Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 20 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,9 +3,7 @@ 3 3 4 4 5 5 6 -**Contents:** 7 7 8 -{{toc/}} 9 9 10 10 11 11 ... ... @@ -12,63 +12,81 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 - == 1.1 Whatis LoRaWANSoil Moisture& EC Sensor ==14 +**Table of Contents:** 18 18 19 -((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 22 22 23 -((( 24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 -))) 26 26 27 -((( 28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 -))) 34 34 20 + 21 += 1. Introduction = 22 + 23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 + 35 35 ((( 36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 -))) 26 + 38 38 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 39 39 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 + 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 + 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 + 36 + 37 +))) 38 + 40 40 [[image:1654503236291-817.png]] 41 41 42 42 43 -[[image:16545 03265560-120.png]]42 +[[image:1657245163077-232.png]] 44 44 45 45 46 46 47 47 == 1.2 Features == 48 48 49 - * LoRaWAN 1.0.3 Class A50 -* Ultra lowpower consumption48 + 49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 51 51 * Monitor Soil Moisture 52 52 * Monitor Soil Temperature 53 53 * Monitor Soil Conductivity 54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 55 55 * AT Commands to change parameters 56 56 * Uplink on periodically 57 57 * Downlink to change configure 58 58 * IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 59 +* Micro SIM card slot for NB-IoT SIM 60 +* 8500mAh Battery for long term use 60 60 62 +== 1.3 Specification == 61 61 62 62 63 - ==1.3Specification ==65 +(% style="color:#037691" %)**Common DC Characteristics:** 64 64 67 +* Supply Voltage: 2.1v ~~ 3.6v 68 +* Operating Temperature: -40 ~~ 85°C 69 + 70 +(% style="color:#037691" %)**NB-IoT Spec:** 71 + 72 +* - B1 @H-FDD: 2100MHz 73 +* - B3 @H-FDD: 1800MHz 74 +* - B8 @H-FDD: 900MHz 75 +* - B5 @H-FDD: 850MHz 76 +* - B20 @H-FDD: 800MHz 77 +* - B28 @H-FDD: 700MHz 78 + 79 +(% style="color:#037691" %)**Probe Specification:** 80 + 65 65 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 66 66 67 -[[image:image-20220 606162220-5.png]]83 +[[image:image-20220708101224-1.png]] 68 68 69 69 70 70 71 -== 1.4 Applications == 87 +== 1.4 Applications == 72 72 73 73 * Smart Agriculture 74 74 ... ... @@ -75,675 +75,547 @@ 75 75 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 76 76 77 77 78 -== 1.5 Firmware Changelog==94 +== 1.5 Pin Definitions == 79 79 80 80 81 - **LSE01v1.0 :** Release97 +[[image:1657246476176-652.png]] 82 82 83 83 84 84 85 -= 2. ConfigureLSE01 to connect toLoRaWANnetwork=101 += 2. Use NSE01 to communicate with IoT Server = 86 86 87 -== 2.1 How it works == 103 +== 2.1 How it works == 88 88 105 + 89 89 ((( 90 -The LSE01 isconfiguredasLoRaWANOTAAClass Amodebydefault.IthasOTAAkeystojoinLoRaWANnetwork.Toconnect a localLoRaWAN network,you need toinputtheOTAAkeysin theLoRaWANserverandpoweronthe LSE0150. It willautomaticallyjointhenetworkviaOTAA and starttosendthesensor value107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 91 91 ))) 92 92 110 + 93 93 ((( 94 - In case you can’t set the OTAA keys in theLoRaWAN OTAA server,andyouhave tousethe keysfromtheserver, you can [[useAT Commands >>||anchor="H3.200BUsingtheATCommands"]].112 +The diagram below shows the working flow in default firmware of NSE01: 95 95 ))) 96 96 115 +[[image:image-20220708101605-2.png]] 97 97 98 - 99 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 100 - 101 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 102 - 103 - 104 -[[image:1654503992078-669.png]] 105 - 106 - 107 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 