Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 25 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWANSoil Moisture&ECSensor User Manual1 +NDDS75 NB-IoT Distance Detect Sensor User Manual - Content
-
... ... @@ -1,11 +1,9 @@ 1 1 (% style="text-align:center" %) 2 -[[image: image-20220606151504-2.jpeg||height="554" width="554"]]2 +[[image:1657271519014-786.png]] 3 3 4 4 5 5 6 -**Contents:** 7 7 8 -{{toc/}} 9 9 10 10 11 11 ... ... @@ -12,716 +12,713 @@ 12 12 13 13 14 14 15 - =1.Introduction=13 +**Table of Contents:** 16 16 17 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 18 18 19 -((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 22 22 23 -((( 24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 -))) 26 26 27 -((( 28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 -))) 34 34 35 -((( 36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 -))) 38 38 21 += 1. Introduction = 39 39 40 - [[image:1654503236291-817.png]]23 +== 1.1 What is NDDS75 Distance Detection Sensor == 41 41 25 +((( 26 + 42 42 43 - [[image:1654503265560-120.png]]28 +The Dragino NDDS75 is a **NB-IOT Distance Detection Sensor** for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses **ultrasonic sensing technology** for **distance measurement**, and temperature compensation is performed internally to improve the reliability of data. The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. 44 44 30 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server. 45 45 32 +**NarrowBand-Internet of Things (NB-IoT)** is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 46 46 47 - ==1.2Features==34 +NDDS75 is powered by 8**500mA Li-SOCI2 battery**; It is designed for long term use up to 5 years*. 48 48 49 -* LoRaWAN 1.0.3 Class A 50 -* Ultra low power consumption 51 -* Monitor Soil Moisture 52 -* Monitor Soil Temperature 53 -* Monitor Soil Conductivity 54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 55 -* AT Commands to change parameters 56 -* Uplink on periodically 57 -* Downlink to change configure 58 -* IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 36 +~* Actually lifetime depends on network coverage and uplink interval and other factors 60 60 61 - 62 - 63 -== 1.3 Specification == 64 - 65 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 66 - 67 -[[image:image-20220606162220-5.png]] 68 - 69 - 70 - 71 -== 1.4 Applications == 72 - 73 -* Smart Agriculture 74 - 75 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 76 - 77 - 78 -== 1.5 Firmware Change log == 79 - 80 - 81 -**LSE01 v1.0 :** Release 82 - 83 - 84 - 85 -= 2. Configure LSE01 to connect to LoRaWAN network = 86 - 87 -== 2.1 How it works == 88 - 89 89 ((( 90 - TheLSE01is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value39 + 91 91 ))) 92 92 93 -((( 94 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 95 -))) 96 - 97 - 98 - 99 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 100 - 101 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 102 - 103 - 104 -[[image:1654503992078-669.png]] 105 - 106 - 107 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 108 - 109 - 110 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 111 - 112 -Each LSE01 is shipped with a sticker with the default device EUI as below: 113 - 114 -[[image:image-20220606163732-6.jpeg]] 115 - 116 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 117 - 118 -**Add APP EUI in the application** 119 - 120 - 121 -[[image:1654504596150-405.png]] 122 - 123 - 124 - 125 -**Add APP KEY and DEV EUI** 126 - 127 -[[image:1654504683289-357.png]] 128 - 129 - 130 - 131 -**Step 2**: Power on LSE01 132 - 133 - 134 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 135 - 136 -[[image:image-20220606163915-7.png]] 137 - 138 - 139 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 140 - 141 -[[image:1654504778294-788.png]] 142 - 143 - 144 - 145 -== 2.3 Uplink Payload == 146 - 147 -=== 2.3.1 MOD~=0(Default Mode) === 148 - 149 -LSE01 will uplink payload via LoRaWAN with below payload format: 150 - 151 - 152 -Uplink payload includes in total 11 bytes. 153 153 154 - 155 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 156 -|=((( 157 -**Size** 158 - 159 -**(bytes)** 160 -)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1** 161 -|**Value**|(% style="width:46px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:160px" %)((( 162 -Temperature 163 - 164 -(Reserve, Ignore now) 165 -)))|(% style="width:104px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:126px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:114px" %)((( 166 -MOD & Digital Interrupt 167 - 168 -(Optional) 169 169 ))) 170 170 171 -[[image:165450 4881641-514.png]]45 +[[image:1654503236291-817.png]] 172 172 173 173 48 +[[image:1657245163077-232.png]] 174 174 175 -=== 2.3.2 MOD~=1(Original value) === 176 176 177 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 178 178 179 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 180 -|=((( 181 -**Size** 52 +== 1.2 Features == 182 182 183 -**(bytes)** 184 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1** 185 