Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 40 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- 1657328609906-564.png
- 1657328659945-416.png
- 1657328756309-230.png
- 1657328884227-504.png
- 1657329814315-101.png
- 1657330452568-615.png
- 1657330472797-498.png
- 1657330501006-241.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
- image-20220709092052-2.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWANSoil Moisture&ECSensor User Manual1 +NDDS75 NB-IoT Distance Detect Sensor User Manual - Content
-
... ... @@ -1,244 +1,130 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 606151504-2.jpeg||height="554" width="554"]]2 +[[image:image-20220709085040-1.png||height="542" width="524"]] 3 3 4 4 5 5 6 -**Contents:** 7 7 8 -{{toc/}} 9 9 8 +**Table of Contents:** 10 10 11 11 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 18 18 19 -((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 16 += 1. Introduction = 22 22 23 -((( 24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 -))) 18 +== 1.1 What is NDDS75 Distance Detection Sensor == 26 26 27 27 ((( 28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 21 + 30 30 31 31 ((( 32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 33 33 ))) 34 34 35 -((( 36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 32 + 37 37 ))) 38 38 39 - 40 40 [[image:1654503236291-817.png]] 41 41 42 42 43 -[[image:165 4503265560-120.png]]38 +[[image:1657327959271-447.png]] 44 44 45 45 46 46 47 -== 1.2 Features == 42 +== 1.2 Features == 48 48 49 -* LoRaWAN 1.0.3 Class A 44 + 45 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 50 50 * Ultra low power consumption 51 -* MonitorSoilMoisture52 -* MonitorSoil Temperature53 -* Monitor SoilConductivity54 -* Bands:CN470/EU433/KR920/US915/EU868/AS923/AU915/IN86547 +* Distance Detection by Ultrasonic technology 48 +* Flat object range 280mm - 7500mm 49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance) 50 +* Cable Length: 25cm 55 55 * AT Commands to change parameters 56 56 * Uplink on periodically 57 57 * Downlink to change configure 58 58 * IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 55 +* Micro SIM card slot for NB-IoT SIM 56 +* 8500mAh Battery for long term use 60 60 61 -== 1.3 Specification == 62 62 63 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 64 64 65 - [[image:image-20220606162220-5.png]]60 +== 1.3 Specification == 66 66 67 67 63 +(% style="color:#037691" %)**Common DC Characteristics:** 68 68 69 -== 1.4 Applications == 65 +* Supply Voltage: 2.1v ~~ 3.6v 66 +* Operating Temperature: -40 ~~ 85°C 70 70 71 - *SmartAgriculture68 +(% style="color:#037691" %)**NB-IoT Spec:** 72 72 73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 - 70 +* - B1 @H-FDD: 2100MHz 71 +* - B3 @H-FDD: 1800MHz 72 +* - B8 @H-FDD: 900MHz 73 +* - B5 @H-FDD: 850MHz 74 +* - B20 @H-FDD: 800MHz 75 +* - B28 @H-FDD: 700MHz 75 75 76 -== 1.5 Firmware Change log == 77 77 78 +(% style="color:#037691" %)**Battery:** 78 78 79 -**LSE01 v1.0 :** Release 80 +* Li/SOCI2 un-chargeable battery 81 +* Capacity: 8500mAh 82 +* Self Discharge: <1% / Year @ 25°C 83 +* Max continuously current: 130mA 84 +* Max boost current: 2A, 1 second 80 80 81 81 87 +(% style="color:#037691" %)**Power Consumption** 82 82 83 -= 2. Configure LSE01 to connect to LoRaWAN network = 89 +* STOP Mode: 10uA @ 3.3v 90 +* Max transmit power: 350mA@3.3v 84 84 85 -== 2.1 How it works == 86 86 87 -((( 88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 -))) 90 90 91 -((( 92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 93 -))) 94 94 95 +== 1.4 Applications == 95 95 97 +* Smart Buildings & Home Automation 98 +* Logistics and Supply Chain Management 99 +* Smart Metering 100 +* Smart Agriculture 101 +* Smart Cities 102 +* Smart Factory 96 96 97 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 104 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 