Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 24 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,8 +3,16 @@ 3 3 4 4 5 5 6 -**Contents:** 7 7 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 +**Table of Contents:** 15 + 8 8 {{toc/}} 9 9 10 10 ... ... @@ -12,63 +12,82 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 -= =1.1Whatis LoRaWAN Soil Moisture & EC Sensor==24 += 1. Introduction = 18 18 26 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 27 + 19 19 ((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 29 + 22 22 23 23 ((( 24 - Itdetects (% style="color:#4f81bd" %)**SoilMoisture**(%%),(%style="color:#4f81bd"%)**Soil Temperature**(%%)and(%style="color:#4f81bd"%)**SoilConductivity**(%%),anduploadsthevalueviawirelesstoLoRaWANIoT Server.32 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 25 25 ))) 26 26 27 27 ((( 28 - TheLoRawirelesstechnologyusedin LES01 allows devicetoend data andreachextremely longrangesatlowdata-rates. It provides ultra-longrangespreadspectrumcommunicationandhighinterferenceimmunitywhilst minimizing current consumption.36 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 29 29 ))) 30 30 31 31 ((( 32 - LES01is powered by (%style="color:#4f81bd"%)**4000mAor8500mAhLi-SOCI2battery**(%%),Itisdesignedfor long termuseup to10 years.40 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 33 ))) 34 34 35 35 ((( 36 - Each LES01ispre-loadwithasetfuniquekeys for LoRaWANregistrations,register thesekeys to localLoRaWANserver anditwill autoconnectafterpower on.44 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 37 37 ))) 38 38 47 + 48 +))) 39 39 40 40 [[image:1654503236291-817.png]] 41 41 42 42 43 -[[image:16545 03265560-120.png]]53 +[[image:1657245163077-232.png]] 44 44 45 45 46 46 47 -== 1.2 Features == 57 +== 1.2 Features == 48 48 49 -* LoRaWAN 1.0.3 Class A 50 -* Ultra low power consumption 59 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 51 51 * Monitor Soil Moisture 52 52 * Monitor Soil Temperature 53 53 * Monitor Soil Conductivity 54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 55 55 * AT Commands to change parameters 56 56 * Uplink on periodically 57 57 * Downlink to change configure 58 58 * IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 67 +* Ultra-Low Power consumption 68 +* AT Commands to change parameters 69 +* Micro SIM card slot for NB-IoT SIM 70 +* 8500mAh Battery for long term use 60 60 61 61 73 +== 1.3 Specification == 62 62 63 -== 1.3 Specification == 64 64 76 +(% style="color:#037691" %)**Common DC Characteristics:** 77 + 78 +* Supply Voltage: 2.1v ~~ 3.6v 79 +* Operating Temperature: -40 ~~ 85°C 80 + 81 +(% style="color:#037691" %)**NB-IoT Spec:** 82 + 83 +* - B1 @H-FDD: 2100MHz 84 +* - B3 @H-FDD: 1800MHz 85 +* - B8 @H-FDD: 900MHz 86 +* - B5 @H-FDD: 850MHz 87 +* - B20 @H-FDD: 800MHz 88 +* - B28 @H-FDD: 700MHz 89 + 90 +Probe(% style="color:#037691" %)** Specification:** 91 + 65 65 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 66 66 67 -[[image:image-20220 606162220-5.png]]94 +[[image:image-20220708101224-1.png]] 68 68 69 69 70 70 71 -== 1.4 Applications == 98 +== 1.4 Applications == 72 72 73 73 * Smart Agriculture 74 74 ... ... @@ -75,956 +75,744 @@ 75 75 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 76 76 77 77 78 -== 1.5 Firmware Changelog==105 +== 1.5 Pin Definitions == 79 79 80 80 81 - **LSE01v1.0 :** Release108 +[[image:1657246476176-652.png]] 82 82 83 83 84 84 85 -= 2. ConfigureLSE01 to connect toLoRaWANnetwork=112 += 2. Use NSE01 to communicate with IoT Server = 86 86 87 -== 2.1 How it works == 114 +== 2.1 How it works == 88 88 116 + 89 89 ((( 90 -The LSE01 isconfiguredasLoRaWANOTAAClass Amodebydefault.IthasOTAAkeystojoinLoRaWANnetwork.Toconnect a localLoRaWAN network,you need toinputtheOTAAkeysin theLoRaWANserverandpoweronthe LSE0150. It willautomaticallyjointhenetworkviaOTAA and starttosendthesensor value118 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 91 91 ))) 92 92 121 + 93 93 ((( 94 - In case you can’t set the OTAA keys in theLoRaWAN OTAA server,andyouhave tousethe keysfromtheserver, you can [[useAT Commands >>||anchor="H3.200BUsingtheATCommands"]].123 +The diagram below shows the working flow in default firmware of NSE01: 95 95 ))) 96 96 126 +[[image:image-20220708101605-2.png]] 97 97 98 - 99 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 100 - 101 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 102 - 103 - 104 -[[image:1654503992078-669.png]] 105 - 106 - 107 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 108 - 109 - 110 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 111 - 112 -Each LSE01 is shipped with a sticker with the default device EUI as below: 113 - 114 -[[image:image-20220606163732-6.jpeg]] 115 - 116 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 117 - 118 -**Add APP EUI in the application** 119 - 120 - 121 -[[image:1654504596150-405.png]] 122 - 123 - 124 - 125 -**Add APP KEY and DEV EUI** 126 - 127 -[[image:1654504683289-357.png]] 128 - 129 - 130 - 131 -**Step 2**: Power on LSE01 132 - 133 - 134 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 135 - 136 -[[image:image-20220606163915-7.png]] 137 - 138 - 139 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 140 - 141 -[[image:1654504778294-788.png]] 142 - 143 - 144 - 145 -== 2.3 Uplink Payload == 146 - 147 -=== 2.3.1 MOD~=0(Default Mode) === 148 - 149 -LSE01 will uplink payload via LoRaWAN with below payload format: 150 - 151 - 152 -Uplink payload includes in total 11 bytes. 