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 186 -Temperature 54 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 55 +* Monitor Soil Moisture 56 +* Monitor Soil Temperature 57 +* Monitor Soil Conductivity 58 +* AT Commands to change parameters 59 +* Uplink on periodically 60 +* Downlink to change configure 61 +* IP66 Waterproof Enclosure 62 +* Ultra-Low Power consumption 63 +* AT Commands to change parameters 64 +* Micro SIM card slot for NB-IoT SIM 65 +* 8500mAh Battery for long term use 187 187 188 -(Reserve, Ignore now) 189 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 190 -MOD & Digital Interrupt 191 191 192 -(Optional) 193 -))) 194 194 195 - [[image:1654504907647-967.png]]69 +== 1.3 Specification == 196 196 197 197 72 +(% style="color:#037691" %)**Common DC Characteristics:** 198 198 199 -=== 2.3.3 Battery Info === 74 +* Supply Voltage: 2.1v ~~ 3.6v 75 +* Operating Temperature: -40 ~~ 85°C 200 200 201 - Checkthe batteryvoltageforLSE01.77 +(% style="color:#037691" %)**NB-IoT Spec:** 202 202 203 -Ex1: 0x0B45 = 2885mV 79 +* - B1 @H-FDD: 2100MHz 80 +* - B3 @H-FDD: 1800MHz 81 +* - B8 @H-FDD: 900MHz 82 +* - B5 @H-FDD: 850MHz 83 +* - B20 @H-FDD: 800MHz 84 +* - B28 @H-FDD: 700MHz 204 204 205 - Ex2:0x0B49= 2889mV86 +Probe(% style="color:#037691" %)** Specification:** 206 206 88 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 207 207 90 +[[image:image-20220708101224-1.png]] 208 208 209 -=== 2.3.4 Soil Moisture === 210 210 211 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 212 212 213 - Forexample,if the data you get from the register is __0x05 0xDC__, the moisture content in thesoilis94 +== 1.4 Applications == 214 214 96 +* Smart Agriculture 215 215 216 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 98 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 99 + 217 217 101 +== 1.5 Pin Definitions == 218 218 219 219 220 - === 2.3.5 Soil Temperature===104 +[[image:1657246476176-652.png]] 221 221 222 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 223 223 224 -**Example**: 225 225 226 - Ifpayloadis 0105H:((0x0105& 0x8000)>>15 === 0),temp=0105(H)/100=2.61 °C108 += 2. Use NSE01 to communicate with IoT Server = 227 227 228 - If payload is FF7EH: ((FF7E & 0x8000)>>15===1),temp= (FF7E(H)-FFFF(H))/100=-1.29°C110 +== 2.1 How it works == 229 229 230 230 231 - 232 -=== 2.3.6 Soil Conductivity (EC) === 233 - 234 234 ((( 235 - Obtain(%style="color:#4f81bd"%)**__solublesaltconcentration__**(%%)insoil or (% style="color:#4f81bd"%)**__soluble ionconcentrationinliquidfertilizer__**(%%)or(% style="color:#4f81bd"%)**__plantingmedium__**(%%). Thevaluerangeftheregister is0 - 20000(Decimal)(Canbegreaterthan20000).114 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 236 236 ))) 237 237 238 -((( 239 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 240 -))) 241 241 242 242 ((( 243 - Generally,theEC valueof irrigationwateris lessthan800uS/ cm.119 +The diagram below shows the working flow in default firmware of NSE01: 244 244 ))) 245 245 246 -((( 247 - 248 -))) 122 +[[image:image-20220708101605-2.png]] 249 249 250 250 ((( 251 251 252 252 ))) 253 253 254 -=== 2.3.7 MOD === 255 255 256 -Firmware version at least v2.1 supports changing mode. 257 257 258 - Forxample,bytes[10]=90130 +== 2.2 Configure the NSE01 == 259 259 260 -mod=(bytes[10]>>7)&0x01=1. 261 261 133 +=== 2.2.1 Test Requirement === 262 262 263 -**Downlink Command:** 264 264 265 -If payload = 0x0A00, workmode=0 136 +((( 137 +To use NSE01 in your city, make sure meet below requirements: 138 +))) 266 266 267 -If** **payload =** **0x0A01, workmode=1 140 +* Your local operator has already distributed a NB-IoT Network there. 141 +* The local NB-IoT network used the band that NSE01 supports. 142 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 268 268 144 +((( 145 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 146 +))) 269 269 270 270 271 - ===2.3.8 Decodepayload inThe Things Network ===149 +[[image:1657249419225-449.png]] 272 272 273 -While using TTN network, you can add the payload format to decode the payload. 274 274 275 275 276 - [[image:1654505570700-128.png]]153 +=== 2.2.2 Insert SIM card === 277 277 278 -The payload decoder function for TTN is here: 155 +((( 156 +Insert the NB-IoT Card get from your provider. 157 +))) 279 279 280 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 159 +((( 160 +User need to take out the NB-IoT module and insert the SIM card like below: 161 +))) 281 281 282 282 164 +[[image:1657249468462-536.png]] 283 283 284 -== 2.4 Uplink Interval == 285 285 286 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 287 287 168 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 288 288 170 +((( 171 +((( 172 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 173 +))) 174 +))) 289 289 290 -== 2.5 Downlink Payload == 291 291 292 - By default, LSE50 prints the downlink payloadtoconsole port.177 +**Connection:** 293 293 294 - [[image:image-20220606165544-8.png]]179 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 295 295 181 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 296 296 297 - **Examples:**183 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 298 298 299 299 300 - ***SetTDC**186 +In the PC, use below serial tool settings: 301 301 302 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 188 +* Baud: (% style="color:green" %)**9600** 189 +* Data bits:** (% style="color:green" %)8(%%)** 190 +* Stop bits: (% style="color:green" %)**1** 191 +* Parity: (% style="color:green" %)**None** 192 +* Flow Control: (% style="color:green" %)**None** 303 303 304 -Payload: 01 00 00 1E TDC=30S 194 +((( 195 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 196 +))) 305 305 306 - Payload:1000 3C TDC=60S198 +[[image:image-20220708110657-3.png]] 307 307 200 +((( 201 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 202 +))) 308 308 309 -* **Reset** 310 310 311 -If payload = 0x04FF, it will reset the LSE01 312 312 206 +=== 2.2.4 Use CoAP protocol to uplink data === 313 313 314 - ***CFM**208 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 315 315 316 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 317 317 211 +**Use below commands:** 318 318 213 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 214 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 215 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 319 319 320 - == 2.6 ShowData inDataCakeIoT Server==217 +For parameter description, please refer to AT command set 321 321 322 -[[ DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]]to connect to TTN and see the data in DATACAKE. Below are the steps:219 +[[image:1657249793983-486.png]] 323 323 324 324 325 - **Step1**: Be sure thatyour deviceis programmed andproperlyconnectedtothenetworkat this time.222 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 326 326 327 - **Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add theDATACAKE integration,perform the followingsteps:224 +[[image:1657249831934-534.png]] 328 328 329 329 330 -[[image:1654505857935-743.png]] 331 331 228 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 332 332 333 - [[image:1654505874829-548.png]]230 +This feature is supported since firmware version v1.0.1 334 334 335 -Step 3: Create an account or log in Datacake. 336 336 337 -Step 4: Search the LSE01 and add DevEUI. 233 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 234 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 235 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 338 338 237 +[[image:1657249864775-321.png]] 339 339 340 -[[image:1654505905236-553.png]] 341 341 240 +[[image:1657249930215-289.png]] 342 342 343 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 344 344 345 -[[image:1654505925508-181.png]] 346 346 244 +=== 2.2.6 Use MQTT protocol to uplink data === 347 347 246 +This feature is supported since firmware version v110 348 348 349 -== 2.7 Frequency Plans == 350 350 351 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 249 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 250 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 251 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 252 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 253 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 254 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 255 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 352 352 257 +[[image:1657249978444-674.png]] 353 353 354 -=== 2.7.1 EU863-870 (EU868) === 355 355 356 - (% style="color:#037691" %)** Uplink:**260 +[[image:1657249990869-686.png]] 357 357 358 -868.1 - SF7BW125 to SF12BW125 359 359 360 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 263 +((( 264 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 265 +))) 361 361 362 -868.5 - SF7BW125 to SF12BW125 363 363 364 -867.1 - SF7BW125 to SF12BW125 365 365 366 - 867.3-SF7BW125toSF12BW125269 +=== 2.2.7 Use TCP protocol to uplink data === 367 367 368 - 867.5-SF7BW125toSF12BW125271 +This feature is supported since firmware version v110 369 369 370 -867.7 - SF7BW125 to SF12BW125 371 371 372 -867.9 - SF7BW125 to SF12BW125 274 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 275 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 373 373 374 - 868.8-FSK277 +[[image:1657250217799-140.png]] 375 375 376 376 377 - (% style="color:#037691" %)** Downlink:**280 +[[image:1657250255956-604.png]] 378 378 379 -Uplink channels 1-9 (RX1) 380 380 381 -869.525 - SF9BW125 (RX2 downlink only) 382 382 284 +=== 2.2.8 Change Update Interval === 383 383 286 +User can use below command to change the (% style="color:green" %)**uplink interval**. 