Last modified by Mengting Qiu on 2024/04/02 16:44

From version 31.37
edited by Xiaoling
on 2022/06/07 10:34
Change comment: There is no comment for this version
To version 65.5
edited by Xiaoling
on 2022/07/08 15:14
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,9 +3,7 @@
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
... ... @@ -12,1038 +12,823 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 +**Table of Contents:**
18 18  
19 -(((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
16 +{{toc/}}
22 22  
23 -(((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 -)))
26 26  
27 -(((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 -)))
34 34  
35 -(((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 -)))
38 38  
39 39  
40 -[[image:1654503236291-817.png]]
23 += 1.  Introduction =
41 41  
25 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
42 42  
43 -[[image:1654503265560-120.png]]
44 -
45 -
46 -
47 -== 1.2 ​Features ==
48 -
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
51 -* Monitor Soil Moisture
52 -* Monitor Soil Temperature
53 -* Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 -* AT Commands to change parameters
56 -* Uplink on periodically
57 -* Downlink to change configure
58 -* IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
60 -
61 -
62 -== 1.3 Specification ==
63 -
64 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
65 -
66 -[[image:image-20220606162220-5.png]]
67 -
68 -
69 -
70 -== ​1.4 Applications ==
71 -
72 -* Smart Agriculture
73 -
74 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
75 -​
76 -
77 -== 1.5 Firmware Change log ==
78 -
79 -
80 -**LSE01 v1.0 :**  Release
81 -
82 -
83 -
84 -= 2. Configure LSE01 to connect to LoRaWAN network =
85 -
86 -== 2.1 How it works ==
87 -
88 88  (((
89 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
90 -)))
28 +
91 91  
92 -(((
93 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
94 -)))
30 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
95 95  
32 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
96 96  
34 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
97 97  
98 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
36 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
99 99  
100 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
101 -
102 -
103 -[[image:1654503992078-669.png]]
104 -
105 -
106 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
107 -
108 -
109 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
110 -
111 -Each LSE01 is shipped with a sticker with the default device EUI as below:
112 -
113 -[[image:image-20220606163732-6.jpeg]]
114 -
115 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
116 -
117 -**Add APP EUI in the application**
118 -
119 -
120 -[[image:1654504596150-405.png]]
121 -
122 -
123 -
124 -**Add APP KEY and DEV EUI**
125 -
126 -[[image:1654504683289-357.png]]
127 -
128 -
129 -
130 -**Step 2**: Power on LSE01
131 -
132 -
133 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
134 -
135 -[[image:image-20220606163915-7.png]]
136 -
137 -
138 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
139 -
140 -[[image:1654504778294-788.png]]
141 -
142 -
143 -
144 -== 2.3 Uplink Payload ==
145 -
146 -=== 2.3.1 MOD~=0(Default Mode) ===
147 -
148 -LSE01 will uplink payload via LoRaWAN with below payload format: 
149 -
150 -
151 -Uplink payload includes in total 11 bytes.
152 152  
153 -
154 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
155 -|=(((
156 -**Size**
157 -
158 -**(bytes)**
159 -)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1**
160 -|**Value**|(% style="width:46px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:160px" %)(((
161 -Temperature
162 -
163 -(Reserve, Ignore now)
164 -)))|(% style="width:104px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:126px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:114px" %)(((
165 -MOD & Digital Interrupt
166 -
167 -(Optional)
168 168  )))
169 169  
170 -[[image:1654504881641-514.png]]
41 +[[image:1654503236291-817.png]]
171 171  
172 172  
44 +[[image:1657245163077-232.png]]
173 173  
174 -=== 2.3.2 MOD~=1(Original value) ===
175 175  
176 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
177 177  
178 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
179 -|=(((
180 -**Size**
48 +== 1.2 ​ Features ==
181 181  
182 -**(bytes)**
183 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1**
184 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
185 -Temperature
50 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
51 +* Monitor Soil Moisture
52 +* Monitor Soil Temperature
53 +* Monitor Soil Conductivity
54 +* AT Commands to change parameters
55 +* Uplink on periodically
56 +* Downlink to change configure
57 +* IP66 Waterproof Enclosure
58 +* Ultra-Low Power consumption
59 +* AT Commands to change parameters
60 +* Micro SIM card slot for NB-IoT SIM
61 +* 8500mAh Battery for long term use
186 186  
187 -(Reserve, Ignore now)
188 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
189 -MOD & Digital Interrupt
190 190  
191 -(Optional)
192 -)))
193 193  
194 -[[image:1654504907647-967.png]]
65 +== 1.3  Specification ==
195 195  
196 196  
68 +(% style="color:#037691" %)**Common DC Characteristics:**
197 197  
198 -=== 2.3.3 Battery Info ===
70 +* Supply Voltage: 2.1v ~~ 3.6v
71 +* Operating Temperature: -40 ~~ 85°C
199 199  
200 -Check the battery voltage for LSE01.