128 +((( 153 153 154 - 155 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 156 -|=((( 157 -**Size** 158 - 159 -**(bytes)** 160 -)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1** 161 -|**Value**|(% style="width:46px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:160px" %)((( 162 -Temperature 163 - 164 -(Reserve, Ignore now) 165 -)))|(% style="width:104px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:126px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:114px" %)((( 166 -MOD & Digital Interrupt 167 - 168 -(Optional) 169 169 ))) 170 170 171 -[[image:1654504881641-514.png]] 172 172 173 173 134 +== 2.2 Configure the NSE01 == 174 174 175 -=== 2.3.2 MOD~=1(Original value) === 176 176 177 - Thismodecangettheoriginal AD value of moistureand original conductivity (with temperature drift compensation).137 +=== 2.2.1 Test Requirement === 178 178 179 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 180 -|=((( 181 -**Size** 182 182 183 -**(bytes)** 184 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1** 185 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 186 -Temperature 140 +((( 141 +To use NSE01 in your city, make sure meet below requirements: 142 +))) 187 187 188 - (Reserve,Ignorenow)189 - )))|[[SoilMoisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[SoilConductivity(EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((190 - MOD&DigitalInterrupt144 +* Your local operator has already distributed a NB-IoT Network there. 145 +* The local NB-IoT network used the band that NSE01 supports. 146 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 191 191 192 -(Optional) 148 +((( 149 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 193 193 ))) 194 194 195 -[[image:1654504907647-967.png]] 196 196 153 +[[image:1657249419225-449.png]] 197 197 198 198 199 -=== 2.3.3 Battery Info === 200 200 201 - Checkthebattery voltageforLSE01.157 +=== 2.2.2 Insert SIM card === 202 202 203 -Ex1: 0x0B45 = 2885mV 159 +((( 160 +Insert the NB-IoT Card get from your provider. 161 +))) 204 204 205 -Ex2: 0x0B49 = 2889mV 163 +((( 164 +User need to take out the NB-IoT module and insert the SIM card like below: 165 +))) 206 206 207 207 168 +[[image:1657249468462-536.png]] 208 208 209 -=== 2.3.4 Soil Moisture === 210 210 211 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 212 212 213 - Forexample,ifthedatayougetfromtheregister is __0x050xDC__,themoisturecontentinthesoil is172 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 214 214 174 +((( 175 +((( 176 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 177 +))) 178 +))) 215 215 216 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 217 217 181 +**Connection:** 218 218 183 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 219 219 220 - ===2.3.5SoilTemperature===185 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 221 221 222 - Getthetemperature in the soil. The value range of the register is-4000 - +800(Decimal), divide this value by 100 toget the temperature in the soil. Forxample, if the data yougetfromtheregisteris 0x09 0xEC, the temperature content in the soil is187 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 223 223 224 -**Example**: 225 225 226 -I fpayload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp=0105(H)/100=2.61°C190 +In the PC, use below serial tool settings: 227 227 228 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 192 +* Baud: (% style="color:green" %)**9600** 193 +* Data bits:** (% style="color:green" %)8(%%)** 194 +* Stop bits: (% style="color:green" %)**1** 195 +* Parity: (% style="color:green" %)**None** 196 +* Flow Control: (% style="color:green" %)**None** 229 229 230 - 231 - 232 -=== 2.3.6 Soil Conductivity (EC) === 233 - 234 234 ((( 235 - Obtain(%style="color:#4f81bd"%)**__solublesaltconcentration__**(%%)insoil or(%style="color:#4f81bd" %)**__soluble ionconcentrationinliquidfertilizer__**(%%)or(% style="color:#4f81bd" %)**__planting medium__**(%%).Thevaluerange of the register is0- 20000(Decimal)( Canbe greater than20000).199 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 236 236 ))) 237 237 238 -((( 239 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 240 -))) 202 +[[image:image-20220708110657-3.png]] 241 241 242 242 ((( 243 - Generally,theECvalueofirrigationwaterisless than800uS/205 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 244 244 ))) 245 245 246 -((( 247 - 248 -))) 249 249 250 -((( 251 - 252 -))) 253 253 254 -=== 2. 