384 384 385 -== =2.7.2US902-928(US915)===288 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 386 386 387 -Used in USA, Canada and South America. Default use CHE=2 290 +((( 291 +(% style="color:red" %)**NOTE:** 292 +))) 388 388 389 -(% style="color:#037691" %)**Uplink:** 294 +((( 295 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 296 +))) 390 390 391 -903.9 - SF7BW125 to SF10BW125 392 392 393 -904.1 - SF7BW125 to SF10BW125 394 394 395 - 904.3-SF7BW125 toSF10BW125300 +== 2.3 Uplink Payload == 396 396 397 - 904.5-SF7BW125toSF10BW125302 +In this mode, uplink payload includes in total 18 bytes 398 398 399 -904.7 - SF7BW125 to SF10BW125 304 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 305 +|=(% style="width: 60px;" %)((( 306 +**Size(bytes)** 307 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 308 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 400 400 401 -904.9 - SF7BW125 to SF10BW125 310 +((( 311 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 312 +))) 402 402 403 -905.1 - SF7BW125 to SF10BW125 404 404 405 - 905.3-SF7BW125 to SF10BW125315 +[[image:image-20220708111918-4.png]] 406 406 407 407 408 - (%style="color:#037691"%)**Downlink:**318 +The payload is ASCII string, representative same HEX: 409 409 410 - 923.3 - SF7BW500to SF12BW500320 +0x72403155615900640c7817075e0a8c02f900 where: 411 411 412 -923.9 - SF7BW500 to SF12BW500 322 +* Device ID: 0x 724031556159 = 724031556159 323 +* Version: 0x0064=100=1.0.0 413 413 414 -924.5 - SF7BW500 to SF12BW500 325 +* BAT: 0x0c78 = 3192 mV = 3.192V 326 +* Singal: 0x17 = 23 327 +* Soil Moisture: 0x075e= 1886 = 18.86 % 328 +* Soil Temperature:0x0a8c =2700=27 °C 329 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 330 +* Interrupt: 0x00 = 0 415 415 416 -925.1 - SF7BW500 to SF12BW500 417 417 418 -925.7 - SF7BW500 to SF12BW500 419 419 420 - 926.3-SF7BW500to SF12BW500334 +== 2.4 Payload Explanation and Sensor Interface == 421 421 422 -926.9 - SF7BW500 to SF12BW500 423 423 424 - 927.5-SF7BW500 to SF12BW500337 +=== 2.4.1 Device ID === 425 425 426 -923.3 - SF12BW500(RX2 downlink only) 339 +((( 340 +By default, the Device ID equal to the last 6 bytes of IMEI. 341 +))) 427 427 343 +((( 344 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 345 +))) 428 428 347 +((( 348 +**Example:** 349 +))) 429 429 430 -=== 2.7.3 CN470-510 (CN470) === 351 +((( 352 +AT+DEUI=A84041F15612 353 +))) 431 431 432 -Used in China, Default use CHE=1 355 +((( 356 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 357 +))) 433 433 434 -(% style="color:#037691" %)**Uplink:** 435 435 436 -486.3 - SF7BW125 to SF12BW125 437 437 438 -4 86.5 - SF7BW125toSF12BW125361 +=== 2.4.2 Version Info === 439 439 440 -486.7 - SF7BW125 to SF12BW125 363 +((( 364 +Specify the software version: 0x64=100, means firmware version 1.00. 365 +))) 441 441 442 -486.9 - SF7BW125 to SF12BW125 367 +((( 368 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 369 +))) 443 443 444 -487.1 - SF7BW125 to SF12BW125 445 445 446 -487.3 - SF7BW125 to SF12BW125 447 447 448 -4 87.5- SF7BW125toSF12BW125373 +=== 2.4.3 Battery Info === 449 449 450 -487.7 - SF7BW125 to SF12BW125 375 +((( 376 +Check the battery voltage for LSE01. 377 +))) 451 451 379 +((( 380 +Ex1: 0x0B45 = 2885mV 381 +))) 452 452 453 -(% style="color:#037691" %)**Downlink:** 383 +((( 384 +Ex2: 0x0B49 = 2889mV 385 +))) 454 454 455 -506.7 - SF7BW125 to SF12BW125 456 456 457 -506.9 - SF7BW125 to SF12BW125 458 458 459 - 507.1-SF7BW125toSF12BW125389 +=== 2.4.4 Signal Strength === 460 460 461 -507.3 - SF7BW125 to SF12BW125 391 +((( 392 +NB-IoT Network signal Strength. 393 +))) 462 462 463 -507.5 - SF7BW125 to SF12BW125 395 +((( 396 +**Ex1: 0x1d = 29** 397 +))) 464 464 465 -507.7 - SF7BW125 to SF12BW125 399 +((( 400 +(% style="color:blue" %)**0**(%%) -113dBm or less 401 +))) 466 466 467 -507.9 - SF7BW125 to SF12BW125 403 +((( 404 +(% style="color:blue" %)**1**(%%) -111dBm 405 +))) 468 468 469 -508.1 - SF7BW125 to SF12BW125 407 +((( 408 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 409 +))) 470 470 471 -505.3 - SF12BW125 (RX2 downlink only) 411 +((( 412 +(% style="color:blue" %)**31** (%%) -51dBm or greater 413 +))) 472 472 415 +((( 416 +(% style="color:blue" %)**99** (%%) Not known or not detectable 417 +))) 473 473 474 474 475 -=== 2.7.4 AU915-928(AU915) === 476 476 477 - DefaultuseCHE=2421 +=== 2.4.5 Soil Moisture === 478 478 479 -(% style="color:#037691" %)**Uplink:** 423 +((( 424 +((( 425 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 426 +))) 427 +))) 480 480 481 -916.8 - SF7BW125 to SF12BW125 429 +((( 430 +((( 431 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 432 +))) 433 +))) 482 482 483 -917.0 - SF7BW125 to SF12BW125 435 +((( 436 + 437 +))) 484 484 485 -917.2 - SF7BW125 to SF12BW125 439 +((( 440 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 441 +))) 486 486 487 -917.4 - SF7BW125 to SF12BW125 488 488 489 -917.6 - SF7BW125 to SF12BW125 490 490 491 - 917.8-SF7BW125toSF12BW125445 +=== 2.4.6 Soil Temperature === 492 492 493 -918.0 - SF7BW125 to SF12BW125 447 +((( 448 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 449 +))) 494 494 495 -918.2 - SF7BW125 to SF12BW125 451 +((( 452 +**Example**: 453 +))) 496 496 455 +((( 456 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 457 +))) 497 497 498 -(% style="color:#037691" %)**Downlink:** 459 +((( 460 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 461 +))) 499 499 500 -923.3 - SF7BW500 to SF12BW500 501 501 502 -923.9 - SF7BW500 to SF12BW500 503 503 504 - 924.5-SF7BW500toSF12BW500465 +=== 2.4.7 Soil Conductivity (EC) === 505 505 506 -925.1 - SF7BW500 to SF12BW500 467 +((( 468 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 