201 201  
202 -Ex1: 0x0B45 = 2885mV
74 +(% style="color:#037691" %)**NB-IoT Spec:**
203 203  
204 -Ex2: 0x0B49 = 2889mV
76 +* - B1 @H-FDD: 2100MHz
77 +* - B3 @H-FDD: 1800MHz
78 +* - B8 @H-FDD: 900MHz
79 +* - B5 @H-FDD: 850MHz
80 +* - B20 @H-FDD: 800MHz
81 +* - B28 @H-FDD: 700MHz
205 205  
206 206  
84 +Probe(% style="color:#037691" %)** Specification:**
207 207  
208 -=== 2.3.4 Soil Moisture ===
86 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
209 209  
210 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
88 +[[image:image-20220708101224-1.png]]
211 211  
212 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
213 213  
214 214  
215 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
92 +== 1.4  Applications ==
216 216  
94 +* Smart Agriculture
217 217  
96 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
97 +​
218 218  
219 -=== 2.3.5 Soil Temperature ===
99 +== 1.5  Pin Definitions ==
220 220  
221 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
222 222  
223 -**Example**:
102 +[[image:1657246476176-652.png]]
224 224  
225 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
226 226  
227 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
228 228  
106 += 2.  Use NSE01 to communicate with IoT Server =
229 229  
108 +== 2.1  How it works ==
230 230  
231 -=== 2.3.6 Soil Conductivity (EC) ===
232 232  
233 233  (((
234 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
112 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
235 235  )))
236 236  
237 -(((
238 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
239 -)))
240 240  
241 241  (((
242 -Generally, the EC value of irrigation water is less than 800uS / cm.
117 +The diagram below shows the working flow in default firmware of NSE01:
243 243  )))
244 244  
245 -(((
246 -
247 -)))
120 +[[image:image-20220708101605-2.png]]
248 248  
249 249  (((
250 250  
251 251  )))
252 252  
253 -=== 2.3.7 MOD ===
254 254  
255 -Firmware version at least v2.1 supports changing mode.
256 256  
257 -For example, bytes[10]=90
128 +== 2.2 ​ Configure the NSE01 ==
258 258  
259 -mod=(bytes[10]>>7)&0x01=1.
260 260  
131 +=== 2.2.1 Test Requirement ===
261 261  
262 -**Downlink Command:**
263 263  
264 -If payload = 0x0A00, workmode=0
134 +To use NSE01 in your city, make sure meet below requirements:
265 265  
266 -If** **payload =** **0x0A01, workmode=1
136 +* Your local operator has already distributed a NB-IoT Network there.
137 +* The local NB-IoT network used the band that NSE01 supports.
138 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
267 267  
140 +(((
141 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
142 +)))
268 268  
269 269  
270 -=== 2.3.8 ​Decode payload in The Things Network ===
145 +[[image:1657249419225-449.png]]
271 271  
272 -While using TTN network, you can add the payload format to decode the payload.
273 273  
274 274  
275 -[[image:1654505570700-128.png]]
149 +=== 2.2.2 Insert SIM card ===
276 276  
277 -The payload decoder function for TTN is here:
151 +Insert the NB-IoT Card get from your provider.
278 278  
279 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
153 +User need to take out the NB-IoT module and insert the SIM card like below:
280 280  
281 281  
156 +[[image:1657249468462-536.png]]
282 282  
283 -== 2.4 Uplink Interval ==
284 284  
285 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
286 286  
160 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
287 287  
162 +(((
163 +(((
164 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
165 +)))
166 +)))
288 288  
289 -== 2.5 Downlink Payload ==
290 290  
291 -By default, LSE50 prints the downlink payload to console port.
