Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 24 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,9 +3,7 @@ 3 3 4 4 5 5 6 -**Contents:** 7 7 8 -{{toc/}} 9 9 10 10 11 11 ... ... @@ -12,1038 +12,823 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 - == 1.1 Whatis LoRaWANSoil Moisture& EC Sensor ==14 +**Table of Contents:** 18 18 19 -((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 16 +{{toc/}} 22 22 23 -((( 24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 -))) 26 26 27 -((( 28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 -))) 34 34 35 -((( 36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 -))) 38 38 39 39 40 - [[image:1654503236291-817.png]]23 += 1. Introduction = 41 41 25 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 42 42 43 -[[image:1654503265560-120.png]] 44 - 45 - 46 - 47 -== 1.2 Features == 48 - 49 -* LoRaWAN 1.0.3 Class A 50 -* Ultra low power consumption 51 -* Monitor Soil Moisture 52 -* Monitor Soil Temperature 53 -* Monitor Soil Conductivity 54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 55 -* AT Commands to change parameters 56 -* Uplink on periodically 57 -* Downlink to change configure 58 -* IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 60 - 61 - 62 -== 1.3 Specification == 63 - 64 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 65 - 66 -[[image:image-20220606162220-5.png]] 67 - 68 - 69 - 70 -== 1.4 Applications == 71 - 72 -* Smart Agriculture 73 - 74 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 75 - 76 - 77 -== 1.5 Firmware Change log == 78 - 79 - 80 -**LSE01 v1.0 :** Release 81 - 82 - 83 - 84 -= 2. Configure LSE01 to connect to LoRaWAN network = 85 - 86 -== 2.1 How it works == 87 - 88 88 ((( 89 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 90 -))) 28 + 91 91 92 -((( 93 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 94 -))) 30 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 95 95 32 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 96 96 34 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 97 97 98 - ==2.2QuickguidetoconnecttoLoRaWANserver(OTAA) ==36 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 99 99 100 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 101 - 102 - 103 -[[image:1654503992078-669.png]] 104 - 105 - 106 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 107 - 108 - 109 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 110 - 111 -Each LSE01 is shipped with a sticker with the default device EUI as below: 112 - 113 -[[image:image-20220606163732-6.jpeg]] 114 - 115 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 116 - 117 -**Add APP EUI in the application** 118 - 119 - 120 -[[image:1654504596150-405.png]] 121 - 122 - 123 - 124 -**Add APP KEY and DEV EUI** 125 - 126 -[[image:1654504683289-357.png]] 127 - 128 - 129 - 130 -**Step 2**: Power on LSE01 131 - 132 - 133 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 134 - 135 -[[image:image-20220606163915-7.png]] 136 - 137 - 138 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 139 - 140 -[[image:1654504778294-788.png]] 141 - 142 - 143 - 144 -== 2.3 Uplink Payload == 145 - 146 -=== 2.3.1 MOD~=0(Default Mode) === 147 - 148 -LSE01 will uplink payload via LoRaWAN with below payload format: 149 - 150 - 151 -Uplink payload includes in total 11 bytes. 152 152 153 - 154 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 155 -|=((( 156 -**Size** 157 - 158 -**(bytes)** 159 -)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1** 160 -|**Value**|(% style="width:46px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:160px" %)((( 161 -Temperature 162 - 163 -(Reserve, Ignore now) 164 -)))|(% style="width:104px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:126px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:114px" %)((( 165 -MOD & Digital Interrupt 166 - 167 -(Optional) 168 168 ))) 169 169 170 -[[image:165450 4881641-514.png]]41 +[[image:1654503236291-817.png]] 171 171 172 172 44 +[[image:1657245163077-232.png]] 173 173 174 -=== 2.3.2 MOD~=1(Original value) === 175 175 176 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 177 177 178 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 179 -|=((( 180 -**Size** 48 +== 1.2 Features == 181 181 182 -**(bytes)** 183 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1** 184 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 -Temperature 50 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 51 +* Monitor Soil Moisture 52 +* Monitor Soil Temperature 53 +* Monitor Soil Conductivity 54 +* AT Commands to change parameters 55 +* Uplink on periodically 56 +* Downlink to change configure 57 +* IP66 Waterproof Enclosure 58 +* Ultra-Low Power consumption 59 +* AT Commands to change parameters 60 +* Micro SIM card slot for NB-IoT SIM 61 +* 8500mAh Battery for long term use 186 186 187 -(Reserve, Ignore now) 188 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 -MOD & Digital Interrupt 190 190 191 -(Optional) 192 -))) 193 193 194 - [[image:1654504907647-967.png]]65 +== 1.3 Specification == 195 195 196 196 68 +(% style="color:#037691" %)**Common DC Characteristics:** 197 197 198 -=== 2.3.3 Battery Info === 70 +* Supply Voltage: 2.1v ~~ 3.6v 71 +* Operating Temperature: -40 ~~ 85°C 199 199 200 -Check the battery voltage for LSE01. 