469 +))) 507 507 508 -925.7 - SF7BW500 to SF12BW500 471 +((( 472 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 473 +))) 509 509 510 -926.3 - SF7BW500 to SF12BW500 475 +((( 476 +Generally, the EC value of irrigation water is less than 800uS / cm. 477 +))) 511 511 512 -926.9 - SF7BW500 to SF12BW500 479 +((( 480 + 481 +))) 513 513 514 -927.5 - SF7BW500 to SF12BW500 483 +((( 484 + 485 +))) 515 515 516 - 923.3- SF12BW500(RX2 downlinkonly)487 +=== 2.4.8 Digital Interrupt === 517 517 489 +((( 490 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 491 +))) 518 518 493 +((( 494 +The command is: 495 +))) 519 519 520 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 497 +((( 498 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 499 +))) 521 521 522 -(% style="color:#037691" %)**Default Uplink channel:** 523 523 524 -923.2 - SF7BW125 to SF10BW125 502 +((( 503 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 504 +))) 525 525 526 -923.4 - SF7BW125 to SF10BW125 527 527 507 +((( 508 +Example: 509 +))) 528 528 529 -(% style="color:#037691" %)**Additional Uplink Channel**: 511 +((( 512 +0x(00): Normal uplink packet. 513 +))) 530 530 531 -(OTAA mode, channel added by JoinAccept message) 515 +((( 516 +0x(01): Interrupt Uplink Packet. 517 +))) 532 532 533 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 534 534 535 -922.2 - SF7BW125 to SF10BW125 536 536 537 - 922.4- SF7BW125 toSF10BW125521 +=== 2.4.9 +5V Output === 538 538 539 -922.6 - SF7BW125 to SF10BW125 523 +((( 524 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 525 +))) 540 540 541 -922.8 - SF7BW125 to SF10BW125 542 542 543 -923.0 - SF7BW125 to SF10BW125 528 +((( 529 +The 5V output time can be controlled by AT Command. 530 +))) 544 544 545 -922.0 - SF7BW125 to SF10BW125 532 +((( 533 +(% style="color:blue" %)**AT+5VT=1000** 534 +))) 546 546 536 +((( 537 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 538 +))) 547 547 548 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 549 549 550 -923.6 - SF7BW125 to SF10BW125 551 551 552 - 923.8- SF7BW125toSF10BW125542 +== 2.5 Downlink Payload == 553 553 554 - 924.0-SF7BW125toSF10BW125544 +By default, NSE01 prints the downlink payload to console port. 555 555 556 - 924.2- SF7BW125 to SF10BW125546 +[[image:image-20220708133731-5.png]] 557 557 558 -924.4 - SF7BW125 to SF10BW125 559 559 560 -924.6 - SF7BW125 to SF10BW125 549 +((( 550 +(% style="color:blue" %)**Examples:** 551 +))) 561 561 553 +((( 554 + 555 +))) 562 562 563 -(% style="color:#037691" %)** Downlink:** 557 +* ((( 558 +(% style="color:blue" %)**Set TDC** 559 +))) 564 564 565 -Uplink channels 1-8 (RX1) 561 +((( 562 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 563 +))) 566 566 567 -923.2 - SF10BW125 (RX2) 565 +((( 566 +Payload: 01 00 00 1E TDC=30S 567 +))) 568 568 569 +((( 570 +Payload: 01 00 00 3C TDC=60S 571 +))) 569 569 573 +((( 574 + 575 +))) 570 570 571 -=== 2.7.6 KR920-923 (KR920) === 577 +* ((( 578 +(% style="color:blue" %)**Reset** 579 +))) 572 572 573 -Default channel: 581 +((( 582 +If payload = 0x04FF, it will reset the NSE01 583 +))) 574 574 575 -922.1 - SF7BW125 to SF12BW125 576 576 577 - 922.3-SF7BW125toSF12BW125586 +* (% style="color:blue" %)**INTMOD** 578 578 579 -922.5 - SF7BW125 to SF12BW125 588 +((( 589 +Downlink Payload: 06000003, Set AT+INTMOD=3 590 +))) 580 580 581 581 582 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 583 583 584 - 922.1-SF7BW125toSF12BW125594 +== 2.6 LED Indicator == 585 585 586 -922.3 - SF7BW125 to SF12BW125 596 +((( 597 +The NSE01 has an internal LED which is to show the status of different state. 587 587 588 -922.5 - SF7BW125 to SF12BW125 589 589 590 -922.7 - SF7BW125 to SF12BW125 600 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 601 +* Then the LED will be on for 1 second means device is boot normally. 602 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 603 +* For each uplink probe, LED will be on for 500ms. 604 +))) 591 591 592 -922.9 - SF7BW125 to SF12BW125 593 593 594 -923.1 - SF7BW125 to SF12BW125 595 595 596 -923.3 - SF7BW125 to SF12BW125 597 597 609 +== 2.7 Installation in Soil == 598 598 599 - (%style="color:#037691"%)**Downlink:**611 +__**Measurement the soil surface**__ 600 600 601 -Uplink channels 1-7(RX1) 613 +((( 614 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 615 +))) 602 602 603 - 921.9 - SF12BW125 (RX2 downlink only; SF12BW125might be changed to SF9BW125)617 +[[image:1657259653666-883.png]] 604 604 605 605 620 +((( 621 + 606 606 607 -=== 2.7.7 IN865-867 (IN865) === 623 +((( 624 +Dig a hole with diameter > 20CM. 625 +))) 608 608 609 -(% style="color:#037691" %)** Uplink:** 627 +((( 628 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 629 +))) 630 +))) 610 610 611 - 865.0625SF7BW125 to SF12BW125632 +[[image:1654506665940-119.png]] 612 612 613 -865.4025 - SF7BW125 to SF12BW125 634 +((( 635 + 636 +))) 614 614 615 -865.9850 - SF7BW125 to SF12BW125 616 616 639 +== 2.8 Firmware Change Log == 617 617 618 -(% style="color:#037691" %) **Downlink:** 619 619 620 - Uplinkchannels1-3 (RX1)642 +Download URL & Firmware Change log 621 621 622 - 866.550-F10BW125(RX2)644 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 623 623 624 624 647 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 625 625 626 626 627 -== 2.8 LED Indicator == 628 628 629 - TheLSE01has an internalLED which isto show the status of differentstate.651 +== 2.9 Battery Analysis == 630 630 631 -* Blink once when device power on. 632 -* Solid ON for 5 seconds once device successful Join the network. 