105 + 98 98 99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 100 100 101 101 102 - [[image:1654503992078-669.png]]109 +== 1.5 Pin Definitions == 103 103 104 104 105 - The LG308isalready set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.112 +[[image:1657328609906-564.png]] 106 106 107 107 108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 109 109 110 -Each LSE01 is shipped with a sticker with the default device EUI as below: 111 111 112 - [[image:image-20220606163732-6.jpeg]]117 += 2. Use NDDS75 to communicate with IoT Server = 113 113 114 - Youcan enter this key in the LoRaWAN Server portal.Below isTTN screenshot:119 +== 2.1 How it works == 115 115 116 -**Add APP EUI in the application** 117 - 118 - 119 -[[image:1654504596150-405.png]] 120 - 121 - 122 - 123 -**Add APP KEY and DEV EUI** 124 - 125 -[[image:1654504683289-357.png]] 126 - 127 - 128 - 129 -**Step 2**: Power on LSE01 130 - 131 - 132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 - 134 -[[image:image-20220606163915-7.png]] 135 - 136 - 137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 - 139 -[[image:1654504778294-788.png]] 140 - 141 - 142 - 143 -== 2.3 Uplink Payload == 144 - 145 -=== 2.3.1 MOD~=0(Default Mode) === 146 - 147 -LSE01 will uplink payload via LoRaWAN with below payload format: 148 - 149 - 150 -Uplink payload includes in total 11 bytes. 151 - 152 - 153 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 154 -|=((( 155 -**Size** 156 - 157 -**(bytes)** 158 -)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1** 159 -|**Value**|(% style="width:46px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:160px" %)((( 160 -Temperature 161 - 162 -(Reserve, Ignore now) 163 -)))|(% style="width:104px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:126px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:114px" %)((( 164 -MOD & Digital Interrupt 165 - 166 -(Optional) 167 -))) 168 - 169 -[[image:1654504881641-514.png]] 170 - 171 - 172 - 173 -=== 2.3.2 MOD~=1(Original value) === 174 - 175 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 176 - 177 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 178 -|=((( 179 -**Size** 180 - 181 -**(bytes)** 182 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1** 183 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 184 -Temperature 185 - 186 -(Reserve, Ignore now) 187 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 188 -MOD & Digital Interrupt 189 - 190 -(Optional) 191 -))) 192 - 193 -[[image:1654504907647-967.png]] 194 - 195 - 196 - 197 -=== 2.3.3 Battery Info === 198 - 199 -Check the battery voltage for LSE01. 200 - 201 -Ex1: 0x0B45 = 2885mV 202 - 203 -Ex2: 0x0B49 = 2889mV 204 - 205 - 206 - 207 -=== 2.3.4 Soil Moisture === 208 - 209 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 210 - 211 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 212 - 213 - 214 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 215 - 216 - 217 - 218 -=== 2.3.5 Soil Temperature === 219 - 220 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 221 - 222 -**Example**: 223 - 224 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 225 - 226 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 227 - 228 - 229 - 230 -=== 2.3.6 Soil Conductivity (EC) === 231 - 232 232 ((( 233 - Obtain(%style="color:#4f81bd"%)**__solublesaltconcentration__**(%%)insoilor (% style="color:#4f81bd"%)**__soluble ionconcentrationinliquidfertilizer__**(%%)or(% style="color:#4f81bd"%)**__plantingmedium__**(%%). Thevaluerangeftheregister is0 - 20000(Decimal)(Canbegreaterthan20000).122 +The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75. 