201 201 202 - Ex1:0x0B45= 2885mV74 +(% style="color:#037691" %)**NB-IoT Spec:** 203 203 204 -Ex2: 0x0B49 = 2889mV 76 +* - B1 @H-FDD: 2100MHz 77 +* - B3 @H-FDD: 1800MHz 78 +* - B8 @H-FDD: 900MHz 79 +* - B5 @H-FDD: 850MHz 80 +* - B20 @H-FDD: 800MHz 81 +* - B28 @H-FDD: 700MHz 205 205 206 206 84 +Probe(% style="color:#037691" %)** Specification:** 207 207 208 - ===2.3.4 SoilMoisture===86 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 209 209 210 - Get the moisturecontent of the soil. The value rangeof the register is 0-10000(Decimal), divide this value by100 to get thepercentage of moisture in the soil.88 +[[image:image-20220708101224-1.png]] 211 211 212 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 213 213 214 214 215 - (% style="color:#4f81bd" %)**05DC(H)= 1500(D)/100=15%.**92 +== 1.4 Applications == 216 216 94 +* Smart Agriculture 217 217 96 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 97 + 218 218 219 -== =2.3.5SoilTemperature===99 +== 1.5 Pin Definitions == 220 220 221 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 222 222 223 - **Example**:102 +[[image:1657246476176-652.png]] 224 224 225 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 226 226 227 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 228 228 106 += 2. Use NSE01 to communicate with IoT Server = 229 229 108 +== 2.1 How it works == 230 230 231 -=== 2.3.6 Soil Conductivity (EC) === 232 232 233 233 ((( 234 - Obtain(%style="color:#4f81bd"%)**__solublesaltconcentration__**(%%)insoil or (% style="color:#4f81bd"%)**__soluble ionconcentrationinliquidfertilizer__**(%%)or(% style="color:#4f81bd"%)**__plantingmedium__**(%%). Thevaluerangeftheregister is0 - 20000(Decimal)(Canbegreaterthan20000).112 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 235 235 ))) 236 236 237 -((( 238 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 239 -))) 240 240 241 241 ((( 242 - Generally,theEC valueof irrigationwateris lessthan800uS/ cm.117 +The diagram below shows the working flow in default firmware of NSE01: 243 243 ))) 244 244 245 -((( 246 - 247 -))) 120 +[[image:image-20220708101605-2.png]] 248 248 249 249 ((( 250 250 251 251 ))) 252 252 253 -=== 2.3.7 MOD === 254 254 255 -Firmware version at least v2.1 supports changing mode. 256 256 257 - Forxample,bytes[10]=90128 +== 2.2 Configure the NSE01 == 258 258 259 -mod=(bytes[10]>>7)&0x01=1. 260 260 131 +=== 2.2.1 Test Requirement === 261 261 262 -**Downlink Command:** 263 263 264 - If payload=0x0A00,workmode=0134 +To use NSE01 in your city, make sure meet below requirements: 265 265 266 -If** **payload =** **0x0A01, workmode=1 136 +* Your local operator has already distributed a NB-IoT Network there. 137 +* The local NB-IoT network used the band that NSE01 supports. 138 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 267 267 140 +((( 141 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 142 +))) 268 268 269 269 270 - ===2.3.8 Decodepayload inThe Things Network ===145 +[[image:1657249419225-449.png]] 271 271 272 -While using TTN network, you can add the payload format to decode the payload. 273 273 274 274 275 - [[image:1654505570700-128.png]]149 +=== 2.2.2 Insert SIM card === 276 276 277 - ThepayloaddecoderfunctionforTTNis here:151 +Insert the NB-IoT Card get from your provider. 278 278 279 - LSE01 TTN Payload Decoder:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]153 +User need to take out the NB-IoT module and insert the SIM card like below: 280 280 281 281 156 +[[image:1657249468462-536.png]] 282 282 283 -== 2.4 Uplink Interval == 284 284 285 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 286 286 160 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 287 287 162 +((( 163 +((( 164 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 165 +))) 166 +))) 288 288 289 -== 2.5 Downlink Payload == 290 290 291 - By default, LSE50 prints the downlink payloadtoconsole port.169 +**Connection:** 292 292 293 - [[image:image-20220606165544-8.png]]171 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 294 294 173 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 295 295 296 - **Examples:**175 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 297 297 298 298 299 - ***SetTDC**178 +In the PC, use below serial tool settings: 300 300 301 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 180 +* Baud: (% style="color:green" %)**9600** 181 +* Data bits:** (% style="color:green" %)8(%%)** 182 +* Stop bits: (% style="color:green" %)**1** 183 +* Parity: (% style="color:green" %)**None** 