108 - 109 - 110 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 111 - 112 -Each LSE01 is shipped with a sticker with the default device EUI as below: 113 - 114 -[[image:image-20220606163732-6.jpeg]] 115 - 116 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 117 - 118 -**Add APP EUI in the application** 119 - 120 - 121 -[[image:1654504596150-405.png]] 122 - 123 - 124 - 125 -**Add APP KEY and DEV EUI** 126 - 127 -[[image:1654504683289-357.png]] 128 - 129 - 130 - 131 -**Step 2**: Power on LSE01 132 - 133 - 134 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 135 - 136 -[[image:image-20220606163915-7.png]] 137 - 138 - 139 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 140 - 141 -[[image:1654504778294-788.png]] 142 - 143 - 144 - 145 -== 2.3 Uplink Payload == 146 - 147 -=== 2.3.1 MOD~=0(Default Mode) === 148 - 149 -LSE01 will uplink payload via LoRaWAN with below payload format: 150 - 151 - 152 -Uplink payload includes in total 11 bytes. 117 +((( 153 153 154 - 155 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 156 -|=((( 157 -**Size** 158 - 159 -**(bytes)** 160 -)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1** 161 -|**Value**|(% style="width:46px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:160px" %)((( 162 -Temperature 163 - 164 -(Reserve, Ignore now) 165 -)))|(% style="width:104px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:126px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:114px" %)((( 166 -MOD & Digital Interrupt 167 - 168 -(Optional) 169 169 ))) 170 170 171 -[[image:1654504881641-514.png]] 172 172 173 173 123 +== 2.2 Configure the NSE01 == 174 174 175 -=== 2.3.2 MOD~=1(Original value) === 176 176 177 - Thismodecangettheoriginal AD value of moistureand original conductivity (with temperature drift compensation).126 +=== 2.2.1 Test Requirement === 178 178 179 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 180 -|=((( 181 -**Size** 182 182 183 -**(bytes)** 184 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1** 185 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 186 -Temperature 129 +To use NSE01 in your city, make sure meet below requirements: 187 187 188 - (Reserve,Ignorenow)189 - )))|[[SoilMoisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[SoilConductivity(EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((190 - MOD&DigitalInterrupt131 +* Your local operator has already distributed a NB-IoT Network there. 132 +* The local NB-IoT network used the band that NSE01 supports. 133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 191 191 192 -(Optional) 135 +((( 136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 193 193 ))) 194 194 195 -[[image:1654504907647-967.png]] 196 196 140 +[[image:1657249419225-449.png]] 197 197 198 198 199 -=== 2.3.3 Battery Info === 200 200 201 - Checkthebattery voltageforLSE01.144 +=== 2.2.2 Insert SIM card === 202 202 203 - Ex1:0x0B45=2885mV146 +Insert the NB-IoT Card get from your provider. 204 204 205 - Ex2:0x0B49=2889mV148 +User need to take out the NB-IoT module and insert the SIM card like below: 206 206 207 207 151 +[[image:1657249468462-536.png]] 208 208 209 -=== 2.3.4 Soil Moisture === 210 210 211 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 212 212 213 - Forexample,ifthedatayougetfromtheregister is __0x050xDC__,themoisturecontentinthesoil is155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 214 214 215 - 216 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 217 - 218 - 219 - 220 -=== 2.3.5 Soil Temperature === 221 - 222 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 223 - 224 -**Example**: 225 - 226 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 227 - 228 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 229 - 230 - 231 - 232 -=== 