Last modified by Mengting Qiu on 2024/04/02 16:44

From version 31.33
edited by Xiaoling
on 2022/06/07 10:31
Change comment: There is no comment for this version
To version 60.2
edited by Xiaoling
on 2022/07/08 14:12
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,9 +3,7 @@
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
... ... @@ -12,63 +12,81 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 +**Table of Contents:**
18 18  
19 -(((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
22 22  
23 -(((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 -)))
26 26  
27 -(((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 -)))
34 34  
20 +
21 += 1.  Introduction =
22 +
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 +
35 35  (((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 -)))
26 +
38 38  
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
39 39  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
36 +
37 +)))
38 +
40 40  [[image:1654503236291-817.png]]
41 41  
42 42  
43 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
44 44  
45 45  
46 46  
47 47  == 1.2 ​Features ==
48 48  
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
51 51  * Monitor Soil Moisture
52 52  * Monitor Soil Temperature
53 53  * Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 55  * AT Commands to change parameters
56 56  * Uplink on periodically
57 57  * Downlink to change configure
58 58  * IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
60 60  
62 +== 1.3  Specification ==
61 61  
62 62  
63 -== 1.3 Specification ==
65 +(% style="color:#037691" %)**Common DC Characteristics:**
64 64  
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
69 +
70 +(% style="color:#037691" %)**NB-IoT Spec:**
71 +
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
78 +
79 +(% style="color:#037691" %)**Probe Specification:**
80 +
65 65  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
66 66  
67 -[[image:image-20220606162220-5.png]]
83 +[[image:image-20220708101224-1.png]]
68 68  
69 69  
70 70  
71 -== ​1.4 Applications ==
87 +== ​1.4  Applications ==
72 72  
73 73  * Smart Agriculture
74 74  
... ... @@ -75,675 +75,547 @@
75 75  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
76 76  ​
77 77  
78 -== 1.5 Firmware Change log ==
94 +== 1.5  Pin Definitions ==
79 79  
80 80  
81 -**LSE01 v1.0 :**  Release
97 +[[image:1657246476176-652.png]]
82 82  
83 83  
84 84  
85 -= 2. Configure LSE01 to connect to LoRaWAN network =
101 += 2.  Use NSE01 to communicate with IoT Server =
86 86  
87 -== 2.1 How it works ==
103 +== 2.1  How it works ==
88 88  
105 +
89 89  (((
90 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
91 91  )))
92 92  
110 +
93 93  (((
94 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
112 +The diagram below shows the working flow in default firmware of NSE01:
95 95  )))
96 96  
115 +[[image:image-20220708101605-2.png]]
97 97  
98 -
99 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
100 -
101 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
102 -
103 -
104 -[[image:1654503992078-669.png]]
105 -
106 -
107 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
108 -
109 -
110 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
111 -
112 -Each LSE01 is shipped with a sticker with the default device EUI as below:
113 -
114 -[[image:image-20220606163732-6.jpeg]]
115 -
116 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
117 -
118 -**Add APP EUI in the application**
119 -
120 -
121 -[[image:1654504596150-405.png]]
122 -
123 -
124 -
125 -**Add APP KEY and DEV EUI**
126 -
127 -[[image:1654504683289-357.png]]
128 -
129 -
130 -
131 -**Step 2**: Power on LSE01
132 -
133 -
134 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
135 -
136 -[[image:image-20220606163915-7.png]]
137 -
138 -
139 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
140 -
141 -[[image:1654504778294-788.png]]
142 -
143 -
144 -
145 -== 2.3 Uplink Payload ==
146 -
147 -=== 2.3.1 MOD~=0(Default Mode) ===
148 -
149 -LSE01 will uplink payload via LoRaWAN with below payload format: 
150 -
151 -
152 -Uplink payload includes in total 11 bytes.