184 +* Flow Control: (% style="color:green" %)**None** 302 302 303 -Payload: 01 00 00 1E TDC=30S 186 +((( 187 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 188 +))) 304 304 305 - Payload:1000 3C TDC=60S190 +[[image:image-20220708110657-3.png]] 306 306 192 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 307 307 308 -* **Reset** 309 309 310 -If payload = 0x04FF, it will reset the LSE01 311 311 196 +=== 2.2.4 Use CoAP protocol to uplink data === 312 312 313 - ***CFM**198 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 314 314 315 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 316 316 201 +**Use below commands:** 317 317 203 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 204 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 205 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 318 318 319 - == 2.6 ShowData inDataCakeIoT Server==207 +For parameter description, please refer to AT command set 320 320 321 -[[ DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]]to connect to TTN and see the data in DATACAKE. Below are the steps:209 +[[image:1657249793983-486.png]] 322 322 323 323 324 - **Step1**: Be sure thatyour deviceis programmed andproperlyconnectedtothenetworkat this time.212 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 325 325 326 - **Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add theDATACAKE integration,perform the followingsteps:214 +[[image:1657249831934-534.png]] 327 327 328 328 329 -[[image:1654505857935-743.png]] 330 330 218 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 331 331 332 - [[image:1654505874829-548.png]]220 +This feature is supported since firmware version v1.0.1 333 333 334 -Step 3: Create an account or log in Datacake. 335 335 336 -Step 4: Search the LSE01 and add DevEUI. 223 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 224 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 225 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 337 337 227 +[[image:1657249864775-321.png]] 338 338 339 -[[image:1654505905236-553.png]] 340 340 230 +[[image:1657249930215-289.png]] 341 341 342 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 343 343 344 -[[image:1654505925508-181.png]] 345 345 234 +=== 2.2.6 Use MQTT protocol to uplink data === 346 346 236 +This feature is supported since firmware version v110 347 347 348 -== 2.7 Frequency Plans == 349 349 350 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 239 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 240 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 241 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 242 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 243 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 244 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 245 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 351 351 247 +[[image:1657249978444-674.png]] 352 352 353 -=== 2.7.1 EU863-870 (EU868) === 354 354 355 - (% style="color:#037691" %)** Uplink:**250 +[[image:1657249990869-686.png]] 356 356 357 -868.1 - SF7BW125 to SF12BW125 358 358 359 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 253 +((( 254 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 255 +))) 360 360 361 -868.5 - SF7BW125 to SF12BW125 362 362 363 -867.1 - SF7BW125 to SF12BW125 364 364 365 - 867.3-SF7BW125toSF12BW125259 +=== 2.2.7 Use TCP protocol to uplink data === 366 366 367 - 867.5-SF7BW125toSF12BW125261 +This feature is supported since firmware version v110 368 368 369 -867.7 - SF7BW125 to SF12BW125 370 370 371 -867.9 - SF7BW125 to SF12BW125 264 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 265 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 372 372 373 - 868.8-FSK267 +[[image:1657250217799-140.png]] 374 374 375 375 376 - (% style="color:#037691" %)** Downlink:**270 +[[image:1657250255956-604.png]] 377 377 378 -Uplink channels 1-9 (RX1) 379 379 380 -869.525 - SF9BW125 (RX2 downlink only) 381 381 274 +=== 2.2.8 Change Update Interval === 382 382 276 +User can use below command to change the (% style="color:green" %)**uplink interval**. 383 383 384 -== =2.7.2US902-928(US915)===278 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 385 385 386 -Used in USA, Canada and South America. Default use CHE=2 280 +((( 281 +(% style="color:red" %)**NOTE:** 282 +))) 387 387 388 -(% style="color:#037691" %)**Uplink:** 284 +((( 285 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 286 +))) 389 389 390 -903.9 - SF7BW125 to SF10BW125 391 391 392 -904.1 - SF7BW125 to SF10BW125 393 393 394 - 904.3-SF7BW125 toSF10BW125290 +== 2.3 Uplink Payload == 395 395 396 - 904.5-SF7BW125toSF10BW125292 +In this mode, uplink payload includes in total 18 bytes 397 397 398 -904.7 - SF7BW125 to SF10BW125 294 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 295 +|=(% style="width: 50px;" %)((( 296 +**Size(bytes)** 297 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 