169 +**Connection:**
292 292  
293 -[[image:image-20220606165544-8.png]]
171 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
294 294  
173 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
295 295  
296 -**Examples:**
175 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
297 297  
298 298  
299 -* **Set TDC**
178 +In the PC, use below serial tool settings:
300 300  
301 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
180 +* Baud:  (% style="color:green" %)**9600**
181 +* Data bits:** (% style="color:green" %)8(%%)**
182 +* Stop bits: (% style="color:green" %)**1**
183 +* Parity:  (% style="color:green" %)**None**
184 +* Flow Control: (% style="color:green" %)**None**
302 302  
303 -Payload:    01 00 00 1E    TDC=30S
186 +(((
187 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
188 +)))
304 304  
305 -Payload:    01 00 00 3C    TDC=60S
190 +[[image:image-20220708110657-3.png]]
306 306  
192 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
307 307  
308 -* **Reset**
309 309  
310 -If payload = 0x04FF, it will reset the LSE01
311 311  
196 +=== 2.2.4 Use CoAP protocol to uplink data ===
312 312  
313 -* **CFM**
198 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
314 314  
315 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
316 316  
201 +**Use below commands:**
317 317  
203 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
204 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
205 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
318 318  
319 -== 2.6 ​Show Data in DataCake IoT Server ==
207 +For parameter description, please refer to AT command set
320 320  
321 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
209 +[[image:1657249793983-486.png]]
322 322  
323 323  
324 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
212 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
325 325  
326 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
214 +[[image:1657249831934-534.png]]
327 327  
328 328  
329 -[[image:1654505857935-743.png]]
330 330  
218 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
331 331  
332 -[[image:1654505874829-548.png]]
220 +This feature is supported since firmware version v1.0.1
333 333  
334 -Step 3: Create an account or log in Datacake.
335 335  
336 -Step 4: Search the LSE01 and add DevEUI.
223 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
224 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
225 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
337 337  
227 +[[image:1657249864775-321.png]]
338 338  
339 -[[image:1654505905236-553.png]]
340 340  
230 +[[image:1657249930215-289.png]]
341 341  
342 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
343 343  
344 -[[image:1654505925508-181.png]]
345 345  
234 +=== 2.2.6 Use MQTT protocol to uplink data ===
346 346  
236 +This feature is supported since firmware version v110
347 347  
348 -== 2.7 Frequency Plans ==
349 349  
350 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
239 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
240 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
241 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
242 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
243 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
244 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
245 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
351 351  
247 +[[image:1657249978444-674.png]]
352 352  
353 -=== 2.7.1 EU863-870 (EU868) ===
354 354  
355 -(% style="color:#037691" %)** Uplink:**
250 +[[image:1657249990869-686.png]]
356 356  
357 -868.1 - SF7BW125 to SF12BW125
358 358  
359 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
253 +(((
254 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
255 +)))
360 360  
361 -868.5 - SF7BW125 to SF12BW125
362 362  
363 -867.1 - SF7BW125 to SF12BW125
364 364  
365 -867.3 - SF7BW125 to SF12BW125
259 +=== 2.2.7 Use TCP protocol to uplink data ===
366 366  
367 -867.5 - SF7BW125 to SF12BW125
261 +This feature is supported since firmware version v110
368 368  
369 -867.7 - SF7BW125 to SF12BW125
370 370  
371 -867.9 - SF7BW125 to SF12BW125
264 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
265 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
372 372  
373 -868.8 - FSK
267 +[[image:1657250217799-140.png]]
374 374  
375 375  
376 -(% style="color:#037691" %)** Downlink:**
270 +[[image:1657250255956-604.png]]
377 377  
378 -Uplink channels 1-9 (RX1)
379 379  
380 -869.525 - SF9BW125 (RX2 downlink only)
381 381  
274 +=== 2.2.8 Change Update Interval ===
382 382  
276 +User can use below command to change the (% style="color:green" %)**uplink interval**.