234 234 ))) 235 235 236 -((( 237 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 238 -))) 239 239 240 240 ((( 241 - Generally,theEC valueof irrigationwateris lessthan800uS/ cm.127 +The diagram below shows the working flow in default firmware of NDDS75: 242 242 ))) 243 243 244 244 ((( ... ... @@ -245,481 +245,601 @@ 245 245 246 246 ))) 247 247 134 +[[image:1657328659945-416.png]] 135 + 248 248 ((( 249 249 250 250 ))) 251 251 252 -=== 2.3.7 MOD === 253 253 254 - Firmwareversion at least v2.1supportschangingmode.141 +== 2.2 Configure the NDDS75 == 255 255 256 -For example, bytes[10]=90 257 257 258 - mod=(bytes[10]>>7)&0x01=1.144 +=== 2.2.1 Test Requirement === 259 259 146 +((( 147 +To use NDDS75 in your city, make sure meet below requirements: 148 +))) 260 260 261 -**Downlink Command:** 150 +* Your local operator has already distributed a NB-IoT Network there. 151 +* The local NB-IoT network used the band that NSE01 supports. 152 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 262 262 263 -If payload = 0x0A00, workmode=0 154 +((( 155 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 156 +))) 264 264 265 -If** **payload =** **0x0A01, workmode=1 266 266 159 +[[image:1657328756309-230.png]] 267 267 268 268 269 -=== 2.3.8 Decode payload in The Things Network === 270 270 271 - WhileusingTTNnetwork,youcan add the payload format todecodethe payload.163 +=== 2.2.2 Insert SIM card === 272 272 165 +((( 166 +Insert the NB-IoT Card get from your provider. 167 +))) 273 273 274 -[[image:1654505570700-128.png]] 169 +((( 170 +User need to take out the NB-IoT module and insert the SIM card like below: 171 +))) 275 275 276 -The payload decoder function for TTN is here: 277 277 278 - LSE01 TTN Payload Decoder:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]174 +[[image:1657328884227-504.png]] 279 279 280 280 281 281 282 -== 2. 4UplinkInterval==178 +=== 2.2.3 Connect USB – TTL to NDDS75 to configure it === 283 283 284 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 180 +((( 181 +((( 182 +User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below. 183 +))) 184 +))) 285 285 186 +[[image:image-20220709092052-2.png]] 286 286 188 +**Connection:** 287 287 288 - ==2.5Downlink Payload==190 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 289 289 290 - Bydefault,LSE50 printshe downlink payload toconsole port.192 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 291 291 292 - [[image:image-20220606165544-8.png]]194 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 293 293 294 294 295 - **Examples:**197 +In the PC, use below serial tool settings: 296 296 199 +* Baud: (% style="color:green" %)**9600** 200 +* Data bits:** (% style="color:green" %)8(%%)** 201 +* Stop bits: (% style="color:green" %)**1** 202 +* Parity: (% style="color:green" %)**None** 203 +* Flow Control: (% style="color:green" %)**None** 297 297 298 -* **Set TDC** 205 +((( 206 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 207 +))) 299 299 300 - If the payload=0100003C,itmeans set the END Node’s TDC to 0x00003C=60(S), while type code is 01.209 +[[image:1657329814315-101.png]] 301 301 302 -Payload: 01 00 00 1E TDC=30S 211 +((( 212 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]] 213 +))) 303 303 304 -Payload: 01 00 00 3C TDC=60S 305 305 306 306 307 - ***Reset**217 +=== 2.2.4 Use CoAP protocol to uplink data === 308 308 309 - Ifpayload=0x04FF,itwillreset theLSE01219 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 310 310 311 311 312 -* ** CFM**222 +**Use below commands:** 313 313 314 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 224 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 225 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 226 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 315 315 228 +For parameter description, please refer to AT command set 316 316 230 +[[image:1657249793983-486.png]] 317 317 318 -== 2.6 Show Data in DataCake IoT Server == 319 319 320 - [[DATACAKE>>url:https://datacake.co/]]provides ahumanfriendlyinterface toshow thesensordata, oncewe have datain TTN, wecanuse [[DATACAKE>>url:https://datacake.co/]]toconnecttoTTN