2.3.6 Soil Conductivity (EC) === 233 - 234 234 ((( 235 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 236 -))) 237 - 238 238 ((( 239 - For example,ifthedatayougetfromtheregister is 0x000xC8,the soilconductivityis00C8(H)=200(D)=200uS/cm.159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 240 240 ))) 241 - 242 -((( 243 -Generally, the EC value of irrigation water is less than 800uS / cm. 244 244 ))) 245 245 246 -((( 247 - 248 -))) 249 249 250 -((( 251 - 252 -))) 164 +**Connection:** 253 253 254 -= ==2.3.7MOD===166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 255 255 256 - Firmwareversionatst v2.1 supportschanging mode.168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 257 257 258 - Forexample,bytes[10]=90170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 259 259 260 -mod=(bytes[10]>>7)&0x01=1. 261 261 173 +In the PC, use below serial tool settings: 262 262 263 -**Downlink Command:** 175 +* Baud: (% style="color:green" %)**9600** 176 +* Data bits:** (% style="color:green" %)8(%%)** 177 +* Stop bits: (% style="color:green" %)**1** 178 +* Parity: (% style="color:green" %)**None** 179 +* Flow Control: (% style="color:green" %)**None** 264 264 265 -If payload = 0x0A00, workmode=0 181 +((( 182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 183 +))) 266 266 267 - If** **payload =** **0x0A01, workmode=1185 +[[image:image-20220708110657-3.png]] 268 268 187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 269 269 270 270 271 -=== 2.3.8 Decode payload in The Things Network === 272 272 273 - WhileusingTTNnetwork,youcan add thepayload formattodecodethepayload.191 +=== 2.2.4 Use CoAP protocol to uplink data === 274 274 193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 275 275 276 -[[image:1654505570700-128.png]] 277 277 278 - Thepayloaddecoder function for TTN ishere:196 +**Use below commands:** 279 279 280 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 198 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 281 281 202 +For parameter description, please refer to AT command set 282 282 204 +[[image:1657249793983-486.png]] 283 283 284 -== 2.4 Uplink Interval == 285 285 286 - TheLSE01 by defaultuplinkthe sensordata every20 minutes. Usercan change thisintervalbyATCommandor LoRaWANDownlinkCommand.Seethislink: [[Change UplinkInterval>>doc:Main.End Device AT Commandsand DownlinkCommand.WebHome||anchor="H4.1ChangeUplinkInterval"]]207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 287 287 209 +[[image:1657249831934-534.png]] 288 288 289 289 290 -== 2.5 Downlink Payload == 291 291 292 - Bydefault,LSE50printsthe downlinkpayloadtonsoleport.213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 293 293 294 - [[image:image-20220606165544-8.png]]215 +This feature is supported since firmware version v1.0.1 295 295 296 296 297 -**Examples:** 218 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 298 298 222 +[[image:1657249864775-321.png]] 299 299 300 -* **Set TDC** 301 301 302 - If the payload=0100003C,itmeans set the END Node’s TDC to 0x00003C=60(S), while type code is 01.225 +[[image:1657249930215-289.png]] 303 303 304 -Payload: 01 00 00 1E TDC=30S 305 305 306 -Payload: 01 00 00 3C TDC=60S 307 307 229 +=== 2.2.6 Use MQTT protocol to uplink data === 308 308 309 - ***Reset**231 +This feature is supported since firmware version v110 310 310 311 -If payload = 0x04FF, it will reset the LSE01 312 312 234 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 237 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 238 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 313 313 314 - * **CFM**242 +[[image:1657249978444-674.png]] 315 315 316 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 317 317 245 +[[image:1657249990869-686.png]] 318 318 319 319 320 -== 2.6 Show Data in