383 383  
384 -=== 2.7.2 US902-928(US915) ===
278 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
385 385  
386 -Used in USA, Canada and South America. Default use CHE=2
280 +(((
281 +(% style="color:red" %)**NOTE:**
282 +)))
387 387  
388 -(% style="color:#037691" %)**Uplink:**
284 +(((
285 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
286 +)))
389 389  
390 -903.9 - SF7BW125 to SF10BW125
391 391  
392 -904.1 - SF7BW125 to SF10BW125
393 393  
394 -904.3 - SF7BW125 to SF10BW125
290 +== 2.3  Uplink Payload ==
395 395  
396 -904.5 - SF7BW125 to SF10BW125
292 +In this mode, uplink payload includes in total 18 bytes
397 397  
398 -904.7 - SF7BW125 to SF10BW125
294 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
295 +|=(% style="width: 50px;" %)(((
296 +**Size(bytes)**
297 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
298 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
399 399  
400 -904.9 - SF7BW125 to SF10BW125
300 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
401 401  
402 -905.1 - SF7BW125 to SF10BW125
403 403  
404 -905.3 - SF7BW125 to SF10BW125
303 +[[image:image-20220708111918-4.png]]
405 405  
406 406  
407 -(% style="color:#037691" %)**Downlink:**
306 +The payload is ASCII string, representative same HEX:
408 408  
409 -923.3 - SF7BW500 to SF12BW500
308 +0x72403155615900640c7817075e0a8c02f900 where:
410 410  
411 -923.9 - SF7BW500 to SF12BW500
310 +* Device ID: 0x 724031556159 = 724031556159
311 +* Version: 0x0064=100=1.0.0
412 412  
413 -924.5 - SF7BW500 to SF12BW500
313 +* BAT: 0x0c78 = 3192 mV = 3.192V
314 +* Singal: 0x17 = 23
315 +* Soil Moisture: 0x075e= 1886 = 18.86  %
316 +* Soil Temperature:0x0a8c =2700=27 °C
317 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
318 +* Interrupt: 0x00 = 0
414 414  
415 -925.1 - SF7BW500 to SF12BW500
416 416  
417 -925.7 - SF7BW500 to SF12BW500
418 418  
419 -926.3 - SF7BW500 to SF12BW500
322 +== 2. Payload Explanation and Sensor Interface ==
420 420  
421 -926.9 - SF7BW500 to SF12BW500
422 422  
423 -927.5 - SF7BW500 to SF12BW500
325 +=== 2.4.1  Device ID ===
424 424  
425 -923.3 - SF12BW500(RX2 downlink only)
327 +By default, the Device ID equal to the last 6 bytes of IMEI.
426 426  
329 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
427 427  
331 +**Example:**
428 428  
429 -=== 2.7.3 CN470-510 (CN470) ===
333 +AT+DEUI=A84041F15612
430 430  
431 -Used in China, Default use CHE=1
335 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
432 432  
433 -(% style="color:#037691" %)**Uplink:**
434 434  
435 -486.3 - SF7BW125 to SF12BW125
436 436  
437 -486.5 - SF7BW125 to SF12BW125
339 +=== 2.4.2  Version Info ===
438 438  
439 -486.7 - SF7BW125 to SF12BW125
341 +Specify the software version: 0x64=100, means firmware version 1.00.
440 440  
441 -486.9 - SF7BW125 to SF12BW125
343 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
442 442  
443 -487.1 - SF7BW125 to SF12BW125
444 444  
445 -487.3 - SF7BW125 to SF12BW125
446 446  
447 -487.5 - SF7BW125 to SF12BW125
347 +=== 2.4. Battery Info ===
448 448  
449 -487.7 - SF7BW125 to SF12BW125
349 +(((
350 +Check the battery voltage for LSE01.
351 +)))
450 450  
353 +(((
354 +Ex1: 0x0B45 = 2885mV
355 +)))
451 451  
452 -(% style="color:#037691" %)**Downlink:**
357 +(((
358 +Ex2: 0x0B49 = 2889mV
359 +)))
453 453  
454 -506.7 - SF7BW125 to SF12BW125
455 455  
456 -506.9 - SF7BW125 to SF12BW125
457 457  
458 -507.1 - SF7BW125 to SF12BW125
363 +=== 2.4.4  Signal Strength ===
459 459  
460 -507.3 - SF7BW125 to SF12BW125
365 +NB-IoT Network signal Strength.
461 461  
462 -507.5 - SF7BW125 to SF12BW125
367 +**Ex1: 0x1d = 29**
463 463  
464 -507.7 - SF7BW125 to SF12BW125
369 +(% style="color:blue" %)**0**(%%)  -113dBm or less
465 465  
466 -507.9 - SF7BW125 to SF12BW125
371 +(% style="color:blue" %)**1**(%%)  -111dBm
467 467  
468 -508.1 - SF7BW125 to SF12BW125
373 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
469 469  
470 -505.3 - SF12BW125 (RX2 downlink only)
375 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
471 471  
377 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
472 472  
473 473  
474 -=== 2.7.4 AU915-928(AU915) ===
475 475  
476 -Default use CHE=2
381 +=== 2.4.5  Soil Moisture ===
477 477  
478 -(% style="color:#037691" %)**Uplink:**
383 +(((
384 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
385 +)))
479 479  
480 -916.8 - SF7BW125 to SF12BW125
387 +(((
388 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
389 +)))
481 481  
482 -917.0 - SF7BW125 to SF12BW125
391 +(((
392 +
393 +)))
483 483  
484 -917.2 - SF7BW125 to SF12BW125
395 +(((
396 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
397 +)))
485 485  
486 -917.4 - SF7BW125 to SF12BW125
487 487  
488 -917.6 - SF7BW125 to SF12BW125
489 489  
490 -917.8 - SF7BW125 to SF12BW125
401 +=== 2.4.6  Soil Temperature ===
491 491  
492 -918.0 - SF7BW125 to SF12BW125
403 +(((
404 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
405 +)))
493 493  
494 -918.2 - SF7BW125 to SF12BW125
407 +(((
408 +**Example**:
409 +)))
495 495  
411 +(((
412 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
413 +)))
496 496  
497 -(% style="color:#037691" %)**Downlink:**
415 +(((
416 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
417 +)))
498 498  
499 -923.3 - SF7BW500 to SF12BW500
500 500  
501 -923.9 - SF7BW500 to SF12BW500
502 502  
503 -924.5 - SF7BW500 to SF12BW500
421 +=== 2.4. Soil Conductivity (EC) ===
504 504  
505 -925.1 - SF7BW500 to SF12BW500
423 +(((
424 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
425 +)))
506 506  
507 -925.7 - SF7BW500 to SF12BW500
427 +(((
428 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
429 +)))
508 508  
509 -926.3 - SF7BW500 to SF12BW500
431 +(((
432 +Generally, the EC value of irrigation water is less than 800uS / cm.