117 +(((
153 153  
154 -
155 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
156 -|=(((
157 -**Size**
158 -
159 -**(bytes)**
160 -)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1**
161 -|**Value**|(% style="width:46px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:160px" %)(((
162 -Temperature
163 -
164 -(Reserve, Ignore now)
165 -)))|(% style="width:104px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:126px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:114px" %)(((
166 -MOD & Digital Interrupt
167 -
168 -(Optional)
169 169  )))
170 170  
171 -[[image:1654504881641-514.png]]
172 172  
173 173  
123 +== 2.2 ​ Configure the NSE01 ==
174 174  
175 -=== 2.3.2 MOD~=1(Original value) ===
176 176  
177 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
126 +=== 2.2.1 Test Requirement ===
178 178  
179 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
180 -|=(((
181 -**Size**
182 182  
183 -**(bytes)**
184 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1**
185 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
186 -Temperature
129 +To use NSE01 in your city, make sure meet below requirements:
187 187  
188 -(Reserve, Ignore now)
189 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
190 -MOD & Digital Interrupt
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
191 191  
192 -(Optional)
135 +(((
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
193 193  )))
194 194  
195 -[[image:1654504907647-967.png]]
196 196  
140 +[[image:1657249419225-449.png]]
197 197  
198 198  
199 -=== 2.3.3 Battery Info ===
200 200  
201 -Check the battery voltage for LSE01.
144 +=== 2.2.2 Insert SIM card ===
202 202  
203 -Ex1: 0x0B45 = 2885mV
146 +Insert the NB-IoT Card get from your provider.
204 204  
205 -Ex2: 0x0B49 = 2889mV
148 +User need to take out the NB-IoT module and insert the SIM card like below:
206 206  
207 207  
151 +[[image:1657249468462-536.png]]
208 208  
209 -=== 2.3.4 Soil Moisture ===
210 210  
211 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
212 212  
213 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
155 +=== 2.2.3 Connect USB TTL to NSE01 to configure it ===
214 214  
215 -
216 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
217 -
218 -
219 -
220 -=== 2.3.5 Soil Temperature ===
221 -
222 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
223 -
224 -**Example**:
225 -
226 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
227 -
228 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
229 -
230 -
231 -
232 -=== 2.3.6 Soil Conductivity (EC) ===
233 -
234 234  (((
235 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
236 -)))
237 -
238 238  (((
239 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
240 240  )))
241 -
242 -(((
243 -Generally, the EC value of irrigation water is less than 800uS / cm.
244 244  )))
245 245  
246 -(((
247 -
248 -)))
249 249  
250 -(((
251 -
252 -)))
164 +**Connection:**
253 253  
254 -=== 2.3.7 MOD ===
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
255 255  
256 -Firmware version at least v2.1 supports changing mode.
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
257 257  
258 -For example, bytes[10]=90
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
259 259  
260 -mod=(bytes[10]>>7)&0x01=1.
261 261  
173 +In the PC, use below serial tool settings:
262 262  
263 -**Downlink Command:**
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
264 264  
265 -If payload = 0x0A00, workmode=0
181 +(((
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 +)))
266 266  
267 -If** **payload =** **0x0A01, workmode=1
185 +[[image:image-20220708110657-3.png]]
268 268  
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
269 269  
270 270  
271 -=== 2.3.8 ​Decode payload in The Things Network ===
272 272  
273 -While using TTN network, you can add the payload format to decode the payload.
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
274 274  
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
275 275  
276 -[[image:1654505570700-128.png]]
277 277  
278 -The payload decoder function for TTN is here:
196 +**Use below commands:**
279 279  
280 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
281 281  
202 +For parameter description, please refer to AT command set
282 282  
204 +[[image:1657249793983-486.png]]
283 283  
284 -== 2.4 Uplink Interval ==
285 285  
286 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
287 287  
209 +[[image:1657249831934-534.png]]
288 288  
289 289  
290 -== 2.5 Downlink Payload ==
291 291  
292 -By default, LSE50 prints the downlink payload to console port.