3.7MOD===210 +=== 2.2.4 Use CoAP protocol to uplink data === 255 255 256 - Firmwareversion atleastv2.1supportschangingmode.212 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 257 257 258 -For example, bytes[10]=90 259 259 260 - mod=(bytes[10]>>7)&0x01=1.215 +**Use below commands:** 261 261 217 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 218 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 219 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 262 262 263 - **DownlinkCommand:**221 +For parameter description, please refer to AT command set 264 264 265 - If payload = 0x0A00, workmode=0223 +[[image:1657249793983-486.png]] 266 266 267 -If** **payload =** **0x0A01, workmode=1 268 268 226 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 269 269 228 +[[image:1657249831934-534.png]] 270 270 271 -=== 2.3.8 Decode payload in The Things Network === 272 272 273 -While using TTN network, you can add the payload format to decode the payload. 274 274 232 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 275 275 276 - [[image:1654505570700-128.png]]234 +This feature is supported since firmware version v1.0.1 277 277 278 -The payload decoder function for TTN is here: 279 279 280 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 237 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 238 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 239 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 281 281 241 +[[image:1657249864775-321.png]] 282 282 283 283 284 - ==2.4Uplink Interval ==244 +[[image:1657249930215-289.png]] 285 285 286 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 287 287 288 288 248 +=== 2.2.6 Use MQTT protocol to uplink data === 289 289 290 - ==2.5DownlinkPayload==250 +This feature is supported since firmware version v110 291 291 292 -By default, LSE50 prints the downlink payload to console port. 293 293 294 -[[image:image-20220606165544-8.png]] 253 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 254 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 255 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 256 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 257 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 258 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 259 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 295 295 261 +[[image:1657249978444-674.png]] 296 296 297 -**Examples:** 298 298 264 +[[image:1657249990869-686.png]] 299 299 300 -* **Set TDC** 301 301 302 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 267 +((( 268 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 269 +))) 303 303 304 -Payload: 01 00 00 1E TDC=30S 305 305 306 -Payload: 01 00 00 3C TDC=60S 307 307 273 +=== 2.2.7 Use TCP protocol to uplink data === 308 308 309 - ***Reset**275 +This feature is supported since firmware version v110 310 310 311 -If payload = 0x04FF, it will reset the LSE01 312 312 278 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 279 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 313 313 314 - * **CFM**281 +[[image:1657250217799-140.png]] 315 315 316 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 317 317 284 +[[image:1657250255956-604.png]] 318 318 319 319 320 -== 2.6 Show Data in DataCake IoT Server == 321 321 322 - [[DATACAKE>>url:https://datacake.co/]]providesahumanfriendlyinterface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]]to connectto TTN and see the data in DATACAKE. Beloware the steps:288 +=== 2.2.8 Change Update Interval === 323 323 290 +User can use below command to change the (% style="color:green" %)**uplink interval**. 324 324 325 -* *Step1**:Besurethatyour device is programmedandproperlyconnectedto the networkatthistime.292 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 326 326 327 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 294 +((( 295 +(% style="color:red" %)**NOTE:** 296 +))) 328 328 298 +((( 299 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 300 +))) 329 329 330 -[[image:1654505857935-743.png]] 331 331 332 332 333 - [[image:1654505874829-548.png]]304 +== 2.3 Uplink Payload == 334 334 335 - Step3: Createan accountorloginDatacake.306 +In this mode, uplink payload includes in total 18 bytes 336 336 337 -Step 4: Search the LSE01 and add DevEUI. 308 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 309 +|=(% style="width: 60px;" %)((( 310 +**Size(bytes)** 311 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 312 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 338 338 314 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 339 339 340 -[[image:1654505905236-553.png]] 341 341 317 +[[image:image-20220708111918-4.png]] 342 342 343 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 344 344 345 - [[image:1654505925508-181.png]]320 +The payload is ASCII string, representative same HEX: 346 346 322 +0x72403155615900640c7817075e0a8c02f900 where: 347 347 324 +* Device ID: 0x 724031556159 = 724031556159 325 +* Version: 0x0064=100=1.0.0 348 348 349 -== 2.7 Frequency Plans == 327 +* BAT: 0x0c78 = 3192 mV = 3.192V 328 +* Singal: 