433 +)))
510 510  
511 -926.9 - SF7BW500 to SF12BW500
435 +(((
436 +
437 +)))
512 512  
513 -927.5 - SF7BW500 to SF12BW500
439 +(((
440 +
441 +)))
514 514  
515 -923.3 - SF12BW500(RX2 downlink only)
443 +=== 2.4.8  Digital Interrupt ===
516 516  
445 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
517 517  
447 +The command is:
518 518  
519 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
449 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
520 520  
521 -(% style="color:#037691" %)**Default Uplink channel:**
522 522  
523 -923.2 - SF7BW125 to SF10BW125
452 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
524 524  
525 -923.4 - SF7BW125 to SF10BW125
526 526  
455 +Example:
527 527  
528 -(% style="color:#037691" %)**Additional Uplink Channel**:
457 +0x(00): Normal uplink packet.
529 529  
530 -(OTAA mode, channel added by JoinAccept message)
459 +0x(01): Interrupt Uplink Packet.
531 531  
532 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
533 533  
534 -922.2 - SF7BW125 to SF10BW125
535 535  
536 -922.4 - SF7BW125 to SF10BW125
463 +=== 2.4.9  ​+5V Output ===
537 537  
538 -922.6 - SF7BW125 to SF10BW125
465 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
539 539  
540 -922.8 - SF7BW125 to SF10BW125
541 541  
542 -923.0 - SF7BW125 to SF10BW125
468 +The 5V output time can be controlled by AT Command.
543 543  
544 -922.0 - SF7BW125 to SF10BW125
470 +(% style="color:blue" %)**AT+5VT=1000**
545 545  
472 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
546 546  
547 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
548 548  
549 -923.6 - SF7BW125 to SF10BW125
550 550  
551 -923.8 - SF7BW125 to SF10BW125
476 +== 2.5  Downlink Payload ==
552 552  
553 -924.0 - SF7BW125 to SF10BW125
478 +By default, NSE01 prints the downlink payload to console port.
554 554  
555 -924.2 - SF7BW125 to SF10BW125
480 +[[image:image-20220708133731-5.png]]
556 556  
557 -924.4 - SF7BW125 to SF10BW125
558 558  
559 -924.6 - SF7BW125 to SF10BW125
483 +(((
484 +(% style="color:blue" %)**Examples:**
485 +)))
560 560  
487 +(((
488 +
489 +)))
561 561  
562 -(% style="color:#037691" %)** Downlink:**
491 +* (((
492 +(% style="color:blue" %)**Set TDC**
493 +)))
563 563  
564 -Uplink channels 1-8 (RX1)
495 +(((
496 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
497 +)))
565 565  
566 -923.2 - SF10BW125 (RX2)
499 +(((
500 +Payload:    01 00 00 1E    TDC=30S
501 +)))
567 567  
503 +(((
504 +Payload:    01 00 00 3C    TDC=60S
505 +)))
568 568  
507 +(((
508 +
509 +)))
569 569  
570 -=== 2.7.6 KR920-923 (KR920) ===
511 +* (((
512 +(% style="color:blue" %)**Reset**
513 +)))
571 571  
572 -Default channel:
515 +(((
516 +If payload = 0x04FF, it will reset the NSE01
517 +)))
573 573  
574 -922.1 - SF7BW125 to SF12BW125
575 575  
576 -922.3 - SF7BW125 to SF12BW125
520 +* (% style="color:blue" %)**INTMOD**
577 577  
578 -922.5 - SF7BW125 to SF12BW125
522 +Downlink Payload: 06000003, Set AT+INTMOD=3
579 579  
580 580  
581 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
582 582  
583 -922.1 - SF7BW125 to SF12BW125
526 +== 2. ​LED Indicator ==
584 584  
585 -922.3 - SF7BW125 to SF12BW125
528 +(((
529 +The NSE01 has an internal LED which is to show the status of different state.