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
293 293  
294 -[[image:image-20220606165544-8.png]]
215 +This feature is supported since firmware version v1.0.1
295 295  
296 296  
297 -**Examples:**
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
298 298  
222 +[[image:1657249864775-321.png]]
299 299  
300 -* **Set TDC**
301 301  
302 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
225 +[[image:1657249930215-289.png]]
303 303  
304 -Payload:    01 00 00 1E    TDC=30S
305 305  
306 -Payload:    01 00 00 3C    TDC=60S
307 307  
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
308 308  
309 -* **Reset**
231 +This feature is supported since firmware version v110
310 310  
311 -If payload = 0x04FF, it will reset the LSE01
312 312  
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
313 313  
314 -* **CFM**
242 +[[image:1657249978444-674.png]]
315 315  
316 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
317 317  
245 +[[image:1657249990869-686.png]]
318 318  
319 319  
320 -== 2.6 ​Show Data in DataCake IoT Server ==
248 +(((
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
250 +)))
321 321  
322 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
323 323  
324 324  
325 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
254 +=== 2.2.7 Use TCP protocol to uplink data ===
326 326  
327 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
256 +This feature is supported since firmware version v110
328 328  
329 329  
330 -[[image:1654505857935-743.png]]
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
331 331  
262 +[[image:1657250217799-140.png]]
332 332  
333 -[[image:1654505874829-548.png]]
334 334  
335 -Step 3: Create an account or log in Datacake.
265 +[[image:1657250255956-604.png]]
336 336  
337 -Step 4: Search the LSE01 and add DevEUI.
338 338  
339 339  
340 -[[image:1654505905236-553.png]]
269 +=== 2.2.8 Change Update Interval ===
341 341  
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
342 342  
343 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
344 344  
345 -[[image:1654505925508-181.png]]
275 +(((
276 +(% style="color:red" %)**NOTE:**
277 +)))
346 346  
279 +(((
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
281 +)))
347 347  
348 348  
349 -== 2.7 Frequency Plans ==
350 350  
351 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
285 +== 2.3  Uplink Payload ==
352 352  
287 +In this mode, uplink payload includes in total 18 bytes
353 353  
354 -=== 2.7.1 EU863-870 (EU868) ===
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
355 355  
356 -(% style="color:#037691" %)** Uplink:**
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
357 357  
358 -868.1 - SF7BW125 to SF12BW125
359 359  
360 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
298 +[[image:image-20220708111918-4.png]]
361 361  
362 -868.5 - SF7BW125 to SF12BW125
363 363  
364 -867.1 - SF7BW125 to SF12BW125
301 +The payload is ASCII string, representative same HEX:
365 365  
366 -867.3 - SF7BW125 to SF12BW125
303 +0x72403155615900640c7817075e0a8c02f900 where:
367 367  
368 -867.5 - SF7BW125 to SF12BW125
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
369 369  
370 -867.7 - SF7BW125 to SF12BW125
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
371 371  
372 -867.9 - SF7BW125 to SF12BW125
315 +== 2.4  Payload Explanation and Sensor Interface ==
373 373  
374 -868.8 - FSK
375 375  
318 +=== 2.4.1  Device ID ===
376 376  
377 -(% style="color:#037691" %)** Downlink:**
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
378 378  
379 -Uplink channels 1-9 (RX1)
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
380 380  
381 -869.525 - SF9BW125 (RX2 downlink only)
324 +**Example:**
382 382  
326 +AT+DEUI=A84041F15612
383 383  
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
384 384  
385 -=== 2.7.2 US902-928(US915) ===
386 386  
387 -Used in USA, Canada and South America. Default use CHE=2
388 388  
389 -(% style="color:#037691" %)**Uplink:**
332 +=== 2.4.2  Version Info ===
390 390  
391 -903.9 - SF7BW125 to SF10BW125
334 +Specify the software version: 0x64=100, means firmware version 1.00.
392 392  
393 -904.1 - SF7BW125 to SF10BW125
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
394 394  
395 -904.3 - SF7BW125 to SF10BW125
396 396  
397 -904.5 - SF7BW125 to SF10BW125
398 398  
399 -904.7 - SF7BW125 to SF10BW125
340 +=== 2.4. Battery Info ===
400 400  
401 -904.9 - SF7BW125 to SF10BW125
342 +(((
343 +Check the battery voltage for LSE01.