andseethedatain DATACAKE.Below arethe steps:233 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 321 321 235 +[[image:1657249831934-534.png]] 322 322 323 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 324 324 325 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 326 326 239 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 327 327 328 - [[image:1654505857935-743.png]]241 +This feature is supported since firmware version v1.0.1 329 329 330 330 331 -[[image:1654505874829-548.png]] 244 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 245 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 246 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 332 332 333 - Step 3: Create an account or login Datacake.248 +[[image:1657249864775-321.png]] 334 334 335 -Step 4: Search the LSE01 and add DevEUI. 336 336 251 +[[image:1657249930215-289.png]] 337 337 338 -[[image:1654505905236-553.png]] 339 339 340 340 341 - Afteradded,thesensordata arriveTTN,itwillalsoarrive andshow in Mydevices.255 +=== 2.2.6 Use MQTT protocol to uplink data === 342 342 343 - [[image:1654505925508-181.png]]257 +This feature is supported since firmware version v110 344 344 345 345 260 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 261 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 262 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 263 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 264 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 265 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 266 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 346 346 347 - ==2.7Frequency Plans ==268 +[[image:1657249978444-674.png]] 348 348 349 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 350 350 271 +[[image:1657249990869-686.png]] 351 351 352 -=== 2.7.1 EU863-870 (EU868) === 353 353 354 -(% style="color:#037691" %)** Uplink:** 274 +((( 275 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 276 +))) 355 355 356 -868.1 - SF7BW125 to SF12BW125 357 357 358 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 359 359 360 - 868.5-SF7BW125toSF12BW125280 +=== 2.2.7 Use TCP protocol to uplink data === 361 361 362 - 867.1-SF7BW125toSF12BW125282 +This feature is supported since firmware version v110 363 363 364 -867.3 - SF7BW125 to SF12BW125 365 365 366 -867.5 - SF7BW125 to SF12BW125 285 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 286 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 367 367 368 - 867.7 - SF7BW125to SF12BW125288 +[[image:1657250217799-140.png]] 369 369 370 -867.9 - SF7BW125 to SF12BW125 371 371 372 - 868.8-FSK291 +[[image:1657250255956-604.png]] 373 373 374 374 375 -(% style="color:#037691" %)** Downlink:** 376 376 377 - Uplinkchannels1-9 (RX1)295 +=== 2.2.8 Change Update Interval === 378 378 379 - 869.525-SF9BW125(RX2downlinkonly)297 +User can use below command to change the (% style="color:green" %)**uplink interval**. 380 380 299 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 381 381 301 +((( 302 +(% style="color:red" %)**NOTE:** 303 +))) 382 382 383 -=== 2.7.2 US902-928(US915) === 305 +((( 306 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 307 +))) 384 384 385 -Used in USA, Canada and South America. Default use CHE=2 386 386 387 -(% style="color:#037691" %)**Uplink:** 388 388 389 - 903.9- SF7BW125toSF10BW125311 +== 2.3 Uplink Payload == 390 390 391 - 904.1-SF7BW125toSF10BW125313 +In this mode, uplink payload includes in total 18 bytes 392 392 393 -904.3 - SF7BW125 to SF10BW125 315 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 316 +|=(% style="width: 60px;" %)((( 317 +**Size(bytes)** 318 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 319 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 394 394 395 -904.5 - SF7BW125 to SF10BW125 321 +((( 322 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 323 +))) 396 396 397 -904.7 - SF7BW125 