DataCake IoT Server == 248 +((( 249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 250 +))) 321 321 322 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 323 323 324 324 325 - **Step1**:Besurethatyour device isprogrammed and properlyconnectedtothenetwork atthis time.254 +=== 2.2.7 Use TCP protocol to uplink data === 326 326 327 - **Step 2**:ToconfiguretheApplication to forward data to DATACAKE you will needto addintegration. To add theDATACAKE integration,perform the following steps:256 +This feature is supported since firmware version v110 328 328 329 329 330 -[[image:1654505857935-743.png]] 259 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 331 331 262 +[[image:1657250217799-140.png]] 332 332 333 -[[image:1654505874829-548.png]] 334 334 335 - Step 3: Create an account or login Datacake.265 +[[image:1657250255956-604.png]] 336 336 337 -Step 4: Search the LSE01 and add DevEUI. 338 338 339 339 340 - [[image:1654505905236-553.png]]269 +=== 2.2.8 Change Update Interval === 341 341 271 +User can use below command to change the (% style="color:green" %)**uplink interval**. 342 342 343 - Afteradded,thesensordata arrive TTN,itwillalsoarriveandshow inMydevices.273 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 344 344 345 -[[image:1654505925508-181.png]] 275 +((( 276 +(% style="color:red" %)**NOTE:** 277 +))) 346 346 279 +((( 280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 281 +))) 347 347 348 348 349 -== 2.7 Frequency Plans == 350 350 351 - TheLSE01uses OTAA mode and below frequencyplans by default. If user want to useit with differentfrequencyplan, please refer the AT commandsets.285 +== 2.3 Uplink Payload == 352 352 287 +In this mode, uplink payload includes in total 18 bytes 353 353 354 -=== 2.7.1 EU863-870 (EU868) === 289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 290 +|=(% style="width: 50px;" %)((( 291 +**Size(bytes)** 292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 355 355 356 - (%style="color:#037691"%)** Uplink:**295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 357 357 358 -868.1 - SF7BW125 to SF12BW125 359 359 360 - 868.3-SF7BW125 to SF12BW125 and SF7BW250298 +[[image:image-20220708111918-4.png]] 361 361 362 -868.5 - SF7BW125 to SF12BW125 363 363 364 - 867.1-SF7BW125toSF12BW125301 +The payload is ASCII string, representative same HEX: 365 365 366 - 867.3- SF7BW125to SF12BW125303 +0x72403155615900640c7817075e0a8c02f900 where: 367 367 368 -867.5 - SF7BW125 to SF12BW125 305 +* Device ID: 0x 724031556159 = 724031556159 306 +* Version: 0x0064=100=1.0.0 369 369 370 -867.7 - SF7BW125 to SF12BW125 308 +* BAT: 0x0c78 = 3192 mV = 3.192V 309 +* Singal: 0x17 = 23 310 +* Soil Moisture: 0x075e= 1886 = 18.86 % 311 +* Soil Temperature:0x0a8c =2700=27 °C 312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 313 +* Interrupt: 0x00 = 0 371 371 372 - 867.9- SF7BW125to SF12BW125315 +== 2.4 Payload Explanation and Sensor Interface == 373 373 374 -868.8 - FSK 375 375 318 +=== 2.4.1 Device ID === 376 376 377 - (% style="color:#037691"%)**Downlink:**320 +By default, the Device ID equal to the last 6 bytes of IMEI. 378 378 379 -U plinkchannels1-9(RX1)322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 380 380 381 - 869.525 - SF9BW125 (RX2 downlink only)324 +**Example:** 382 382 326 +AT+DEUI=A84041F15612 383 383 328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 384 384 385 -=== 2.7.2 US902-928(US915) === 386 386 387 -Used in USA, Canada and South America. Default use CHE=2 388 388 389 - (%style="color:#037691" %)**Uplink:**332 +=== 2.4.2 Version Info === 390 390 391 - 903.9 -SF7BW125toSF10BW125334 +Specify the software version: 0x64=100, means firmware version 1.00. 