0x17 = 23 329 +* Soil Moisture: 0x075e= 1886 = 18.86 % 330 +* Soil Temperature:0x0a8c =2700=27 °C 331 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 332 +* Interrupt: 0x00 = 0 350 350 351 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 352 352 335 +== 2.4 Payload Explanation and Sensor Interface == 353 353 354 -=== 2.7.1 EU863-870 (EU868) === 355 355 356 - (%style="color:#037691"%)**Uplink:**338 +=== 2.4.1 Device ID === 357 357 358 - 868.1-SF7BW125toSF12BW125340 +By default, the Device ID equal to the last 6 bytes of IMEI. 359 359 360 - 868.3-SF7BW125toSF12BW125andSF7BW250342 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 361 361 362 - 868.5 - SF7BW125 to SF12BW125344 +**Example:** 363 363 364 -8 67.1- SF7BW125to SF12BW125346 +AT+DEUI=A84041F15612 365 365 366 - 867.3-SF7BW125toSF12BW125348 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 367 367 368 -867.5 - SF7BW125 to SF12BW125 369 369 370 -867.7 - SF7BW125 to SF12BW125 371 371 372 - 867.9- SF7BW125toSF12BW125352 +=== 2.4.2 Version Info === 373 373 374 - 868.8 -FSK354 +Specify the software version: 0x64=100, means firmware version 1.00. 375 375 356 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 376 376 377 -(% style="color:#037691" %)** Downlink:** 378 378 379 -Uplink channels 1-9 (RX1) 380 380 381 - 869.525- SF9BW125(RX2 downlinkonly)360 +=== 2.4.3 Battery Info === 382 382 362 +((( 363 +Check the battery voltage for LSE01. 364 +))) 383 383 366 +((( 367 +Ex1: 0x0B45 = 2885mV 368 +))) 384 384 385 -=== 2.7.2 US902-928(US915) === 370 +((( 371 +Ex2: 0x0B49 = 2889mV 372 +))) 386 386 387 -Used in USA, Canada and South America. Default use CHE=2 388 388 389 -(% style="color:#037691" %)**Uplink:** 390 390 391 - 903.9-SF7BW125toSF10BW125376 +=== 2.4.4 Signal Strength === 392 392 393 - 904.1-SF7BW125to SF10BW125378 +NB-IoT Network signal Strength. 394 394 395 - 904.3 - SF7BW125to SF10BW125380 +**Ex1: 0x1d = 29** 396 396 397 - 904.5-SF7BW125toSF10BW125382 +(% style="color:blue" %)**0**(%%) -113dBm or less 398 398 399 - 904.7-SF7BW125toSF10BW125384 +(% style="color:blue" %)**1**(%%) -111dBm 400 400 401 - 904.9- SF7BW125toSF10BW125386 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 402 402 403 - 905.1-SF7BW125toSF10BW125388 +(% style="color:blue" %)**31** (%%) -51dBm or greater 404 404 405 -9 05.3-SF7BW125toSF10BW125390 +(% style="color:blue" %)**99** (%%) Not known or not detectable 406 406 407 407 408 -(% style="color:#037691" %)**Downlink:** 409 409 410 - 923.3-SF7BW500toSF12BW500394 +=== 2.4.5 Soil Moisture === 411 411 412 -923.9 - SF7BW500 to SF12BW500 396 +((( 397 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 398 +))) 413 413 414 -924.5 - SF7BW500 to SF12BW500 400 +((( 401 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 402 +))) 415 415 416 -925.1 - SF7BW500 to SF12BW500 404 +((( 405 + 406 +))) 417 417 418 -925.7 - SF7BW500 to SF12BW500 408 +((( 409 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 410 +))) 419 419 420 -926.3 - SF7BW500 to SF12BW500 421 421 422 -926.9 - SF7BW500 to SF12BW500 423 423 424 - 927.5-SF7BW500toSF12BW500414 +=== 2.4.6 Soil Temperature === 425 425 426 -923.3 - SF12BW500(RX2 downlink only) 416 +((( 417 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 418 +))) 427 427 420 +((( 421 +**Example**: 422 +))) 428 428 424 +((( 425 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 426 +))) 429 429 430 -=== 2.7.3 CN470-510 (CN470) === 428 +((( 429 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 430 +))) 431 431 432 -Used in China, Default use CHE=1 433 433 434 -(% style="color:#037691" %)**Uplink:** 435 435 436 -4 86.3-SF7BW125toSF12BW125434 +=== 2.4.7 Soil Conductivity (EC) === 437 437 438 -486.5 - SF7BW125 to SF12BW125 436 +((( 437 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 438 +))) 439 439 440 -486.7 - SF7BW125 to SF12BW125 440 +((( 441 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 442 +))) 441 441 442 -486.9 - SF7BW125 to SF12BW125 444 +((( 445 +Generally, the EC value of irrigation water is less than 800uS / cm. 446 +))) 443 443 444 -487.1 - SF7BW125 to SF12BW125 448 +((( 449 + 450 +))) 445 445 446 -487.3 - SF7BW125 to SF12BW125 452 +((( 453 + 454 +))) 447 447 448 -4 87.5-SF7BW125toSF12BW125456 +=== 2.4.8 Digital Interrupt === 449 449 450 - 487.7-SF7BW125toSF12BW125458 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 451 451 460 +The command is: 452 452 453 -(% style="color: #037691" %)**Downlink:**462 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 454 454 455 -506.7 - SF7BW125 to SF12BW125 456 456 457 - 506.9-SF7BW125toSF12BW125465 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 458 458 459 -507.1 - SF7BW125 to SF12BW125 460 460 461 - 507.3 - SF7BW125 to SF12BW125468 +Example: 462 462 463 - 507.5-SF7BW125to SF12BW125470 +0x(00): Normal uplink packet. 464 464 465 - 507.7 - SF7BW125toSF12BW125472 +0x(01): Interrupt Uplink Packet. 