298 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 399 399 400 - 904.9-SF7BW125to SF10BW125300 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 401 401 402 -905.1 - SF7BW125 to SF10BW125 403 403 404 - 905.3-SF7BW125 to SF10BW125303 +[[image:image-20220708111918-4.png]] 405 405 406 406 407 - (%style="color:#037691"%)**Downlink:**306 +The payload is ASCII string, representative same HEX: 408 408 409 - 923.3 - SF7BW500to SF12BW500308 +0x72403155615900640c7817075e0a8c02f900 where: 410 410 411 -923.9 - SF7BW500 to SF12BW500 310 +* Device ID: 0x 724031556159 = 724031556159 311 +* Version: 0x0064=100=1.0.0 412 412 413 -924.5 - SF7BW500 to SF12BW500 313 +* BAT: 0x0c78 = 3192 mV = 3.192V 314 +* Singal: 0x17 = 23 315 +* Soil Moisture: 0x075e= 1886 = 18.86 % 316 +* Soil Temperature:0x0a8c =2700=27 °C 317 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 318 +* Interrupt: 0x00 = 0 414 414 415 -925.1 - SF7BW500 to SF12BW500 416 416 417 -925.7 - SF7BW500 to SF12BW500 418 418 419 - 926.3-SF7BW500to SF12BW500322 +== 2.4 Payload Explanation and Sensor Interface == 420 420 421 -926.9 - SF7BW500 to SF12BW500 422 422 423 - 927.5-SF7BW500 to SF12BW500325 +=== 2.4.1 Device ID === 424 424 425 - 923.3 - SF12BW500(RX2downlinkonly)327 +By default, the Device ID equal to the last 6 bytes of IMEI. 426 426 329 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 427 427 331 +**Example:** 428 428 429 -= == 2.7.3 CN470-510 (CN470) ===333 +AT+DEUI=A84041F15612 430 430 431 - Used inChina,DefaultuseCHE=1335 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 432 432 433 -(% style="color:#037691" %)**Uplink:** 434 434 435 -486.3 - SF7BW125 to SF12BW125 436 436 437 -4 86.5 - SF7BW125toSF12BW125339 +=== 2.4.2 Version Info === 438 438 439 - 486.7-SF7BW125toSF12BW125341 +Specify the software version: 0x64=100, means firmware version 1.00. 440 440 441 - 486.9-SF7BW125toSF12BW125343 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 442 442 443 -487.1 - SF7BW125 to SF12BW125 444 444 445 -487.3 - SF7BW125 to SF12BW125 446 446 447 -4 87.5- SF7BW125toSF12BW125347 +=== 2.4.3 Battery Info === 448 448 449 -487.7 - SF7BW125 to SF12BW125 349 +((( 350 +Check the battery voltage for LSE01. 351 +))) 450 450 353 +((( 354 +Ex1: 0x0B45 = 2885mV 355 +))) 451 451 452 -(% style="color:#037691" %)**Downlink:** 357 +((( 358 +Ex2: 0x0B49 = 2889mV 359 +))) 453 453 454 -506.7 - SF7BW125 to SF12BW125 455 455 456 -506.9 - SF7BW125 to SF12BW125 457 457 458 - 507.1-SF7BW125toSF12BW125363 +=== 2.4.4 Signal Strength === 459 459 460 - 507.3-SF7BW125to SF12BW125365 +NB-IoT Network signal Strength. 461 461 462 - 507.5- SF7BW125toSF12BW125367 +**Ex1: 0x1d = 29** 463 463 464 - 507.7-SF7BW125toSF12BW125369 +(% style="color:blue" %)**0**(%%) -113dBm or less 465 465 466 - 507.9-SF7BW125toSF12BW125371 +(% style="color:blue" %)**1**(%%) -111dBm 467 467 468 - 508.1- SF7BW125toSF12BW125373 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 469 469 470 - 505.3-SF12BW125(RX2downlinkonly)375 +(% style="color:blue" %)**31** (%%) -51dBm or greater 471 471 377 +(% style="color:blue" %)**99** (%%) Not known or not detectable 472 472 473 473 474 -=== 2.7.4 AU915-928(AU915) === 475 475 476 - DefaultuseCHE=2381 +=== 2.4.5 Soil Moisture === 477 477 478 -(% style="color:#037691" %)**Uplink:** 383 +((( 384 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 385 +))) 479 479 480 -916.8 - SF7BW125 to SF12BW125 387 +((( 388 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 389 +))) 481 481 482 -917.0 - SF7BW125 to SF12BW125 391 +((( 392 + 393 +))) 483 483 484 -917.2 - SF7BW125 to SF12BW125 395 +((( 396 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 397 +))) 485 485 486 -917.4 - SF7BW125 to SF12BW125 487 487 488 -917.6 - SF7BW125 to SF12BW125 489 489 490 - 917.8-SF7BW125toSF12BW125401 +=== 2.4.6 Soil Temperature === 491 491 492 -918.0 - SF7BW125 to SF12BW125 403 +((( 404 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 405 +))) 493 493 494 -918.2 - SF7BW125 to SF12BW125 407 +((( 408 +**Example**: 409 +))) 495 495 411 +((( 412 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 413 +))) 496 496 497 -(% style="color:#037691" %)**Downlink:** 415 +((( 416 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 417 +))) 498 498 499 -923.3 - SF7BW500 to SF12BW500 500 500 501 -923.9 - SF7BW500 to SF12BW500 502 502 503 - 924.5-SF7BW500toSF12BW500421 +=== 2.4.7 Soil Conductivity (EC) === 504 504 505 -925.1 - SF7BW500 to SF12BW500 423 +((( 424 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 425 +))) 506 506 507 -925.7 - SF7BW500 to SF12BW500 427 +((( 428 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 429 +))) 508 508 509 -926.3 - SF7BW500 to SF12BW500 431 +((( 432 +Generally, the EC value of irrigation water is less than 800uS / cm. 433 +))) 510 510 511 -926.9 - SF7BW500 to SF12BW500 435 +((( 436 + 437 +))) 512 512 513 -927.5 - SF7BW500 to SF12BW500 439 +((( 440 + 441 +))) 514 514 515 - 923.3- SF12BW500(RX2 downlinkonly)443 +=== 2.4.8 Digital Interrupt === 516 516 445 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 517 517 447 +The command is: 518 518 519 -= ==2.7.5AS920-923&AS923-925(AS923)===449 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 520 520 521 -(% style="color:#037691" %)**Default Uplink channel:** 522 522 523 - 923.2-SF7BW125toSF10BW125452 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 524 524 525 -923.4 - SF7BW125 to SF10BW125 526 526 455 +Example: 527 527 528 -( % style="color:#037691" %)**AdditionalUplinkChannel**:457 +0x(00): Normal uplink packet. 