392 392 393 - 904.1-SF7BW125toSF10BW125336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 394 394 395 -904.3 - SF7BW125 to SF10BW125 396 396 397 -904.5 - SF7BW125 to SF10BW125 398 398 399 - 904.7- SF7BW125toSF10BW125340 +=== 2.4.3 Battery Info === 400 400 401 -904.9 - SF7BW125 to SF10BW125 342 +((( 343 +Check the battery voltage for LSE01. 344 +))) 402 402 403 -905.1 - SF7BW125 to SF10BW125 346 +((( 347 +Ex1: 0x0B45 = 2885mV 348 +))) 404 404 405 -905.3 - SF7BW125 to SF10BW125 350 +((( 351 +Ex2: 0x0B49 = 2889mV 352 +))) 406 406 407 407 408 -(% style="color:#037691" %)**Downlink:** 409 409 410 - 923.3-SF7BW500toSF12BW500356 +=== 2.4.4 Signal Strength === 411 411 412 - 923.9-SF7BW500to SF12BW500358 +NB-IoT Network signal Strength. 413 413 414 - 924.5- SF7BW500toSF12BW500360 +**Ex1: 0x1d = 29** 415 415 416 - 925.1-SF7BW500toSF12BW500362 +(% style="color:blue" %)**0**(%%) -113dBm or less 417 417 418 - 925.7- SF7BW500toSF12BW500364 +(% style="color:blue" %)**1**(%%) -111dBm 419 419 420 - 926.3- SF7BW500to SF12BW500366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 421 421 422 - 926.9- SF7BW500toSF12BW500368 +(% style="color:blue" %)**31** (%%) -51dBm or greater 423 423 424 -9 27.5-SF7BW500toSF12BW500370 +(% style="color:blue" %)**99** (%%) Not known or not detectable 425 425 426 -923.3 - SF12BW500(RX2 downlink only) 427 427 428 428 374 +=== 2.4.5 Soil Moisture === 429 429 430 -=== 2.7.3 CN470-510 (CN470) === 376 +((( 377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 378 +))) 431 431 432 -Used in China, Default use CHE=1 380 +((( 381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 382 +))) 433 433 434 -(% style="color:#037691" %)**Uplink:** 384 +((( 385 + 386 +))) 435 435 436 -486.3 - SF7BW125 to SF12BW125 388 +((( 389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 390 +))) 437 437 438 -486.5 - SF7BW125 to SF12BW125 439 439 440 -486.7 - SF7BW125 to SF12BW125 441 441 442 -4 86.9-SF7BW125toSF12BW125394 +=== 2.4.6 Soil Temperature === 443 443 444 -487.1 - SF7BW125 to SF12BW125 396 +((( 397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 398 +))) 445 445 446 -487.3 - SF7BW125 to SF12BW125 400 +((( 401 +**Example**: 402 +))) 447 447 448 -487.5 - SF7BW125 to SF12BW125 404 +((( 405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 406 +))) 449 449 450 -487.7 - SF7BW125 to SF12BW125 408 +((( 409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 410 +))) 451 451 452 452 453 -(% style="color:#037691" %)**Downlink:** 454 454 455 - 506.7-SF7BW125toSF12BW125414 +=== 2.4.7 Soil Conductivity (EC) === 456 456 457 -506.9 - SF7BW125 to SF12BW125 416 +((( 417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 418 +))) 458 458 459 -507.1 - SF7BW125 to SF12BW125 420 +((( 421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 422 +))) 460 460 461 -507.3 - SF7BW125 to SF12BW125 424 +((( 425 +Generally, the EC value of irrigation water is less than 800uS / cm. 426 +))) 462 462 463 -507.5 - SF7BW125 to SF12BW125 428 +((( 429 + 430 +))) 464 464 465 -507.7 - SF7BW125 to SF12BW125 432 +((( 433 + 434 +))) 466 466 467 - 507.9- SF7BW125toSF12BW125436 +=== 2.4.8 Digital Interrupt === 468 468 469 - 508.1-SF7BW125toSF12BW125438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 470 470 471 - 505.3- SF12BW125 (RX2 downlinkonly)440 +The command is: 472 472 442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 473 473 474 474 475 - ===2.7.4AU915-928(AU915)===445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 476 476 477 -Default use CHE=2 478 478 479 - (% style="color:#037691" %)**Uplink:**448 +Example: 480 480 481 - 916.8-SF7BW125to SF12BW125450 +0x(00): Normal uplink packet. 482 482 483 - 917.0- SF7BW125toSF12BW125452 +0x(01): Interrupt Uplink Packet. 