to SF10BW125 398 398 399 - 904.9-SF7BW125 to SF10BW125326 +[[image:image-20220708111918-4.png]] 400 400 401 -905.1 - SF7BW125 to SF10BW125 402 402 403 - 905.3-SF7BW125toSF10BW125329 +The payload is ASCII string, representative same HEX: 404 404 331 +0x72403155615900640c7817075e0a8c02f900 where: 405 405 406 -(% style="color:#037691" %)**Downlink:** 333 +* Device ID: 0x 724031556159 = 724031556159 334 +* Version: 0x0064=100=1.0.0 407 407 408 -923.3 - SF7BW500 to SF12BW500 336 +* BAT: 0x0c78 = 3192 mV = 3.192V 337 +* Singal: 0x17 = 23 338 +* Soil Moisture: 0x075e= 1886 = 18.86 % 339 +* Soil Temperature:0x0a8c =2700=27 °C 340 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 341 +* Interrupt: 0x00 = 0 409 409 410 - 923.9-SF7BW500to SF12BW500343 +== 2.4 Payload Explanation and Sensor Interface == 411 411 412 -924.5 - SF7BW500 to SF12BW500 413 413 414 - 925.1-SF7BW500 to SF12BW500346 +=== 2.4.1 Device ID === 415 415 416 -925.7 - SF7BW500 to SF12BW500 348 +((( 349 +By default, the Device ID equal to the last 6 bytes of IMEI. 350 +))) 417 417 418 -926.3 - SF7BW500 to SF12BW500 352 +((( 353 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 354 +))) 419 419 420 -926.9 - SF7BW500 to SF12BW500 356 +((( 357 +**Example:** 358 +))) 421 421 422 -927.5 - SF7BW500 to SF12BW500 360 +((( 361 +AT+DEUI=A84041F15612 362 +))) 423 423 424 -923.3 - SF12BW500(RX2 downlink only) 364 +((( 365 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 366 +))) 425 425 426 426 427 427 428 -=== 2. 7.3CN470-510(CN470)===370 +=== 2.4.2 Version Info === 429 429 430 -Used in China, Default use CHE=1 372 +((( 373 +Specify the software version: 0x64=100, means firmware version 1.00. 374 +))) 431 431 432 -(% style="color:#037691" %)**Uplink:** 376 +((( 377 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 378 +))) 433 433 434 -486.3 - SF7BW125 to SF12BW125 435 435 436 -486.5 - SF7BW125 to SF12BW125 437 437 438 -4 86.7- SF7BW125toSF12BW125382 +=== 2.4.3 Battery Info === 439 439 440 -486.9 - SF7BW125 to SF12BW125 384 +((( 385 +Check the battery voltage for LSE01. 386 +))) 441 441 442 -487.1 - SF7BW125 to SF12BW125 388 +((( 389 +Ex1: 0x0B45 = 2885mV 390 +))) 443 443 444 -487.3 - SF7BW125 to SF12BW125 392 +((( 393 +Ex2: 0x0B49 = 2889mV 394 +))) 445 445 446 -487.5 - SF7BW125 to SF12BW125 447 447 448 -487.7 - SF7BW125 to SF12BW125 449 449 398 +=== 2.4.4 Signal Strength === 450 450 451 -(% style="color:#037691" %)**Downlink:** 400 +((( 401 +NB-IoT Network signal Strength. 402 +))) 452 452 453 -506.7 - SF7BW125 to SF12BW125 404 +((( 405 +**Ex1: 0x1d = 29** 406 +))) 454 454 455 -506.9 - SF7BW125 to SF12BW125 408 +((( 409 +(% style="color:blue" %)**0**(%%) -113dBm or less 410 +))) 456 456 457 -507.1 - SF7BW125 to SF12BW125 412 +((( 413 +(% style="color:blue" %)**1**(%%) -111dBm 414 +))) 458 458 459 -507.3 - SF7BW125 to SF12BW125 416 +((( 417 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 418 +))) 460 460 461 -507.5 - SF7BW125 to SF12BW125 420 +((( 421 +(% style="color:blue" %)**31** (%%) -51dBm or greater 422 +))) 462 462 463 -507.7 - SF7BW125 to SF12BW125 424 +((( 425 +(% style="color:blue" %)**99** (%%) Not known or not detectable 426 +))) 464 464 465 -507.9 - SF7BW125 to SF12BW125 466 466 467 -508.1 - SF7BW125 to SF12BW125 468 468 469 - 505.3- SF12BW125(RX2 downlinkonly)430 +=== 2.4.5 Soil Moisture === 470 470 432 +((( 433 +((( 434 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 435 +))) 436 +))) 471 471 438 +((( 439 +((( 440 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 441 +))) 442 +))) 472 472 473 -=== 2.7.4 AU915-928(AU915) === 444 +((( 445 + 446 +))) 474 474 475 -Default use CHE=2 448 +((( 449 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 450 +))) 476 476 477 -(% style="color:#037691" %)**Uplink:** 478 478 479 -916.8 - SF7BW125 to SF12BW125 480 480 481 - 917.0-SF7BW125toSF12BW125454 +=== 2.4.6 Soil Temperature === 