466 466 467 -507.9 - SF7BW125 to SF12BW125 468 468 469 -508.1 - SF7BW125 to SF12BW125 470 470 471 - 505.3- SF12BW125(RX2downlink only)476 +=== 2.4.9 +5V Output === 472 472 478 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 473 473 474 474 475 - ===2.7.4AU915-928(AU915)===481 +The 5V output time can be controlled by AT Command. 476 476 477 - DefaultuseCHE=2483 +(% style="color:blue" %)**AT+5VT=1000** 478 478 479 - (%style="color:#037691"%)**Uplink:**485 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 480 480 481 -916.8 - SF7BW125 to SF12BW125 482 482 483 -917.0 - SF7BW125 to SF12BW125 484 484 485 - 917.2- SF7BW125toSF12BW125489 +== 2.5 Downlink Payload == 486 486 487 - 917.4-SF7BW125toSF12BW125491 +By default, NSE01 prints the downlink payload to console port. 488 488 489 - 917.6-SF7BW125 to SF12BW125493 +[[image:image-20220708133731-5.png]] 490 490 491 -917.8 - SF7BW125 to SF12BW125 492 492 493 -918.0 - SF7BW125 to SF12BW125 496 +((( 497 +(% style="color:blue" %)**Examples:** 498 +))) 494 494 495 -918.2 - SF7BW125 to SF12BW125 500 +((( 501 + 502 +))) 496 496 504 +* ((( 505 +(% style="color:blue" %)**Set TDC** 506 +))) 497 497 498 -(% style="color:#037691" %)**Downlink:** 508 +((( 509 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 510 +))) 499 499 500 -923.3 - SF7BW500 to SF12BW500 512 +((( 513 +Payload: 01 00 00 1E TDC=30S 514 +))) 501 501 502 -923.9 - SF7BW500 to SF12BW500 516 +((( 517 +Payload: 01 00 00 3C TDC=60S 518 +))) 503 503 504 -924.5 - SF7BW500 to SF12BW500 520 +((( 521 + 522 +))) 505 505 506 -925.1 - SF7BW500 to SF12BW500 524 +* ((( 525 +(% style="color:blue" %)**Reset** 526 +))) 507 507 508 -925.7 - SF7BW500 to SF12BW500 528 +((( 529 +If payload = 0x04FF, it will reset the NSE01 530 +))) 509 509 510 -926.3 - SF7BW500 to SF12BW500 511 511 512 - 926.9-SF7BW500toSF12BW500533 +* (% style="color:blue" %)**INTMOD** 513 513 514 - 927.5-SF7BW500 toSF12BW500535 +Downlink Payload: 06000003, Set AT+INTMOD=3 515 515 516 -923.3 - SF12BW500(RX2 downlink only) 517 517 518 518 539 +== 2.6 LED Indicator == 519 519 520 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 541 +((( 542 +The NSE01 has an internal LED which is to show the status of different state. 521 521 522 -(% style="color:#037691" %)**Default Uplink channel:** 523 523 524 -923.2 - SF7BW125 to SF10BW125 545 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 546 +* Then the LED will be on for 1 second means device is boot normally. 547 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 548 +* For each uplink probe, LED will be on for 500ms. 549 +))) 525 525 526 -923.4 - SF7BW125 to SF10BW125 527 527 528 528 529 -(% style="color:#037691" %)**Additional Uplink Channel**: 530 530 531 - (OTAAmode,channelddedbyJoinAcceptmessage)554 +== 2.7 Installation in Soil == 532 532 533 - (% style="color:#037691" %)**AS920~~AS923 for Japan,Malaysia,Singapore**:556 +__**Measurement the soil surface**__ 534 534 535 - 922.2-SF7BW125SF10BW125558 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 536 536 537 - 922.4 - SF7BW125to SF10BW125560 +[[image:1657259653666-883.png]] 538 538 539 -922.6 - SF7BW125 to SF10BW125 540 540 541 -922.8 - SF7BW125 to SF10BW125 563 +((( 564 + 542 542 543 -923.0 - SF7BW125 to SF10BW125 566 +((( 567 +Dig a hole with diameter > 20CM. 568 +))) 544 544 545 -922.0 - SF7BW125 to SF10BW125 570 +((( 571 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 572 +))) 573 +))) 546 546 575 +[[image:1654506665940-119.png]] 547 547 548 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 577 +((( 578 + 579 +))) 549 549 550 -923.6 - SF7BW125 to SF10BW125 551 551 552 - 923.8- SF7BW125toSF10BW125582 +== 2.8 Firmware Change Log == 553 553 554 -924.0 - SF7BW125 to SF10BW125 555 555 556 - 924.2-SF7BW125toSF10BW125585 +Download URL & Firmware Change log 557 557 558 - 924.4-F7BW125toSF10BW125587 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 559 559 560 -924.6 - SF7BW125 to SF10BW125 561 561 590 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 562 562 563 -(% style="color:#037691" %)** Downlink:** 564 564 565 -Uplink channels 1-8 (RX1) 566 566 567 - 923.2- SF10BW125(RX2)594 +== 2.9 Battery Analysis == 568 568 596 +=== 2.9.1 Battery Type === 569 569 570 570 571 - ===2.7.6KR920-923(KR920)===599 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 572 572 573 -Default channel: 574 574 575 - 922.1-SF7BW125toSF12BW125602 +The battery is designed to last for several years depends on the actually use environment and update interval. 