(% style="color:#037691" %)**Package Includes**:
1025 1025  )))
1026 1026  
1027 1027  * (((
... ... @@ -1029,7 +1029,9 @@
1029 1029  )))
1030 1030  
1031 1031  (((
1032 -**Dimension and weight**:
918 +
919 +
920 +(% style="color:#037691" %)**Dimension and weight**:
1033 1033  )))
1034 1034  
1035 1035  * (((
... ... @@ -1044,7 +1044,6 @@
1044 1044  * (((
1045 1045  Weight / pcs : g
1046 1046  
1047 -
1048 1048  
1049 1049  )))
1050 1050  
... ... @@ -1052,5 +1052,3 @@
1052 1052  
1053 1053  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1054 1054  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1055 -
1056 -
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content