482 482 483 -917.2 - SF7BW125 to SF12BW125 456 +((( 457 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 458 +))) 484 484 485 -917.4 - SF7BW125 to SF12BW125 460 +((( 461 +**Example**: 462 +))) 486 486 487 -917.6 - SF7BW125 to SF12BW125 464 +((( 465 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 466 +))) 488 488 489 -917.8 - SF7BW125 to SF12BW125 468 +((( 469 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 470 +))) 490 490 491 -918.0 - SF7BW125 to SF12BW125 492 492 493 -918.2 - SF7BW125 to SF12BW125 494 494 474 +=== 2.4.7 Soil Conductivity (EC) === 495 495 496 -(% style="color:#037691" %)**Downlink:** 476 +((( 477 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 478 +))) 497 497 498 -923.3 - SF7BW500 to SF12BW500 480 +((( 481 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 482 +))) 499 499 500 -923.9 - SF7BW500 to SF12BW500 484 +((( 485 +Generally, the EC value of irrigation water is less than 800uS / cm. 486 +))) 501 501 502 -924.5 - SF7BW500 to SF12BW500 488 +((( 489 + 490 +))) 503 503 504 -925.1 - SF7BW500 to SF12BW500 492 +((( 493 + 494 +))) 505 505 506 - 925.7-SF7BW500toSF12BW500496 +=== 2.4.8 Digital Interrupt === 507 507 508 -926.3 - SF7BW500 to SF12BW500 498 +((( 499 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 500 +))) 509 509 510 -926.9 - SF7BW500 to SF12BW500 502 +((( 503 +The command is: 504 +))) 511 511 512 -927.5 - SF7BW500 to SF12BW500 506 +((( 507 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 508 +))) 513 513 514 -923.3 - SF12BW500(RX2 downlink only) 515 515 511 +((( 512 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 513 +))) 516 516 517 517 518 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 516 +((( 517 +Example: 518 +))) 519 519 520 -(% style="color:#037691" %)**Default Uplink channel:** 520 +((( 521 +0x(00): Normal uplink packet. 522 +))) 521 521 522 -923.2 - SF7BW125 to SF10BW125 524 +((( 525 +0x(01): Interrupt Uplink Packet. 526 +))) 523 523 524 -923.4 - SF7BW125 to SF10BW125 525 525 526 526 527 - (% style="color:#037691"%)**AdditionalUplinkChannel**:530 +=== 2.4.9 +5V Output === 528 528 529 -(OTAA mode, channel added by JoinAccept message) 532 +((( 533 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 534 +))) 530 530 531 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 532 532 533 -922.2 - SF7BW125 to SF10BW125 537 +((( 538 +The 5V output time can be controlled by AT Command. 539 +))) 534 534 535 -922.4 - SF7BW125 to SF10BW125 541 +((( 542 +(% style="color:blue" %)**AT+5VT=1000** 543 +))) 536 536 537 -922.6 - SF7BW125 to SF10BW125 545 +((( 546 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 547 +))) 538 538 539 -922.8 - SF7BW125 to SF10BW125 540 540 541 -923.0 - SF7BW125 to SF10BW125 542 542 543 - 922.0- SF7BW125toSF10BW125551 +== 2.5 Downlink Payload == 544 544 553 +By default, NSE01 prints the downlink payload to console port. 545 545 546 - (% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, HongKong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:555 +[[image:image-20220708133731-5.png]] 547 547 548 -923.6 - SF7BW125 to SF10BW125 549 549 550 -923.8 - SF7BW125 to SF10BW125 558 +((( 559 +(% style="color:blue" %)**Examples:** 560 +))) 551 551 552 -924.0 - SF7BW125 to SF10BW125 562 +((( 563 + 564 +))) 553 553 554 -924.2 - SF7BW125 to SF10BW125 566 +* ((( 567 +(% style="color:blue" %)**Set TDC** 568 +))) 555 555 556 -924.4 - SF7BW125 to SF10BW125 570 +((( 571 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 572 +))) 557 557 558 -924.6 - SF7BW125 to SF10BW125 574 +((( 575 +Payload: 01 00 00 1E TDC=30S 576 +))) 559 559 578 +((( 579 +Payload: 01 00 00 3C TDC=60S 580 +))) 560 560 561 -(% style="color:#037691" %)** Downlink:** 582 +((( 583 + 584 +))) 562 562 563 -Uplink channels 1-8 (RX1) 586 +* ((( 587 +(% style="color:blue" %)**Reset** 588 +))) 564 564 565 -923.2 - SF10BW125 (RX2) 590 +((( 591 +If payload = 0x04FF, it will reset the NSE01 592 +))) 566 566 567 567 595 +* (% style="color:blue" %)**INTMOD** 568 568 569 -=== 2.7.6 KR920-923 (KR920) === 597 +((( 598 +Downlink Payload: 06000003, Set AT+INTMOD=3 599 +))) 570 570 571 -Default channel: 572 572 573 -922.1 - SF7BW125 to SF12BW125 574 574 575 - 922.3-SF7BW125toSF12BW125603 +== 2.6 LED Indicator == 576 576 577 -922.5 - SF7BW125 to SF12BW125 605 +((( 606 +The NSE01 has an internal LED which is to show the status of different state. 