576 576 577 -922.3 - SF7BW125 to SF12BW125 578 578 579 - 922.5-SF7BW125toSF12BW125605 +The battery related documents as below: 580 580 607 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 608 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 609 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 581 581 582 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 583 - 584 -922.1 - SF7BW125 to SF12BW125 585 - 586 -922.3 - SF7BW125 to SF12BW125 587 - 588 -922.5 - SF7BW125 to SF12BW125 589 - 590 -922.7 - SF7BW125 to SF12BW125 591 - 592 -922.9 - SF7BW125 to SF12BW125 593 - 594 -923.1 - SF7BW125 to SF12BW125 595 - 596 -923.3 - SF7BW125 to SF12BW125 597 - 598 - 599 -(% style="color:#037691" %)**Downlink:** 600 - 601 -Uplink channels 1-7(RX1) 602 - 603 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 604 - 605 - 606 - 607 -=== 2.7.7 IN865-867 (IN865) === 608 - 609 -(% style="color:#037691" %)** Uplink:** 610 - 611 -865.0625 - SF7BW125 to SF12BW125 612 - 613 -865.4025 - SF7BW125 to SF12BW125 614 - 615 -865.9850 - SF7BW125 to SF12BW125 616 - 617 - 618 -(% style="color:#037691" %) **Downlink:** 619 - 620 -Uplink channels 1-3 (RX1) 621 - 622 -866.550 - SF10BW125 (RX2) 623 - 624 - 625 - 626 - 627 -== 2.8 LED Indicator == 628 - 629 -The LSE01 has an internal LED which is to show the status of different state. 630 - 631 -* Blink once when device power on. 632 -* Solid ON for 5 seconds once device successful Join the network. 633 -* Blink once when device transmit a packet. 634 - 635 -== 2.9 Installation in Soil == 636 - 637 -**Measurement the soil surface** 638 - 639 - 640 -[[image:1654506634463-199.png]] 641 - 642 642 ((( 643 -((( 644 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 612 +[[image:image-20220708140453-6.png]] 645 645 ))) 646 -))) 647 647 648 648 649 -[[image:1654506665940-119.png]] 650 650 651 -((( 652 -Dig a hole with diameter > 20CM. 653 -))) 617 +=== 2.9.2 Power consumption Analyze === 654 654 655 655 ((( 656 - Horizontalinsertthe probeto the soil andfill the holefor longtermmeasurement.620 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 657 657 ))) 658 658 659 659 660 -== 2.10 Firmware Change Log == 661 - 662 662 ((( 663 - **Firmware downloadlink:**625 +Instruction to use as below: 664 664 ))) 665 665 666 666 ((( 667 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/ LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]629 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 668 668 ))) 669 669 670 -((( 671 - 672 -))) 673 673 674 674 ((( 675 - **FirmwareUpgradeMethod: **[[FirmwareUpgradeInstruction>>doc:Main.FirmwareUpgradeInstruction for STM32 baseproducts.WebHome]]634 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 676 676 ))) 677 677 678 -((( 679 - 637 +* ((( 638 +Product Model 680 680 ))) 681 - 682 -((( 683 -**V1.0.** 640 +* ((( 641 +Uplink Interval 684 684 ))) 643 +* ((( 644 +Working Mode 645 +))) 685 685 686 686 ((( 687 - Release648 +And the Life expectation in difference case will be shown on the right. 688 688 ))) 689 689 651 +[[image:image-20220708141352-7.jpeg]] 690 690 691 -== 2.11 Battery Analysis == 692 692 693 -=== 2.11.1 Battery Type === 694 694 695 -((( 696 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 697 -))) 655 +=== 2.9.3 Battery Note === 698 698 699 699 ((( 700 -The battery is designed to last for more than5 yearsfor theLSN50.658 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 701 701 ))) 702 702 703 -((( 704 -((( 705 -The battery-related documents are as below: 706 -))) 707 -))) 708 708 709 -* ((( 710 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 711 -))) 712 -* ((( 713 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 714 -))) 715 -* ((( 716 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 717 -))) 718 718 719 - [[image:image-20220606171726-9.png]]663 +=== 2.9.4 Replace the battery === 720 720 721 - 722 - 723 -=== 2.11.2 Battery Note === 724 - 725 725 ((( 726 -The Li-SICObatteryisdesigned forsmallcurrent/longperiodapplication. Itis notgood to use ahigh current,shortperiodtransmitmethod. Therecommendedminimum periodfor use ofthisbatteryis5minutes.If you useahorterperiodtimeto transmitLoRa, then the battery lifemaybe decreased.666 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 727 727 ))) 728 728 729 729 730 730 731 -= ==2.11.3Replacethebattery===671 += 3. Access NB-IoT Module = 732 732 733 733 ((( 734 - If Battery islower than2.7v, user shouldplace thebatteryofLSE01.674 +Users can directly access the AT command set of the NB-IoT module. 735 735 ))) 736 736 737 737 ((( 738 - Youcan changethebatteryintheLSE01.Thetypeofbattery is notlimitedaslongas the outputisbetween3v to3.6v. On themainboard, there isa diode(D1) between the battery andthe main circuit. If you needo usea battery with lessthan 3.3v, pleaseremovethe D1 andshortcut thetwopadsofit sothere won’t be voltageop between battery andmain board.678 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 739 739 ))) 740 740 741 -((( 742 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 743 -))) 681 +[[image:1657261278785-153.png]] 744 744 745 745 746 746 747 -= 3.Using the AT Commands =685 += 4. Using the AT Commands = 748 748 749 -== 3.1 Access AT Commands ==687 +== 4.1 Access AT Commands == 750 750 689 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 751 751 752 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 753 753 754 - [[image:1654501986557-872.png||height="391"width="800"]]692 +AT+<CMD>? : Help on <CMD> 755 755 694 +AT+<CMD> : Run <CMD> 756 756 757 - Orifyouhavebelowboard,usebelowconnection:696 +AT+<CMD>=<value> : Set the value 758 758 698 +AT+<CMD>=? : Get the