586 586  
587 -922.5 - SF7BW125 to SF12BW125
588 588  
589 -922.7 - SF7BW125 to SF12BW125
532 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
533 +* Then the LED will be on for 1 second means device is boot normally.
534 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
535 +* For each uplink probe, LED will be on for 500ms.
536 +)))
590 590  
591 -922.9 - SF7BW125 to SF12BW125
592 592  
593 -923.1 - SF7BW125 to SF12BW125
594 594  
595 -923.3 - SF7BW125 to SF12BW125
596 596  
541 +== 2.7  Installation in Soil ==
597 597  
598 -(% style="color:#037691" %)**Downlink:**
543 +__**Measurement the soil surface**__
599 599  
600 -Uplink channels 1-7(RX1)
545 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
601 601  
602 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
547 +[[image:1657259653666-883.png]] ​
603 603  
604 604  
550 +(((
551 +
605 605  
606 -=== 2.7.7 IN865-867 (IN865) ===
553 +(((
554 +Dig a hole with diameter > 20CM.
555 +)))
607 607  
608 -(% style="color:#037691" %)** Uplink:**
557 +(((
558 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
559 +)))
560 +)))
609 609  
610 -865.0625 - SF7BW125 to SF12BW125
562 +[[image:1654506665940-119.png]]
611 611  
612 -865.4025 - SF7BW125 to SF12BW125
564 +(((
565 +
566 +)))
613 613  
614 -865.9850 - SF7BW125 to SF12BW125
615 615  
569 +== 2.8  ​Firmware Change Log ==
616 616  
617 -(% style="color:#037691" %) **Downlink:**
618 618  
619 -Uplink channels 1-3 (RX1)
572 +Download URL & Firmware Change log
620 620  
621 -866.550 - SF10BW125 (RX2)
574 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
622 622  
623 623  
577 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
624 624  
625 625  
626 -== 2.8 LED Indicator ==
627 627  
628 -The LSE01 has an internal LED which is to show the status of different state.
581 +== 2.9  ​Battery Analysis ==
629 629  
630 -* Blink once when device power on.
631 -* Solid ON for 5 seconds once device successful Join the network.
632 -* Blink once when device transmit a packet.
583 +=== 2.9.1  ​Battery Type ===
633 633  
634 634  
586 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
635 635  
636 -== 2.9 Installation in Soil ==
637 637  
638 -**Measurement the soil surface**
589 +The battery is designed to last for several years depends on the actually use environment and update interval. 
639 639  
640 640  
641 -[[image:1654506634463-199.png]]
592 +The battery related documents as below:
642 642  
594 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
595 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
596 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
597 +
643 643  (((
644 -(((
645 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
599 +[[image:image-20220708140453-6.png]]
646 646  )))
647 -)))
648 648  
649 649  
650 -[[image:1654506665940-119.png]]
651 651  
652 -(((
653 -Dig a hole with diameter > 20CM.
654 -)))
604 +=== 2.9.2  Power consumption Analyze ===
655 655  
656 656  (((
657 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
607 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
658 658  )))
659 659  
660 660  
661 -== 2.10 ​Firmware Change Log ==
662 -
663 663  (((
664 -**Firmware download link:**
612 +Instruction to use as below:
665 665  )))
666 666  
667 667  (((
668 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
616 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
669 669  )))
670 670  
671 -(((
672 -
673 -)))
674 674  
675 675  (((
676 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
621 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
677 677  )))
678 678  
679 -(((
680 -
624 +* (((
625 +Product Model
681 681  )))
682 -
683 -(((
684 -**V1.0.**
627 +* (((
628 +Uplink Interval
685 685  )))
630 +* (((
631 +Working Mode
632 +)))
686 686  
687 687  (((
688 -Release
635 +And the Life expectation in difference case will be shown on the right.
689 689  )))
690 690  
638 +[[image:image-20220708141352-7.jpeg]]
691 691  
692 -== 2.11 ​Battery Analysis ==
693 693  
694 -=== 2.11.1 ​Battery Type ===
695 695  
696 -(((
697 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
698 -)))
642 +=== 2.9.3  ​Battery Note ===
699 699  
700 700  (((
701 -The battery is designed to last for more than 5 years for the LSN50.