344 +)))
402 402  
403 -905.1 - SF7BW125 to SF10BW125
346 +(((
347 +Ex1: 0x0B45 = 2885mV
348 +)))
404 404  
405 -905.3 - SF7BW125 to SF10BW125
350 +(((
351 +Ex2: 0x0B49 = 2889mV
352 +)))
406 406  
407 407  
408 -(% style="color:#037691" %)**Downlink:**
409 409  
410 -923.3 - SF7BW500 to SF12BW500
356 +=== 2.4.4  Signal Strength ===
411 411  
412 -923.9 - SF7BW500 to SF12BW500
358 +NB-IoT Network signal Strength.
413 413  
414 -924.5 - SF7BW500 to SF12BW500
360 +**Ex1: 0x1d = 29**
415 415  
416 -925.1 - SF7BW500 to SF12BW500
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
417 417  
418 -925.7 - SF7BW500 to SF12BW500
364 +(% style="color:blue" %)**1**(%%)  -111dBm
419 419  
420 -926.3 - SF7BW500 to SF12BW500
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
421 421  
422 -926.9 - SF7BW500 to SF12BW500
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
423 423  
424 -927.5 - SF7BW500 to SF12BW500
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
425 425  
426 -923.3 - SF12BW500(RX2 downlink only)
427 427  
428 428  
374 +=== 2.4.5  Soil Moisture ===
429 429  
430 -=== 2.7.3 CN470-510 (CN470) ===
376 +(((
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 +)))
431 431  
432 -Used in China, Default use CHE=1
380 +(((
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 +)))
433 433  
434 -(% style="color:#037691" %)**Uplink:**
384 +(((
385 +
386 +)))
435 435  
436 -486.3 - SF7BW125 to SF12BW125
388 +(((
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 +)))
437 437  
438 -486.5 - SF7BW125 to SF12BW125
439 439  
440 -486.7 - SF7BW125 to SF12BW125
441 441  
442 -486.9 - SF7BW125 to SF12BW125
394 +=== 2.4. Soil Temperature ===
443 443  
444 -487.1 - SF7BW125 to SF12BW125
396 +(((
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 +)))
445 445  
446 -487.3 - SF7BW125 to SF12BW125
400 +(((
401 +**Example**:
402 +)))
447 447  
448 -487.5 - SF7BW125 to SF12BW125
404 +(((
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 +)))
449 449  
450 -487.7 - SF7BW125 to SF12BW125
408 +(((
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 +)))
451 451  
452 452  
453 -(% style="color:#037691" %)**Downlink:**
454 454  
455 -506.7 - SF7BW125 to SF12BW125
414 +=== 2.4.7  Soil Conductivity (EC) ===
456 456  
457 -506.9 - SF7BW125 to SF12BW125
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
458 458  
459 -507.1 - SF7BW125 to SF12BW125
420 +(((
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +)))
460 460  
461 -507.3 - SF7BW125 to SF12BW125
424 +(((
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
426 +)))
462 462  
463 -507.5 - SF7BW125 to SF12BW125
428 +(((
429 +
430 +)))
464 464  
465 -507.7 - SF7BW125 to SF12BW125
432 +(((
433 +
434 +)))
466 466  
467 -507.9 - SF7BW125 to SF12BW125
436 +=== 2.4.8  Digital Interrupt ===
468 468  
469 -508.1 - SF7BW125 to SF12BW125
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
470 470  
471 -505.3 - SF12BW125 (RX2 downlink only)
440 +The command is:
472 472  
442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
473 473  
474 474  
475 -=== 2.7.4 AU915-928(AU915) ===
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
476 476  
477 -Default use CHE=2
478 478  
479 -(% style="color:#037691" %)**Uplink:**
448 +Example:
480 480  
481 -916.8 - SF7BW125 to SF12BW125
450 +0x(00): Normal uplink packet.
482 482  
483 -917.0 - SF7BW125 to SF12BW125
452 +0x(01): Interrupt Uplink Packet.