value 759 759 760 -[[image:1654502005655-729.png||height="503" width="801"]] 761 761 762 - 763 - 764 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 765 - 766 - 767 - [[image:1654502050864-459.png||height="564" width="806"]] 768 - 769 - 770 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 771 - 772 - 773 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 774 - 775 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 776 - 777 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 778 - 779 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 780 - 781 - 782 782 (% style="color:#037691" %)**General Commands**(%%) 783 783 784 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention703 +AT : Attention 785 785 786 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help705 +AT? : Short Help 787 787 788 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset707 +ATZ : MCU Reset 789 789 790 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval709 +AT+TDC : Application Data Transmission Interval 791 791 711 +AT+CFG : Print all configurations 792 792 793 - (%style="color:#037691"%)**Keys,IDsand EUIs management**713 +AT+CFGMOD : Working mode selection 794 794 795 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI715 +AT+INTMOD : Set the trigger interrupt mode 796 796 797 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey717 +AT+5VT : Set extend the time of 5V power 798 798 799 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key719 +AT+PRO : Choose agreement 800 800 801 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress721 +AT+WEIGRE : Get weight or set weight to 0 802 802 803 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI723 +AT+WEIGAP : Get or Set the GapValue of weight 804 804 805 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)725 +AT+RXDL : Extend the sending and receiving time 806 806 807 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network727 +AT+CNTFAC : Get or set counting parameters 808 808 809 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode729 +AT+SERVADDR : Server Address 810 810 811 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 812 812 813 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network732 +(% style="color:#037691" %)**COAP Management** 814 814 815 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode734 +AT+URI : Resource parameters 816 816 817 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 818 818 819 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format737 +(% style="color:#037691" %)**UDP Management** 820 820 821 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat739 +AT+CFM : Upload confirmation mode (only valid for UDP) 822 822 823 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 824 824 825 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data742 +(% style="color:#037691" %)**MQTT Management** 826 826 744 +AT+CLIENT : Get or Set MQTT client 827 827 828 - (%style="color:#037691"%)**LoRaNetworkManagement**746 +AT+UNAME : Get or Set MQTT Username 829 829 830 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate748 +AT+PWD : Get or Set MQTT password 831 831 832 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA750 +AT+PUBTOPIC : Get or Set MQTT publish topic 833 833 834 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting752 +AT+SUBTOPIC : Get or Set MQTT subscription topic 835 835 836 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 837 837 838 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink755 +(% style="color:#037691" %)**Information** 839 839 840 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink757 +AT+FDR : Factory Data Reset 841 841 842 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1759 +AT+PWORD : Serial Access Password 843 843 844 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 845 845 846 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 847 847 848 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1763 += 5. FAQ = 849 849 850 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2765 +== 5.1 How to Upgrade Firmware == 851 851 852 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 853 853 854 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 768 +((( 769 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 770 +))) 855 855 856 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 857 - 858 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 859 - 860 - 861 -(% style="color:#037691" %)**Information** 862 - 863 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 864 - 865 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 866 - 867 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 868 - 869 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 870 - 871 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 872 - 873 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 874 - 875 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 876 - 877 - 878 -= 4. FAQ = 879 - 880 -== 4.1 How to change the LoRa Frequency Bands/Region? == 881 - 882 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 883 -When downloading the images, choose the required image file for download. 