645 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
702 702  )))
703 703  
704 -(((
705 -(((
706 -The battery-related documents are as below:
707 -)))
708 -)))
709 709  
710 -* (((
711 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
712 -)))
713 -* (((
714 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
715 -)))
716 -* (((
717 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
718 -)))
719 719  
720 - [[image:image-20220606171726-9.png]]
650 +=== 2.9.4  Replace the battery ===
721 721  
722 -
723 -
724 -=== 2.11.2 ​Battery Note ===
725 -
726 726  (((
727 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
653 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
728 728  )))
729 729  
730 730  
731 731  
732 -=== 2.11.3 Replace the battery ===
658 += 3. ​ Access NB-IoT Module =
733 733  
734 734  (((
735 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
661 +Users can directly access the AT command set of the NB-IoT module.
736 736  )))
737 737  
738 738  (((
739 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
665 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
740 740  )))
741 741  
742 -(((
743 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
744 -)))
668 +[[image:1657261278785-153.png]]
745 745  
746 746  
747 747  
748 -= 3. Using the AT Commands =
672 += 4.  Using the AT Commands =
749 749  
750 -== 3.1 Access AT Commands ==
674 +== 4.1  Access AT Commands ==
751 751  
676 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
752 752  
753 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
754 754  
755 -[[image:1654501986557-872.png||height="391" width="800"]]
679 +AT+<CMD>?  : Help on <CMD>
756 756  
681 +AT+<CMD>         : Run <CMD>
757 757  
758 -Or if you have below board, use below connection:
683 +AT+<CMD>=<value> : Set the value
759 759  
685 +AT+<CMD>=?  : Get the value
760 760  
761 -[[image:1654502005655-729.png||height="503" width="801"]]
762 762  
763 -
764 -
765 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
766 -
767 -
768 - [[image:1654502050864-459.png||height="564" width="806"]]
769 -
770 -
771 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
772 -
773 -
774 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
775 -
776 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
777 -
778 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
779 -
780 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
781 -
782 -
783 783  (% style="color:#037691" %)**General Commands**(%%)      
784 784  
785 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
690 +AT  : Attention       
786 786  
787 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
692 +AT?  : Short Help     
788 788  
789 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
694 +ATZ  : MCU Reset    
790 790  
791 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
696 +AT+TDC  : Application Data Transmission Interval
792 792  
698 +AT+CFG  : Print all configurations
793 793  
794 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
700 +AT+CFGMOD           : Working mode selection
795 795  
796 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
702 +AT+INTMOD            : Set the trigger interrupt mode
797 797  
798 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
704 +AT+5VT  : Set extend the time of 5V power  
799 799  
800 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
706 +AT+PRO  : Choose agreement
801 801  
802 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
708 +AT+WEIGRE  : Get weight or set weight to 0
803 803  
804 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
710 +AT+WEIGAP  : Get or Set the GapValue of weight
805 805  
806 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
712 +AT+RXDL  : Extend the sending and receiving time
807 807  
808 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
714 +AT+CNTFAC  : Get or set counting parameters
809 809  
810 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
716 +AT+SERVADDR  : Server Address
811 811  
812 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
813 813  
814 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
719 +(% style="color:#037691" %)**COAP Management**      
815 815  
816 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
721 +AT+URI            : Resource parameters
817 817  
818 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
819 819  
820 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
724 +(% style="color:#037691" %)**UDP Management**
821 821  
822 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
726 +AT+CFM          : Upload confirmation mode (only valid for UDP)
823 823  
824 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
825 825  
826 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
729 +(% style="color:#037691" %)**MQTT Management**
827 827  
731 +AT+CLIENT               : Get or Set MQTT client
828 828  
829 -(% style="color:#037691" %)**LoRa Network Management**
733 +AT+UNAME  : Get or Set MQTT Username
830 830  
831 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
735 +AT+PWD                  : Get or Set MQTT password
832 832  
833 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
737 +AT+PUBTOPI : Get or Set MQTT publish topic
834 834  
835 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
739 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
836 836  
837 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
838 838  
839 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
742 +(% style="color:#037691" %)**Information**          
840 840  
841 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
744 +AT+FDR  : Factory Data Reset
842 842  
843 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
746 +AT+PWOR : Serial Access Password
844 844  
845 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
846 846  
847 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
848 848  
849 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
750 += ​5.  FAQ =
850 850  