484 484  
485 -917.2 - SF7BW125 to SF12BW125
486 486  
487 -917.4 - SF7BW125 to SF12BW125
488 488  
489 -917.6 - SF7BW125 to SF12BW125
456 +=== 2.4.9  ​+5V Output ===
490 490  
491 -917.8 - SF7BW125 to SF12BW125
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
492 492  
493 -918.0 - SF7BW125 to SF12BW125
494 494  
495 -918.2 - SF7BW125 to SF12BW125
461 +The 5V output time can be controlled by AT Command.
496 496  
463 +(% style="color:blue" %)**AT+5VT=1000**
497 497  
498 -(% style="color:#037691" %)**Downlink:**
465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
499 499  
500 -923.3 - SF7BW500 to SF12BW500
501 501  
502 -923.9 - SF7BW500 to SF12BW500
503 503  
504 -924.5 - SF7BW500 to SF12BW500
469 +== 2.5  Downlink Payload ==
505 505  
506 -925.1 - SF7BW500 to SF12BW500
471 +By default, NSE01 prints the downlink payload to console port.
507 507  
508 -925.7 - SF7BW500 to SF12BW500
473 +[[image:image-20220708133731-5.png]]
509 509  
510 -926.3 - SF7BW500 to SF12BW500
511 511  
512 -926.9 - SF7BW500 to SF12BW500
513 513  
514 -927.5 - SF7BW500 to SF12BW500
477 +(((
478 +(% style="color:blue" %)**Examples:**
479 +)))
515 515  
516 -923.3 - SF12BW500(RX2 downlink only)
481 +(((
482 +
483 +)))
517 517  
485 +* (((
486 +(% style="color:blue" %)**Set TDC**
487 +)))
518 518  
489 +(((
490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
491 +)))
519 519  
520 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
493 +(((
494 +Payload:    01 00 00 1E    TDC=30S
495 +)))
521 521  
522 -(% style="color:#037691" %)**Default Uplink channel:**
497 +(((
498 +Payload:    01 00 00 3C    TDC=60S
499 +)))
523 523  
524 -923.2 - SF7BW125 to SF10BW125
501 +(((
502 +
503 +)))
525 525  
526 -923.4 - SF7BW125 to SF10BW125
505 +* (((
506 +(% style="color:blue" %)**Reset**
507 +)))
527 527  
509 +(((
510 +If payload = 0x04FF, it will reset the NSE01
511 +)))
528 528  
529 -(% style="color:#037691" %)**Additional Uplink Channel**:
530 530  
531 -(OTAA mode, channel added by JoinAccept message)
514 +* (% style="color:blue" %)**INTMOD**
532 532  
533 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
516 +Downlink Payload: 06000003, Set AT+INTMOD=3
534 534  
535 -922.2 - SF7BW125 to SF10BW125
536 536  
537 -922.4 - SF7BW125 to SF10BW125
538 538  
539 -922.6 - SF7BW125 to SF10BW125
520 +== 2.6  ​LED Indicator ==
540 540  
541 -922.8 - SF7BW125 to SF10BW125
522 +(((
523 +The NSE01 has an internal LED which is to show the status of different state.
542 542  
543 -923.0 - SF7BW125 to SF10BW125
544 544  
545 -922.0 - SF7BW125 to SF10BW125
526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
527 +* Then the LED will be on for 1 second means device is boot normally.
528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
529 +* For each uplink probe, LED will be on for 500ms.
530 +)))
546 546  
547 547  
548 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
549 549  
550 -923.6 - SF7BW125 to SF10BW125
551 551  
552 -923.8 - SF7BW125 to SF10BW125
535 +== 2.7  Installation in Soil ==
553 553  
554 -924.0 - SF7BW125 to SF10BW125
537 +__**Measurement the soil surface**__
555 555  
556 -924.2 - SF7BW125 to SF10BW125
539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
557 557  
558 -924.4 - SF7BW125 to SF10BW125
541 +[[image:1657259653666-883.png]] ​
559 559  
560 -924.6 - SF7BW125 to SF10BW125
561 561  
544 +(((
545 +
562 562  
563 -(% style="color:#037691" %)** Downlink:**
547 +(((
548 +Dig a hole with diameter > 20CM.