633 -* Blink once when device transmit a packet. 653 +=== 2.9.1 Battery Type === 634 634 635 -== 2.9 Installation in Soil == 636 636 637 -**Measurement the soil surface** 638 - 639 - 640 -[[image:1654506634463-199.png]] 641 - 642 642 ((( 643 -((( 644 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 657 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 645 645 ))) 646 -))) 647 647 648 648 649 -[[image:1654506665940-119.png]] 650 - 651 651 ((( 652 - Dig aholewithdiameter>20CM.662 +The battery is designed to last for several years depends on the actually use environment and update interval. 653 653 ))) 654 654 655 -((( 656 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 657 -))) 658 658 659 - 660 -== 2.10 Firmware Change Log == 661 - 662 662 ((( 663 - **Firmware downloadlink:**667 +The battery related documents as below: 664 664 ))) 665 665 666 - (((667 -[[ http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]668 - )))670 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 671 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 672 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 669 669 670 670 ((( 671 - 675 +[[image:image-20220708140453-6.png]] 672 672 ))) 673 673 674 -((( 675 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 676 -))) 677 677 678 -((( 679 - 680 -))) 681 681 682 -((( 683 -**V1.0.** 684 -))) 680 +=== 2.9.2 Power consumption Analyze === 685 685 686 686 ((( 687 - Release683 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 688 688 ))) 689 689 690 690 691 -== 2.11 Battery Analysis == 692 - 693 -=== 2.11.1 Battery Type === 694 - 695 695 ((( 696 - The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The batteryis non-rechargeablebattery type with a lowdischargerate (<2% per year). Thistype ofbattery is commonly used in IoT devices such aswater meter.688 +Instruction to use as below: 697 697 ))) 698 698 699 699 ((( 700 - Thebatterys designedlastforrethan5 years fortheSN50.692 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 701 701 ))) 702 702 695 + 703 703 ((( 704 -((( 705 -The battery-related documents are as below: 697 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 706 706 ))) 707 -))) 708 708 709 709 * ((( 710 - [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],701 +Product Model 711 711 ))) 712 712 * ((( 713 - [[Lithium-ThionylChloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],704 +Uplink Interval 714 714 ))) 715 715 * ((( 716 - [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]],[[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]707 +Working Mode 717 717 ))) 718 718 719 - [[image:image-20220606171726-9.png]] 710 +((( 711 +And the Life expectation in difference case will be shown on the right. 712 +))) 720 720 714 +[[image:image-20220708141352-7.jpeg]] 721 721 722 722 723 -=== 2.11.2 Battery Note === 724 724 718 +=== 2.9.3 Battery Note === 719 + 725 725 ((( 726 726 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 727 727 ))) ... ... @@ -728,303 +728,195 @@ 728 728 729 729 730 730 731 -=== 2. 11.3Replace the battery ===726 +=== 2.9.4 Replace the battery === 732 732 733 733 ((( 734 - IfBattery is lower than 2.7v,usershouldreplace the battery ofLSE01.729 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 735 735 ))) 736 736 732 + 733 + 734 += 3. Access NB-IoT Module = 735 + 737 737 ((( 738 - You can changethe battery in the LSE01.The type of battery isnot limitedas longas the outputis between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the maincircuit. If you need to use a battery with lessthan 3.3v, pleaseremovethe D1and shortcut thewopadsofitso therewon’tbe voltage drop between battery andmain board.737 +Users can directly access the AT command set of the NB-IoT module. 739 739 ))) 740 740 741 741 ((( 742 -The defaultbattery packof LSE01 includesa ER18505 plussupercapacitor.Ifusercan’tfind this pack locally, theycan find ER18505orequivalence,whichwillalsoworkinmostcase.The SPC can enlargethebattery lifeforigh frequency use(updateperiod below5minutes)741 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 743 743 ))) 744 744 744 +[[image:1657261278785-153.png]] 745 745 746 746 747 -= 3. Using the AT Commands = 748 748 749 -= =3.1AccessAT Commands ==748 += 4. Using the AT Commands = 750 750 750 +== 4.1 Access AT Commands == 751 751 752 - LSE01supportsATCommandsetn the stock firmware.Youcanuse a USB toTTLadaptertoconnect to LSE01forusing ATcommand,asbelow.752 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 753 753 754 -[[image:1654501986557-872.png||height="391" width="800"]] 755 755 755 +AT+<CMD>? : Help on <CMD> 756 756 757 - Orifyouhavebelowboard,usebelowconnection:757 +AT+<CMD> : Run <CMD> 758 758 759 +AT+<CMD>=<value> : Set the value 759 759 760 - [[image:1654502005655-729.png||height="503"width="801"]]761 +AT+<CMD>=? : Get the value 761 761 762 762 763 - 764 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 765 - 766 - 767 - [[image:1654502050864-459.png||height="564" width="806"]] 768 - 769 - 770 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 771 - 772 - 773 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 774 - 775 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 776 - 777 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 778 - 779 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 780 - 781 - 782 782 (% style="color:#037691" %)**General Commands**(%%) 783 783 784 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention766 +AT : Attention 785 785 786 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help768 +AT? : Short Help 787 787 788 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset770 +ATZ : MCU Reset 789 789 790 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval772 +AT+TDC : Application Data Transmission Interval 791 791 774 +AT+CFG : Print all configurations 792 792 793 - (%style="color:#037691"%)**Keys,IDsand EUIs management**776 +AT+CFGMOD : Working mode selection 794 794 795 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI778 +AT+INTMOD : Set the trigger interrupt mode 796 796 797 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey780 +AT+5VT : Set extend the time of 5V power 798 798 799 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key782 +AT+PRO : Choose agreement 800 800 801 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress784 +AT+WEIGRE : Get weight or set weight to 0 802 802 803 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI786 +AT+WEIGAP : Get or Set the GapValue of weight 804 804 805 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)788 +AT+RXDL : Extend the sending and receiving time 806 806 807 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network790 +AT+CNTFAC : Get or set counting parameters 808 808 809 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode792 +AT+SERVADDR : Server Address 810 810 811 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 812 812 813 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network795 +(% style="color:#037691" %)**COAP Management** 814 814 815 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode797 +AT+URI : Resource parameters 816 816 817 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 818 818 819 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format800 +(% style="color:#037691" %)**UDP Management** 820 820 821 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat802 +AT+CFM : Upload confirmation mode (only valid for UDP) 822 822 823 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 824 824 825 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data805 +(% style="color:#037691" %)**MQTT Management** 826 826 807 +AT+CLIENT : Get or Set MQTT client 827 827 828 - (%style="color:#037691"%)**LoRaNetworkManagement**809 +AT+UNAME : Get or Set MQTT Username 829 829 830 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate811 +AT+PWD : Get or Set MQTT password 831 831 832 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA813 +AT+PUBTOPIC : Get or Set MQTT publish topic 833 833 834 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting815 +AT+SUBTOPIC : Get or Set MQTT subscription topic 835 835 836 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 837 837 838 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink818 +(% style="color:#037691" %)**Information** 839 839 840 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink820 +AT+FDR : Factory Data Reset 841 841 842 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1822 +AT+PWORD : Serial Access Password 843 843 844 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 845 845 846 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 847 847 848 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1826 += 5. FAQ = 849 849 850 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2828 +== 5.1 How to Upgrade Firmware == 851 851 852 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 853 853 854 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 831 +((( 832 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 833 +))) 855 855 856 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 857 - 858 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 859 - 860 - 861 -(% style="color:#037691" %)**Information** 862 - 863 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 864 - 865 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 866 - 867 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 868 - 869 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 870 - 871 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 872 - 873 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 874 - 875 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 876 - 877 - 878 -= 4. FAQ = 879 - 880 -== 4.1 How to change the LoRa Frequency Bands/Region? == 881 - 882 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 883 -When downloading the images, choose the required image file for download. 