484 484 485 -917.2 - SF7BW125 to SF12BW125 486 486 487 -917.4 - SF7BW125 to SF12BW125 488 488 489 - 917.6- SF7BW125 toSF12BW125456 +=== 2.4.9 +5V Output === 490 490 491 - 917.8-SF7BW125 toSF12BW125458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 492 492 493 -918.0 - SF7BW125 to SF12BW125 494 494 495 - 918.2- SF7BW125 toSF12BW125461 +The 5V output time can be controlled by AT Command. 496 496 463 +(% style="color:blue" %)**AT+5VT=1000** 497 497 498 - (%style="color:#037691"%)**Downlink:**465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 499 499 500 -923.3 - SF7BW500 to SF12BW500 501 501 502 -923.9 - SF7BW500 to SF12BW500 503 503 504 - 924.5-SF7BW500 toSF12BW500469 +== 2.5 Downlink Payload == 505 505 506 - 925.1-SF7BW500toSF12BW500471 +By default, NSE01 prints the downlink payload to console port. 507 507 508 - 925.7-SF7BW500 to SF12BW500473 +[[image:image-20220708133731-5.png]] 509 509 510 -926.3 - SF7BW500 to SF12BW500 511 511 512 -926.9 - SF7BW500 to SF12BW500 513 513 514 -927.5 - SF7BW500 to SF12BW500 477 +((( 478 +(% style="color:blue" %)**Examples:** 479 +))) 515 515 516 -923.3 - SF12BW500(RX2 downlink only) 481 +((( 482 + 483 +))) 517 517 485 +* ((( 486 +(% style="color:blue" %)**Set TDC** 487 +))) 518 518 489 +((( 490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 491 +))) 519 519 520 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 493 +((( 494 +Payload: 01 00 00 1E TDC=30S 495 +))) 521 521 522 -(% style="color:#037691" %)**Default Uplink channel:** 497 +((( 498 +Payload: 01 00 00 3C TDC=60S 499 +))) 523 523 524 -923.2 - SF7BW125 to SF10BW125 501 +((( 502 + 503 +))) 525 525 526 -923.4 - SF7BW125 to SF10BW125 505 +* ((( 506 +(% style="color:blue" %)**Reset** 507 +))) 527 527 509 +((( 510 +If payload = 0x04FF, it will reset the NSE01 511 +))) 528 528 529 -(% style="color:#037691" %)**Additional Uplink Channel**: 530 530 531 -( OTAAmode,channeladded by JoinAcceptmessage)514 +* (% style="color:blue" %)**INTMOD** 532 532 533 - (%style="color:#037691" %)**AS920~~AS923for Japan,Malaysia,Singapore**:516 +Downlink Payload: 06000003, Set AT+INTMOD=3 534 534 535 -922.2 - SF7BW125 to SF10BW125 536 536 537 -922.4 - SF7BW125 to SF10BW125 538 538 539 - 922.6-SF7BW125toSF10BW125520 +== 2.6 LED Indicator == 540 540 541 -922.8 - SF7BW125 to SF10BW125 522 +((( 523 +The NSE01 has an internal LED which is to show the status of different state. 542 542 543 -923.0 - SF7BW125 to SF10BW125 544 544 545 -922.0 - SF7BW125 to SF10BW125 526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 527 +* Then the LED will be on for 1 second means device is boot normally. 528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 529 +* For each uplink probe, LED will be on for 500ms. 530 +))) 546 546 547 547 548 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 549 549 550 -923.6 - SF7BW125 to SF10BW125 551 551 552 - 923.8 - SF7BW125to SF10BW125535 +== 2.7 Installation in Soil == 553 553 554 - 924.0- SF7BW125toSF10BW125537 +__**Measurement the soil surface**__ 555 555 556 - 924.2-SF7BW125SF10BW125539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 557 557 558 - 924.4 - SF7BW125to SF10BW125541 +[[image:1657259653666-883.png]] 559 559 560 -924.6 - SF7BW125 to SF10BW125 561 561 544 +((( 545 + 562 562 563 -(% style="color:#037691" %)** Downlink:** 547 +((( 548 +Dig a hole with diameter > 20CM. 549 +))) 564 564 565 -Uplink channels 1-8 (RX1) 551 +((( 552 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 553 +))) 554 +))) 566 566 567 -9 23.2-SF10BW125 (RX2)556 +[[image:1654506665940-119.png]] 568 568 558 +((( 559 + 560 +))) 569 569 570 570 571 -== =2.7.6KR920-923(KR920)===563 +== 2.8 Firmware Change Log == 572 572 573 -Default channel: 574 574 575 - 922.1-SF7BW125toSF12BW125566 +Download URL & Firmware Change log 576 576 577 - 922.3-F7BW125toSF12BW125568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 578 578 579 -922.5 - SF7BW125 to SF12BW125 580 