549 +)))
564 564  
565 -Uplink channels 1-8 (RX1)
551 +(((
552 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
553 +)))
554 +)))
566 566  
567 -923.2 - SF10BW125 (RX2)
556 +[[image:1654506665940-119.png]]
568 568  
558 +(((
559 +
560 +)))
569 569  
570 570  
571 -=== 2.7.6 KR920-923 (KR920) ===
563 +== 2. ​Firmware Change Log ==
572 572  
573 -Default channel:
574 574  
575 -922.1 - SF7BW125 to SF12BW125
566 +Download URL & Firmware Change log
576 576  
577 -922.3 - SF7BW125 to SF12BW125
568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
578 578  
579 -922.5 - SF7BW125 to SF12BW125
580 580  
571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
581 581  
582 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
583 583  
584 -922.1 - SF7BW125 to SF12BW125
585 585  
586 -922.3 - SF7BW125 to SF12BW125
575 +== 2. Battery Analysis ==
587 587  
588 -922.5 - SF7BW125 to SF12BW125
577 +=== 2.9.1  ​Battery Type ===
589 589  
590 -922.7 - SF7BW125 to SF12BW125
591 591  
592 -922.9 - SF7BW125 to SF12BW125
580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
593 593  
594 -923.1 - SF7BW125 to SF12BW125
595 595  
596 -923.3 - SF7BW125 to SF12BW125
583 +The battery is designed to last for several years depends on the actually use environment and update interval.
597 597  
598 598  
599 -(% style="color:#037691" %)**Downlink:**
586 +The battery related documents as below:
600 600  
601 -Uplink channels 1-7(RX1)
588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
602 602  
603 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
604 -
605 -
606 -
607 -=== 2.7.7 IN865-867 (IN865) ===
608 -
609 -(% style="color:#037691" %)** Uplink:**
610 -
611 -865.0625 - SF7BW125 to SF12BW125
612 -
613 -865.4025 - SF7BW125 to SF12BW125
614 -
615 -865.9850 - SF7BW125 to SF12BW125
616 -
617 -
618 -(% style="color:#037691" %) **Downlink:**
619 -
620 -Uplink channels 1-3 (RX1)
621 -
622 -866.550 - SF10BW125 (RX2)
623 -
624 -
625 -
626 -
627 -== 2.8 LED Indicator ==
628 -
629 -The LSE01 has an internal LED which is to show the status of different state.
630 -
631 -* Blink once when device power on.
632 -* Solid ON for 5 seconds once device successful Join the network.
633 -* Blink once when device transmit a packet.
634 -
635 -== 2.9 Installation in Soil ==
636 -
637 -**Measurement the soil surface**
638 -
639 -
640 -[[image:1654506634463-199.png]] ​
641 -
642 642  (((
643 -(((
644 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
593 +[[image:image-20220708140453-6.png]]
645 645  )))
646 -)))
647 647  
648 648  
649 -[[image:1654506665940-119.png]]
650 650  
651 -(((
652 -Dig a hole with diameter > 20CM.
653 -)))
598 +2.9.2 
654 654  
655 -(((
656 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
657 -)))
600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
658 658  
659 659  
660 -== 2.10 ​Firmware Change Log ==
603 +Instruction to use as below:
661 661  
662 -(((
663 -**Firmware download link:**
664 -)))
665 665  
666 -(((
667 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
668 -)))
606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
669 669  
670 -(((
671 -
672 -)))
608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
673 673  
674 -(((
675 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
676 -)))
677 677  
678 -(((
679 -
680 -)))
611 +Step 2: Open it and choose
681 681  
682 -(((
683 -**V1.0.**
684 -)))
613 +* Product Model
614 +* Uplink Interval
615 +* Working Mode
685 685  
686 -(((
687 -Release
688 -)))
617 +And the Life expectation in difference case will be shown on the right.
689 689  
690 690  
691 -== 2.11 ​Battery Analysis ==
692 692  
693 -=== 2.11.1 ​Battery Type ===
621 +=== 2.9. ​Battery Note ===
694 694  
695 695  (((
696 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
697 -)))
698 -
699 -(((
700 -The battery is designed to last for more than 5 years for the LSN50.