851 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
752 +== 5.1 How to Upgrade Firmware ==
852 852  
853 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
854 854  
855 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
856 -
857 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
858 -
859 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
860 -
861 -
862 -(% style="color:#037691" %)**Information** 
863 -
864 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
865 -
866 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
867 -
868 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
869 -
870 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
871 -
872 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
873 -
874 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
875 -
876 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
877 -
878 -
879 -= ​4. FAQ =
880 -
881 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
882 -
883 883  (((
884 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
885 -When downloading the images, choose the required image file for download. ​
756 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
886 886  )))
887 887  
888 888  (((
889 -
760 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
890 890  )))
891 891  
892 892  (((
893 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
764 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
894 894  )))
895 895  
896 -(((
897 -
898 -)))
899 899  
900 -(((
901 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
902 -)))
903 903  
904 -(((
905 -
906 -)))
769 += 6.  Trouble Shooting =
907 907  
908 -(((
909 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
910 -)))
771 +== 6.1  ​Connection problem when uploading firmware ==
911 911  
912 -[[image:image-20220606154726-3.png]]
913 913  
914 -
915 -When you use the TTN network, the US915 frequency bands use are:
916 -
917 -* 903.9 - SF7BW125 to SF10BW125
918 -* 904.1 - SF7BW125 to SF10BW125
919 -* 904.3 - SF7BW125 to SF10BW125
920 -* 904.5 - SF7BW125 to SF10BW125
921 -* 904.7 - SF7BW125 to SF10BW125
922 -* 904.9 - SF7BW125 to SF10BW125
923 -* 905.1 - SF7BW125 to SF10BW125
924 -* 905.3 - SF7BW125 to SF10BW125
925 -* 904.6 - SF8BW500
926 -
927 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
928 -
929 -(% class="box infomessage" %)
774 +(% class="wikigeneratedid" %)
930 930  (((
931 -**AT+CHE=2**
776 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
932 932  )))
933 933  
934 -(% class="box infomessage" %)
935 -(((
936 -**ATZ**
937 -)))
938 938  
939 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
940 940  
781 +== 6.2  AT Command input doesn't work ==
941 941  
942 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
943 -
944 -[[image:image-20220606154825-4.png]]
945 -
946 -
947 -
948 -= 5. Trouble Shooting =
949 -
950 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
951 -
952 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
953 -
954 -
955 -== 5.2 AT Command input doesn’t work ==
956 -
957 957  (((
958 -In the case if user can see the console output but cant type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesnt send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
784 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
959 959  )))
960 960  
961 961  
962 -== 5.3 Device rejoin in at the second uplink packet ==
963 963  
964 -(% style="color:#4f81bd" %)**Issue describe as below:**
789 += 7. ​ Order Info =
965 965  
966 -[[image:1654500909990-784.png]]
967 967  
792 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
968 968  
969 -(% style="color:#4f81bd" %)**Cause for this issue:**
970 970  
795 +(% class="wikigeneratedid" %)
971 971  (((
972 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
797 +
973 973  )))
974 974  
800 += 8.  Packing Info =
975 975  
976 -(% style="color:#4f81bd" %)**Solution: **
802 +(((
803 +
977 977  
978 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
805 +(% style="color:#037691" %)**Package Includes**:
979 979  
980 -[[image:1654500929571-736.png||height="458" width="832"]]
981 981  
808 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
809 +* External antenna x 1
810 +)))
982 982  
983 -= 6. ​Order Info =
984 -
985 -
986 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
987 -
988 -
989 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
990 -
991 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
992 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
993 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
994 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
995 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
996 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
997 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
998 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
999 -
1000 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1001 -
1002 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1003 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1004 -
1005 -(% class="wikigeneratedid" %)
1006 1006  (((
1007 1007  
1008 -)))
1009 1009  
1010 -= 7. Packing Info =
815 +(% style="color:#037691" %)**Dimension and weight**:
1011 1011  
1012 -(((
1013 -**Package Includes**:
1014 -)))
1015 1015  
1016 -* (((
1017 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
818 +* Size: 195 x 125 x 55 mm
819 +* Weight:   420g
1018 1018  )))
1019 1019  
1020 1020  (((
1021 1021  
1022 -)))
1023 1023  
1024 -(((
1025 -**Dimension and weight**:
1026 -)))
1027 1027  
1028 -* (((
1029 -Device Size: cm
1030 -)))
1031 -* (((
1032 -Device Weight: g
1033 -)))
1034 -* (((
1035 -Package Size / pcs : cm
1036 -)))
1037 -* (((
1038 -Weight / pcs : g
1039 -
1040 -
1041 1041  
1042 1042  )))
1043 1043  
1044 -= 8. Support =
829 += 9.  Support =
1045 1045  
1046 1046  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1047 1047  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1048 -
1049 -
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content