884 - 885 - 886 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 887 - 888 - 889 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 890 - 891 - 892 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 893 - 894 -[[image:image-20220606154726-3.png]] 895 - 896 -When you use the TTN network, the US915 frequency bands use are: 897 - 898 -* 903.9 - SF7BW125 to SF10BW125 899 -* 904.1 - SF7BW125 to SF10BW125 900 -* 904.3 - SF7BW125 to SF10BW125 901 -* 904.5 - SF7BW125 to SF10BW125 902 -* 904.7 - SF7BW125 to SF10BW125 903 -* 904.9 - SF7BW125 to SF10BW125 904 -* 905.1 - SF7BW125 to SF10BW125 905 -* 905.3 - SF7BW125 to SF10BW125 906 -* 904.6 - SF8BW500 907 - 908 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 909 - 910 -(% class="box infomessage" %) 911 911 ((( 912 - **AT+CHE=2**836 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 913 913 ))) 914 914 915 -(% class="box infomessage" %) 916 916 ((( 917 - **ATZ**840 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 918 918 ))) 919 919 920 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 921 921 922 922 923 - The**AU915**bandissimilar. Below aretheAU915UplinkChannels.845 +== 5.2 Can I calibrate NSE01 to different soil types? == 924 924 925 -[[image:image-20220606154825-4.png]] 847 +((( 848 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. 849 +))) 926 926 927 927 852 += 6. Trouble Shooting = 928 928 929 -= 5.TroubleShooting =854 +== 6.1 Connection problem when uploading firmware == 930 930 931 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 932 932 933 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 934 - 935 - 936 -== 5.2 AT Command input doesn’t work == 937 - 938 938 ((( 939 - In thecaseif user can seethe console outputbut can’t typeinput tothe device. Please checkif youalready includethe (%yle="color:green"%)**ENTER**(%%) whileendingouthecommand. Someserial tooldoesn’tsend (% style="color:green"%)**ENTER**(%%) whileess the sendkey,userneed toadd ENTER in theirstring.858 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 940 940 ))) 941 941 942 - 943 -== 5.3 Device rejoin in at the second uplink packet == 944 - 945 -(% style="color:#4f81bd" %)**Issue describe as below:** 946 - 947 -[[image:1654500909990-784.png]] 948 - 949 - 950 -(% style="color:#4f81bd" %)**Cause for this issue:** 951 - 861 +(% class="wikigeneratedid" %) 952 952 ((( 953 - Thefuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.863 + 954 954 ))) 955 955 956 956 957 - (% style="color:#4f81bd"%)**Solution:**867 +== 6.2 AT Command input doesn't work == 958 958 959 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 869 +((( 870 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 960 960 961 -[[image:1654500929571-736.png||height="458" width="832"]] 872 + 873 +))) 962 962 963 963 964 -= 6. Order Info =876 += 7. Order Info = 965 965 966 966 967 -Part Number**:** LSE01-XX-YY**879 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 968 968 969 969 970 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 971 - 972 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 973 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 974 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 975 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 976 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 977 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 978 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 979 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 980 - 981 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 982 - 983 -* (% style="color:red" %)**4**(%%): 4000mAh battery 984 -* (% style="color:red" %)**8**(%%): 8500mAh battery 985 - 986 986 (% class="wikigeneratedid" %) 987 987 ((( 988 988 989 989 ))) 990 990 991 -= 7. Packing Info =887 += 8. Packing Info = 992 992 993 993 ((( 994 -**Package Includes**: 995 -))) 890 + 996 996 997 -* ((( 998 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 892 +(% style="color:#037691" %)**Package Includes**: 893 + 894 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 895 +* External antenna x 1 999 999 ))) 1000 1000 1001 1001 ((( 1002 1002 1003 -))) 1004 1004 1005 -((( 1006 -**Dimension and weight**: 1007 -))) 901 +(% style="color:#037691" %)**Dimension and weight**: 1008 1008 1009 -* (((1010 - DeviceSize:cm903 +* Size: 195 x 125 x 55 mm 904 +* Weight: 420g 1011 1011 ))) 1012 -* ((( 1013 -Device Weight: g 1014 -))) 1015 -* ((( 1016 -Package Size / pcs : cm 1017 -))) 1018 -* ((( 1019 -Weight / pcs : g 1020 1020 907 +((( 908 + 1021 1021 910 + 1022 1022 1023 1023 ))) 1024 1024 1025 -= 8. Support =914 += 9. Support = 1026 1026 1027 1027 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1028 1028 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1029 - 1030 -
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.5 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content