884 - 885 - 886 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 887 - 888 - 889 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 890 - 891 - 892 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 893 - 894 -[[image:image-20220606154726-3.png]] 895 - 896 -When you use the TTN network, the US915 frequency bands use are: 897 - 898 -* 903.9 - SF7BW125 to SF10BW125 899 -* 904.1 - SF7BW125 to SF10BW125 900 -* 904.3 - SF7BW125 to SF10BW125 901 -* 904.5 - SF7BW125 to SF10BW125 902 -* 904.7 - SF7BW125 to SF10BW125 903 -* 904.9 - SF7BW125 to SF10BW125 904 -* 905.1 - SF7BW125 to SF10BW125 905 -* 905.3 - SF7BW125 to SF10BW125 906 -* 904.6 - SF8BW500 907 - 908 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 909 - 910 -(% class="box infomessage" %) 911 911 ((( 912 - **AT+CHE=2**773 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 913 913 ))) 914 914 915 -(% class="box infomessage" %) 916 916 ((( 917 - **ATZ**777 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 918 918 ))) 919 919 920 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 921 921 922 922 923 - The**AU915**band is similar. Beloware the AU915 UplinkChannels.782 += 6. Trouble Shooting = 924 924 925 - [[image:image-20220606154825-4.png]]784 +== 6.1 Connection problem when uploading firmware == 926 926 927 927 928 - 929 -= 5. Trouble Shooting = 930 - 931 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 932 - 933 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 934 - 935 - 936 -== 5.2 AT Command input doesn’t work == 937 - 787 +(% class="wikigeneratedid" %) 938 938 ((( 939 - Inthecaseif usercanseeheconsoleputbutcan’typeinput tothe device. Please checkif youalready includethe (%yle="color:green"%)**ENTER**(%%) whilesendingout thecommand. Someserial tooldoesn’tsend (%style="color:green"%)**ENTER**(%%)while press the send key,userneed toadd ENTER inheirstring.789 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]] 940 940 ))) 941 941 942 942 943 -== 5.3 Device rejoin in at the second uplink packet == 944 944 945 - (% style="color:#4f81bd"%)**Issuedescribeas below:**794 +== 6.2 AT Command input doesn't work == 946 946 947 -[[image:1654500909990-784.png]] 948 - 949 - 950 -(% style="color:#4f81bd" %)**Cause for this issue:** 951 - 952 952 ((( 953 - The fuseonLSE01 isnotlargeenough,some ofthesoilproberequire large currentupto5v800mA,inashortpulse. Whenthishappen,it cause the device reboot souserseerejoin.797 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 954 954 ))) 955 955 956 956 957 -(% style="color:#4f81bd" %)**Solution: ** 958 958 959 - Allnew shipped LSE01 after 2020-May-30 will have this to fix.Forthecustomerwho see this issue, please bypass thefuse as below:802 += 7. Order Info = 960 960 961 -[[image:1654500929571-736.png||height="458" width="832"]] 962 962 805 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 963 963 964 -= 6. Order Info = 965 965 966 - 967 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 968 - 969 - 970 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 971 - 972 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 973 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 974 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 975 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 976 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 977 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 978 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 979 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 980 - 981 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 982 - 983 -* (% style="color:red" %)**4**(%%): 4000mAh battery 984 -* (% style="color:red" %)**8**(%%): 8500mAh battery 985 - 986 986 (% class="wikigeneratedid" %) 987 987 ((( 988 988 989 989 ))) 990 990 991 -= 7. Packing Info =813 += 8. Packing Info = 992 992 993 993 ((( 994 -**Package Includes**: 995 -))) 816 + 996 996 997 -* ((( 998 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 818 +(% style="color:#037691" %)**Package Includes**: 819 + 820 + 821 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 822 +* External antenna x 1 999 999 ))) 1000 1000 1001 1001 ((( 1002 1002 1003 -))) 1004 1004 1005 -((( 1006 -**Dimension and weight**: 1007 -))) 828 +(% style="color:#037691" %)**Dimension and weight**: 1008 1008 1009 -* ((( 1010 -Device Size: cm 830 + 831 +* Size: 195 x 125 x 55 mm 832 +* Weight: 420g 1011 1011 ))) 1012 -* ((( 1013 -Device Weight: g 1014 -))) 1015 -* ((( 1016 -Package Size / pcs : cm 1017 -))) 1018 -* ((( 1019 -Weight / pcs : g 1020 1020 835 +((( 836 + 1021 1021 838 + 1022 1022 1023 1023 ))) 1024 1024 1025 -= 8. Support =842 += 9. Support = 1026 1026 1027 1027 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1028 1028 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1029 - 1030 -
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content