529 529 530 -( OTAAmode, channeladded by JoinAcceptmessage)459 +0x(01): Interrupt Uplink Packet. 531 531 532 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 533 533 534 -922.2 - SF7BW125 to SF10BW125 535 535 536 - 922.4- SF7BW125 toSF10BW125463 +=== 2.4.9 +5V Output === 537 537 538 - 922.6 -SF7BW125 toSF10BW125465 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 539 539 540 -922.8 - SF7BW125 to SF10BW125 541 541 542 - 923.0- SF7BW125 toSF10BW125468 +The 5V output time can be controlled by AT Command. 543 543 544 - 922.0- SF7BW125toSF10BW125470 +(% style="color:blue" %)**AT+5VT=1000** 545 545 472 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 546 546 547 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 548 548 549 -923.6 - SF7BW125 to SF10BW125 550 550 551 - 923.8- SF7BW125toSF10BW125476 +== 2.5 Downlink Payload == 552 552 553 - 924.0-SF7BW125toSF10BW125478 +By default, NSE01 prints the downlink payload to console port. 554 554 555 - 924.2- SF7BW125 to SF10BW125480 +[[image:image-20220708133731-5.png]] 556 556 557 -924.4 - SF7BW125 to SF10BW125 558 558 559 -924.6 - SF7BW125 to SF10BW125 483 +((( 484 +(% style="color:blue" %)**Examples:** 485 +))) 560 560 487 +((( 488 + 489 +))) 561 561 562 -(% style="color:#037691" %)** Downlink:** 491 +* ((( 492 +(% style="color:blue" %)**Set TDC** 493 +))) 563 563 564 -Uplink channels 1-8 (RX1) 495 +((( 496 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 497 +))) 565 565 566 -923.2 - SF10BW125 (RX2) 499 +((( 500 +Payload: 01 00 00 1E TDC=30S 501 +))) 567 567 503 +((( 504 +Payload: 01 00 00 3C TDC=60S 505 +))) 568 568 507 +((( 508 + 509 +))) 569 569 570 -=== 2.7.6 KR920-923 (KR920) === 511 +* ((( 512 +(% style="color:blue" %)**Reset** 513 +))) 571 571 572 -Default channel: 515 +((( 516 +If payload = 0x04FF, it will reset the NSE01 517 +))) 573 573 574 -922.1 - SF7BW125 to SF12BW125 575 575 576 - 922.3-SF7BW125toSF12BW125520 +* (% style="color:blue" %)**INTMOD** 577 577 578 - 922.5-SF7BW125toSF12BW125522 +Downlink Payload: 06000003, Set AT+INTMOD=3 579 579 580 580 581 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 582 582 583 - 922.1-SF7BW125toSF12BW125526 +== 2.6 LED Indicator == 584 584 585 -922.3 - SF7BW125 to SF12BW125 528 +((( 529 +The NSE01 has an internal LED which is to show the status of different state. 586 586 587 -922.5 - SF7BW125 to SF12BW125 588 588 589 -922.7 - SF7BW125 to SF12BW125 532 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 533 +* Then the LED will be on for 1 second means device is boot normally. 534 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 535 +* For each uplink probe, LED will be on for 500ms. 536 +))) 590 590 591 -922.9 - SF7BW125 to SF12BW125 592 592 593 -923.1 - SF7BW125 to SF12BW125 594 594 595 -923.3 - SF7BW125 to SF12BW125 596 596 541 +== 2.7 Installation in Soil == 597 597 598 - (%style="color:#037691"%)**Downlink:**543 +__**Measurement the soil surface**__ 599 599 600 - Uplink channels 1-7(RX1)545 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 601 601 602 - 921.9 - SF12BW125 (RX2 downlink only; SF12BW125might be changed to SF9BW125)547 +[[image:1657259653666-883.png]] 603 603 604 604 550 +((( 551 + 605 605 606 -=== 2.7.7 IN865-867 (IN865) === 553 +((( 554 +Dig a hole with diameter > 20CM. 555 +))) 607 607 608 -(% style="color:#037691" %)** Uplink:** 557 +((( 558 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 559 +))) 560 +))) 609 609 610 - 865.0625SF7BW125 to SF12BW125562 +[[image:1654506665940-119.png]] 611 611 612 -865.4025 - SF7BW125 to SF12BW125 564 +((( 565 + 566 +))) 613 613 614 -865.9850 - SF7BW125 to SF12BW125 615 615 569 +== 2.8 Firmware Change Log == 616 616 617 -(% style="color:#037691" %) **Downlink:** 618 618 619 - Uplinkchannels1-3 (RX1)572 +Download URL & Firmware Change log 620 620 621 - 866.550-F10BW125(RX2)574 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 622 622 623 623 577 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 624 624 625 625 626 -== 2.8 LED Indicator == 627 627 628 - TheLSE01has an internalLED which isto show the status of differentstate.581 +== 2.9 Battery Analysis == 629 629 630 -* Blink once when device power on. 631 -* Solid ON for 5 seconds once device successful Join the network. 