701 -)))
702 -
703 -(((
704 -(((
705 -The battery-related documents are as below:
706 -)))
707 -)))
708 -
709 -* (((
710 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
711 -)))
712 -* (((
713 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
714 -)))
715 -* (((
716 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
717 -)))
718 -
719 - [[image:image-20220606171726-9.png]]
720 -
721 -
722 -
723 -=== 2.11.2 ​Battery Note ===
724 -
725 -(((
726 726  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
727 727  )))
728 728  
729 729  
730 730  
731 -=== 2.11.3 Replace the battery ===
629 +=== 2.9. Replace the battery ===
732 732  
733 -(((
734 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
735 -)))
631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
736 736  
737 -(((
738 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
739 -)))
740 740  
741 -(((
742 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
743 -)))
744 744  
745 -
746 -
747 747  = 3. ​Using the AT Commands =
748 748  
749 749  == 3.1 Access AT Commands ==
... ... @@ -767,7 +767,7 @@
767 767   [[image:1654502050864-459.png||height="564" width="806"]]
768 768  
769 769  
770 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
771 771  
772 772  
773 773  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -879,20 +879,38 @@
879 879  
880 880  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
881 881  
770 +(((
882 882  You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
883 883  When downloading the images, choose the required image file for download. ​
773 +)))
884 884  
775 +(((
776 +
777 +)))
885 885  
779 +(((
886 886  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
781 +)))
887 887  
783 +(((
784 +
785 +)))
888 888  
787 +(((
889 889  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
789 +)))
890 890  
791 +(((
792 +
793 +)))
891 891  
795 +(((
892 892  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
797 +)))
893 893  
894 894  [[image:image-20220606154726-3.png]]
895 895  
801 +
896 896  When you use the TTN network, the US915 frequency bands use are:
897 897  
898 898  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -905,38 +905,46 @@
905 905  * 905.3 - SF7BW125 to SF10BW125
906 906  * 904.6 - SF8BW500
907 907  
814 +(((
908 908  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
909 909  
910 -(% class="box infomessage" %)
911 -(((
912 -**AT+CHE=2**
817 +* (% style="color:#037691" %)**AT+CHE=2**
818 +* (% style="color:#037691" %)**ATZ**
913 913  )))
914 914  
915 -(% class="box infomessage" %)
916 916  (((
917 -**ATZ**
918 -)))
822 +
919 919  
920 920  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
825 +)))
921 921  
827 +(((
828 +
829 +)))
922 922  
831 +(((
923 923  The **AU915** band is similar. Below are the AU915 Uplink Channels.
833 +)))
924 924  
925 925  [[image:image-20220606154825-4.png]]
926 926  
927 927  
838 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
928 928  
840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
841 +
842 +
929 929  = 5. Trouble Shooting =
930 930  
931 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
845 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
932 932  
933 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
934 934  
935 935  
936 -== 5.2 AT Command input doesnt work ==
850 +== 5.2 AT Command input doesn't work ==
937 937  
938 938  (((
939 -In the case if user can see the console output but cant type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesnt send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
940 940  )))
941 941  
942 942  
... ... @@ -991,7 +991,9 @@
991 991  = 7. Packing Info =
992 992  
993 993  (((
994 -**Package Includes**:
908 +
909 +
910 +(% style="color:#037691" %)**Package Includes**:
995 995  )))
996 996  
997 997  * (((
... ... @@ -1000,10 +1000,8 @@
1000 1000  
1001 1001  (((
1002 1002  
1003 -)))
1004 1004  
1005 -(((
1006 -**Dimension and weight**:
920 +(% style="color:#037691" %)**Dimension and weight**:
1007 1007  )))
1008 1008  
1009 1009  * (((
... ... @@ -1018,7 +1018,6 @@
1018 1018  * (((
1019 1019  Weight / pcs : g
1020 1020  
1021 -
1022 1022  
1023 1023  )))
1024 1024  
... ... @@ -1026,5 +1026,3 @@
1026 1026  
1027 1027  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1028 1028  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1029 -
1030 -
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content