580 571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 581 581 582 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 583 583 584 -922.1 - SF7BW125 to SF12BW125 585 585 586 - 922.3- SF7BW125toSF12BW125575 +== 2.9 Battery Analysis == 587 587 588 - 922.5 - SF7BW125toSF12BW125577 +=== 2.9.1 Battery Type === 589 589 590 -922.7 - SF7BW125 to SF12BW125 591 591 592 - 922.9-SF7BW125to SF12BW125580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 593 593 594 -923.1 - SF7BW125 to SF12BW125 595 595 596 - 923.3-SF7BW125toSF12BW125583 +The battery is designed to last for several years depends on the actually use environment and update interval. 597 597 598 598 599 - (%style="color:#037691"%)**Downlink:**586 +The battery related documents as below: 600 600 601 -Uplink channels 1-7(RX1) 588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 602 602 603 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 604 - 605 - 606 - 607 -=== 2.7.7 IN865-867 (IN865) === 608 - 609 -(% style="color:#037691" %)** Uplink:** 610 - 611 -865.0625 - SF7BW125 to SF12BW125 612 - 613 -865.4025 - SF7BW125 to SF12BW125 614 - 615 -865.9850 - SF7BW125 to SF12BW125 616 - 617 - 618 -(% style="color:#037691" %) **Downlink:** 619 - 620 -Uplink channels 1-3 (RX1) 621 - 622 -866.550 - SF10BW125 (RX2) 623 - 624 - 625 - 626 - 627 -== 2.8 LED Indicator == 628 - 629 -The LSE01 has an internal LED which is to show the status of different state. 630 - 631 -* Blink once when device power on. 632 -* Solid ON for 5 seconds once device successful Join the network. 633 -* Blink once when device transmit a packet. 634 - 635 -== 2.9 Installation in Soil == 636 - 637 -**Measurement the soil surface** 638 - 639 - 640 -[[image:1654506634463-199.png]] 641 - 642 642 ((( 643 -((( 644 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 593 +[[image:image-20220708140453-6.png]] 645 645 ))) 646 -))) 647 647 648 648 649 -[[image:1654506665940-119.png]] 650 650 651 -((( 652 -Dig a hole with diameter > 20CM. 653 -))) 598 +2.9.2 654 654 655 -((( 656 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 657 -))) 600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 658 658 659 659 660 - ==2.10FirmwareChangeLog ==603 +Instruction to use as below: 661 661 662 -((( 663 -**Firmware download link:** 664 -))) 665 665 666 -((( 667 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 668 -))) 606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 669 669 670 -((( 671 - 672 -))) 608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 673 673 674 -((( 675 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 676 -))) 677 677 678 -((( 679 - 680 -))) 611 +Step 2: Open it and choose 681 681 682 - (((683 -* *V1.0.**684 - )))613 +* Product Model 614 +* Uplink Interval 615 +* Working Mode 685 685 686 -((( 687 -Release 688 -))) 617 +And the Life expectation in difference case will be shown on the right. 689 689 690 690 691 -== 2.11 Battery Analysis == 692 692 693 -=== 2. 11.1BatteryType ===621 +=== 2.9.3 Battery Note === 694 694 695 695 ((( 696 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 697 -))) 698 - 699 -((( 700 -The battery is designed to last for more than 5 years for the LSN50. 701 -))) 702 - 703 -((( 704 -((( 705 -The battery-related documents are as below: 706 -))) 707 -))) 708 - 709 -* ((( 710 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 711 -))) 712 -* ((( 713 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 714 -))) 715 -* ((( 716 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 717 -))) 718 - 719 - [[image:image-20220606171726-9.png]] 720 - 721 - 722 - 723 -=== 2.11.2 Battery Note === 724 - 725 -((( 726 726 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 727 727 ))) 728 728 729 729 730 730 731 -=== 2. 