632 -* Blink once when device transmit a packet. 583 +=== 2.9.1 Battery Type === 633 633 634 634 586 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 635 635 636 -== 2.9 Installation in Soil == 637 637 638 - **Measurement the soilsurface**589 +The battery is designed to last for several years depends on the actually use environment and update interval. 639 639 640 640 641 - [[image:1654506634463-199.png]]592 +The battery related documents as below: 642 642 594 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 595 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 596 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 597 + 643 643 ((( 644 -((( 645 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 599 +[[image:image-20220708140453-6.png]] 646 646 ))) 647 -))) 648 648 649 649 650 -[[image:1654506665940-119.png]] 651 651 652 -((( 653 -Dig a hole with diameter > 20CM. 654 -))) 604 +=== 2.9.2 Power consumption Analyze === 655 655 656 656 ((( 657 - Horizontalinsertthe probeto the soil andfill the holefor longtermmeasurement.607 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 658 658 ))) 659 659 660 660 661 -== 2.10 Firmware Change Log == 662 - 663 663 ((( 664 - **Firmware downloadlink:**612 +Instruction to use as below: 665 665 ))) 666 666 667 667 ((( 668 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/ LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]616 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 669 669 ))) 670 670 671 -((( 672 - 673 -))) 674 674 675 675 ((( 676 - **FirmwareUpgradeMethod: **[[FirmwareUpgradeInstruction>>doc:Main.FirmwareUpgradeInstruction for STM32 baseproducts.WebHome]]621 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 677 677 ))) 678 678 679 -((( 680 - 624 +* ((( 625 +Product Model 681 681 ))) 682 - 683 -((( 684 -**V1.0.** 627 +* ((( 628 +Uplink Interval 685 685 ))) 630 +* ((( 631 +Working Mode 632 +))) 686 686 687 687 ((( 688 - Release635 +And the Life expectation in difference case will be shown on the right. 689 689 ))) 690 690 638 +[[image:image-20220708141352-7.jpeg]] 691 691 692 -== 2.11 Battery Analysis == 693 693 694 -=== 2.11.1 Battery Type === 695 695 696 -((( 697 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 698 -))) 642 +=== 2.9.3 Battery Note === 699 699 700 700 ((( 701 -The battery is designed to last for more than5 yearsfor theLSN50.645 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 702 702 ))) 703 703 704 -((( 705 -((( 706 -The battery-related documents are as below: 707 -))) 708 -))) 709 709 710 -* ((( 711 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 712 -))) 713 -* ((( 714 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 715 -))) 716 -* ((( 717 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 718 -))) 719 719 720 - [[image:image-20220606171726-9.png]]650 +=== 2.9.4 Replace the battery === 721 721 722 - 723 - 724 -=== 2.11.2 Battery Note === 725 - 726 726 ((( 727 -The Li-SICObatteryisdesigned forsmallcurrent/longperiodapplication. Itis notgood to use ahigh current,shortperiodtransmitmethod. Therecommendedminimum periodfor use ofthisbatteryis5minutes.If you useahorterperiodtimeto transmitLoRa, then the battery lifemaybe decreased.653 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 728 728 ))) 729 729 730 730 731 731 732 -= ==2.11.3Replacethebattery===658 += 3. Access NB-IoT Module = 733 733 734 734 ((( 735 - If Battery islower than2.7v, user shouldplace thebatteryofLSE01.661 +Users can directly access the AT command set of the NB-IoT module. 736 736 ))) 737 737 738 738 ((( 739 - Youcan changethebatteryintheLSE01.Thetypeofbattery is notlimitedaslongas the outputisbetween3v to3.6v. On themainboard, there isa diode(D1) between the battery andthe main circuit. If you needo usea battery with lessthan 3.3v, pleaseremovethe D1 andshortcut thetwopadsofit sothere won’t be voltageop between battery andmain board.665 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 740 740 ))) 741 741 742 -((( 743 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 744 -))) 668 +[[image:1657261278785-153.png]] 745 745 746 746 747 747 748 -= 3.Using the AT Commands =672 += 4. Using the AT Commands = 749 749 750 -== 3.1 Access AT Commands ==674 +== 4.1 Access AT Commands == 751 751 676 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 752 752 753 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 754 754 755 - [[image:1654501986557-872.png||height="391"width="800"]]679 +AT+<CMD>? : Help on <CMD> 756 756 681 +AT+<CMD> : Run <CMD> 757 757 758 - Orifyouhavebelowboard,usebelowconnection:683 +AT+<CMD>=<value> : Set the value 759 759 685 +AT+<CMD>=? : Get the value 760 760 761 -[[image:1654502005655-729.png||height="503" width="801"]] 762 762 763 - 764 - 765 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 766 - 767 - 768 - [[image:1654502050864-459.png||height="564" width="806"]] 769 - 770 - 771 