11.3Replace the battery ===629 +=== 2.9.4 Replace the battery === 732 732 733 -((( 734 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 735 -))) 631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 736 736 737 -((( 738 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 739 -))) 740 740 741 -((( 742 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 743 -))) 744 744 745 - 746 - 747 747 = 3. Using the AT Commands = 748 748 749 749 == 3.1 Access AT Commands == ... ... @@ -767,7 +767,7 @@ 767 767 [[image:1654502050864-459.png||height="564" width="806"]] 768 768 769 769 770 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>> url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 771 771 772 772 773 773 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> ... ... @@ -879,20 +879,38 @@ 879 879 880 880 == 4.1 How to change the LoRa Frequency Bands/Region? == 881 881 770 +((( 882 882 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 883 883 When downloading the images, choose the required image file for download. 773 +))) 884 884 775 +((( 776 + 777 +))) 885 885 779 +((( 886 886 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 781 +))) 887 887 783 +((( 784 + 785 +))) 888 888 787 +((( 889 889 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 789 +))) 890 890 791 +((( 792 + 793 +))) 891 891 795 +((( 892 892 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 797 +))) 893 893 894 894 [[image:image-20220606154726-3.png]] 895 895 801 + 896 896 When you use the TTN network, the US915 frequency bands use are: 897 897 898 898 * 903.9 - SF7BW125 to SF10BW125 ... ... @@ -905,38 +905,46 @@ 905 905 * 905.3 - SF7BW125 to SF10BW125 906 906 * 904.6 - SF8BW500 907 907 814 +((( 908 908 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 909 909 910 -(% class="box infomessage" %) 911 -((( 912 -**AT+CHE=2** 817 +* (% style="color:#037691" %)**AT+CHE=2** 818 +* (% style="color:#037691" %)**ATZ** 913 913 ))) 914 914 915 -(% class="box infomessage" %) 916 916 ((( 917 -**ATZ** 918 -))) 822 + 919 919 920 920 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 825 +))) 921 921 827 +((( 828 + 829 +))) 922 922 831 +((( 923 923 The **AU915** band is similar. Below are the AU915 Uplink Channels. 833 +))) 924 924 925 925 [[image:image-20220606154825-4.png]] 926 926 927 927 838 +== 4.2 Can I calibrate LSE01 to different soil types? == 928 928 840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 841 + 842 + 929 929 = 5. Trouble Shooting = 930 930 931 -== 5.1 Why I can ’t join TTN in US915 / AU915 bands? ==845 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 932 932 933 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. LoRaWANCommunication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 934 934 935 935 936 -== 5.2 AT Command input doesn ’t work ==850 +== 5.2 AT Command input doesn't work == 937 937 938 938 ((( 939 -In the case if user can see the console output but can ’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 940 940 ))) 941 941 942 942 ... ... @@ -991,7 +991,9 @@ 991 991 = 7. Packing Info = 992 992 993 993 ((( 994 -**Package Includes**: 908 + 909 + 910 +(% style="color:#037691" %)**Package Includes**: 995 995 ))) 996 996 997 997 * ((( ... ... @@ -1000,10 +1000,8 @@ 1000 1000 1001 1001 ((( 1002 1002 1003 -))) 1004 1004 1005 -((( 1006 -**Dimension and weight**: 920 +(% style="color:#037691" %)**Dimension and weight**: 1007 1007 ))) 1008 1008 1009 1009 * ((( ... ... @@ -1018,7 +1018,6 @@ 1018 1018 * ((( 1019 1019 Weight / pcs : g 1020 1020 1021 - 1022 1022 1023 1023 ))) 1024 1024 ... ... @@ -1026,5 +1026,3 @@ 1026 1026 1027 1027 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1028 1028 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1029 - 1030 -
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content