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 772 - 773 - 774 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 775 - 776 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 777 - 778 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 779 - 780 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 781 - 782 - 783 783 (% style="color:#037691" %)**General Commands**(%%) 784 784 785 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention690 +AT : Attention 786 786 787 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help692 +AT? : Short Help 788 788 789 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset694 +ATZ : MCU Reset 790 790 791 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval696 +AT+TDC : Application Data Transmission Interval 792 792 698 +AT+CFG : Print all configurations 793 793 794 - (%style="color:#037691"%)**Keys,IDsand EUIs management**700 +AT+CFGMOD : Working mode selection 795 795 796 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI702 +AT+INTMOD : Set the trigger interrupt mode 797 797 798 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey704 +AT+5VT : Set extend the time of 5V power 799 799 800 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key706 +AT+PRO : Choose agreement 801 801 802 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress708 +AT+WEIGRE : Get weight or set weight to 0 803 803 804 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI710 +AT+WEIGAP : Get or Set the GapValue of weight 805 805 806 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)712 +AT+RXDL : Extend the sending and receiving time 807 807 808 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network714 +AT+CNTFAC : Get or set counting parameters 809 809 810 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode716 +AT+SERVADDR : Server Address 811 811 812 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 813 813 814 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network719 +(% style="color:#037691" %)**COAP Management** 815 815 816 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode721 +AT+URI : Resource parameters 817 817 818 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 819 819 820 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format724 +(% style="color:#037691" %)**UDP Management** 821 821 822 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat726 +AT+CFM : Upload confirmation mode (only valid for UDP) 823 823 824 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 825 825 826 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data729 +(% style="color:#037691" %)**MQTT Management** 827 827 731 +AT+CLIENT : Get or Set MQTT client 828 828 829 - (%style="color:#037691"%)**LoRaNetworkManagement**733 +AT+UNAME : Get or Set MQTT Username 830 830 831 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate735 +AT+PWD : Get or Set MQTT password 832 832 833 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA737 +AT+PUBTOPIC : Get or Set MQTT publish topic 834 834 835 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting739 +AT+SUBTOPIC : Get or Set MQTT subscription topic 836 836 837 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 838 838 839 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink742 +(% style="color:#037691" %)**Information** 840 840 841 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink744 +AT+FDR : Factory Data Reset 842 842 843 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1746 +AT+PWORD : Serial Access Password 844 844 845 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 846 846 847 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 848 848 849 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1750 += 5. FAQ = 850 850 851 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2752 +== 5.1 How to Upgrade Firmware == 852 852 853 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 854 854 855 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 856 - 857 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 858 - 859 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 860 - 861 - 862 -(% style="color:#037691" %)**Information** 863 - 864 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 865 - 866 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 867 - 868 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 869 - 870 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 871 - 872 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 873 - 874 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 875 - 876 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 877 - 878 - 879 -= 4. FAQ = 880 - 881 -== 4.1 How to change the LoRa Frequency Bands/Region? == 882 - 883 883 ((( 884 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 885 -When downloading the images, choose the required image file for download. 756 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 886 886 ))) 887 887 888 888 ((( 889 - 760 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 890 890 ))) 891 891 892 892 ((( 893 - Howtosetup LSE01 towork in 8 channel modeBy default,thefrequency bandsUS915,AU915, CN470 work in 72 frequencies.Many gatewaysare8 channelgateways, andin thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.764 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 894 894 ))) 895 895 896 -((( 897 - 898 -))) 899 899 900 -((( 901 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 902 -))) 903 903 904 -((( 905 - 906 -))) 769 += 6. Trouble Shooting = 907 907 908 -((( 909 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 910 -))) 771 +== 6.1 Connection problem when uploading firmware == 911 911 912 -[[image:image-20220606154726-3.png]] 913 913 914 - 915 -When you use the TTN network, the US915 frequency bands use are: 916 - 917 -* 903.9 - SF7BW125 to SF10BW125 918 -* 904.1 - SF7BW125 to SF10BW125 919 -* 904.3 - SF7BW125 to SF10BW125 920 -* 904.5 - SF7BW125 to SF10BW125 921 -* 904.7 - SF7BW125 to SF10BW125 922 -* 904.9 - SF7BW125 to SF10BW125 923 -* 905.1 - SF7BW125 to SF10BW125 924 -* 905.3 - SF7BW125 to SF10BW125 925 -* 904.6 - SF8BW500 926 - 927 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 928 - 929 -(% class="box infomessage" %) 774 +(% class="wikigeneratedid" %) 930 930 ((( 931 -** AT+CHE=2**776 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]] 932 932 ))) 933 933 934 -(% class="box infomessage" %) 935 -((( 936 -**ATZ** 937 -))) 938 938 939 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 940 940 781 +== 6.2 AT Command input doesn't work == 941 941 942 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 943 - 944 -[[image:image-20220606154825-4.png]] 945 - 946 - 947 - 948 -= 5. Trouble Shooting = 949 - 950 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 951 - 952 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 953 - 954 - 955 -== 5.2 AT Command input doesn’t work == 956 - 957 957 ((( 958 -In the case if user can see the console output but can ’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.784 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 959 959 ))) 960 960 961 961 962 -== 5.3 Device rejoin in at the second uplink packet == 963 963 964 - (% style="color:#4f81bd"%)**Issuedescribeas below:**789 += 7. Order Info = 965 965 966 -[[image:1654500909990-784.png]] 967 967 792 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 968 968 969 -(% style="color:#4f81bd" %)**Cause for this issue:** 970 970 795 +(% class="wikigeneratedid" %) 971 971 ((( 972 - Thefuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.797 + 973 973 ))) 974 974 800 += 8. Packing Info = 975 975 976 -(% style="color:#4f81bd" %)**Solution: ** 802 +((( 803 + 977 977 978 - Allnewshipped LSE01 after 2020-May-30 will havethis tofix. Forthecustomer who see this issue, pleasebypass the fuseasbelow:805 +(% style="color:#037691" %)**Package Includes**: 979 979 980 -[[image:1654500929571-736.png||height="458" width="832"]] 981 981 808 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 809 +* External antenna x 1 810 +))) 982 982 983 -= 6. Order Info = 984 - 985 - 986 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 987 - 988 - 989 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 990 - 991 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 992 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 993 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 994 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 995 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 996 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 997 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 998 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 999 - 1000 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1001 - 1002 -* (% style="color:red" %)**4**(%%): 4000mAh battery 1003 -* (% style="color:red" %)**8**(%%): 8500mAh battery 1004 - 1005 -(% class="wikigeneratedid" %) 1006 1006 ((( 1007 1007 1008 -))) 1009 1009 1010 - =7.PackingInfo=815 +(% style="color:#037691" %)**Dimension and weight**: 1011 1011 1012 -((( 1013 -**Package Includes**: 1014 -))) 1015 1015 1016 -* (((1017 - LSE01LoRaWAN Soil Moisture& EC Sensor x 1818 +* Size: 195 x 125 x 55 mm 819 +* Weight: 420g 1018 1018 ))) 1019 1019 1020 1020 ((( 1021 1021 1022 -))) 1023 1023 1024 -((( 1025 -**Dimension and weight**: 1026 -))) 1027 1027 1028 -* ((( 1029 -Device Size: cm 1030 -))) 1031 -* ((( 1032 -Device Weight: g 1033 -))) 1034 -* ((( 1035 -Package Size / pcs : cm 1036 -))) 1037 -* ((( 1038 -Weight / pcs : g 1039 - 1040 - 1041 1041 1042 1042 ))) 1043 1043 1044 -= 8. Support =829 += 9. Support = 1045 1045 1046 1046 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1047 1047 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1048 - 1049 -
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content