578 578 579 579 580 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 609 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 610 +* Then the LED will be on for 1 second means device is boot normally. 611 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 612 +* For each uplink probe, LED will be on for 500ms. 613 +))) 581 581 582 -922.1 - SF7BW125 to SF12BW125 583 583 584 -922.3 - SF7BW125 to SF12BW125 585 585 586 -922.5 - SF7BW125 to SF12BW125 587 587 588 - 922.7- SF7BW125to SF12BW125618 +== 2.7 Installation in Soil == 589 589 590 - 922.9- SF7BW125toSF12BW125620 +__**Measurement the soil surface**__ 591 591 592 -923.1 - SF7BW125 to SF12BW125 622 +((( 623 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 624 +))) 593 593 594 - 923.3 - SF7BW125to SF12BW125626 +[[image:1657259653666-883.png]] 595 595 596 596 597 -(% style="color:#037691" %)**Downlink:** 629 +((( 630 + 598 598 599 -Uplink channels 1-7(RX1) 632 +((( 633 +Dig a hole with diameter > 20CM. 634 +))) 600 600 601 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 636 +((( 637 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 638 +))) 639 +))) 602 602 641 +[[image:1654506665940-119.png]] 603 603 643 +((( 644 + 645 +))) 604 604 605 -=== 2.7.7 IN865-867 (IN865) === 606 606 607 - (% style="color:#037691"%)**Uplink:**648 +== 2.8 Firmware Change Log == 608 608 609 -865.0625 - SF7BW125 to SF12BW125 610 610 611 - 865.4025-SF7BW125toSF12BW125651 +Download URL & Firmware Change log 612 612 613 - 865.9850-F7BW125toSF12BW125653 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 614 614 615 615 616 - (%style="color:#037691"%) **Downlink:**656 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 617 617 618 -Uplink channels 1-3 (RX1) 619 619 620 -866.550 - SF10BW125 (RX2) 621 621 660 +== 2.9 Battery Analysis == 622 622 662 +=== 2.9.1 Battery Type === 623 623 624 624 625 -== 2.8 LED Indicator == 626 - 627 -The LSE01 has an internal LED which is to show the status of different state. 628 - 629 -* Blink once when device power on. 630 -* Solid ON for 5 seconds once device successful Join the network. 631 -* Blink once when device transmit a packet. 632 - 633 -== 2.9 Installation in Soil == 634 - 635 -**Measurement the soil surface** 636 - 637 - 638 -[[image:1654506634463-199.png]] 639 - 640 640 ((( 641 -((( 642 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 666 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 643 643 ))) 644 -))) 645 645 646 646 647 -[[image:1654506665940-119.png]] 648 - 649 649 ((( 650 - Dig aholewithdiameter>20CM.671 +The battery is designed to last for several years depends on the actually use environment and update interval. 651 651 ))) 652 652 653 -((( 654 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 655 -))) 656 656 657 - 658 -== 2.10 Firmware Change Log == 659 - 660 660 ((( 661 - **Firmware downloadlink:**676 +The battery related documents as below: 662 662 ))) 663 663 664 - (((665 -[[ http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]666 - )))679 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 680 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 681 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 667 667 668 668 ((( 669 - 684 +[[image:image-20220708140453-6.png]] 670 670 ))) 671 671 672 -((( 673 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 674 -))) 675 675 676 -((( 677 - 678 -))) 679 679 680 -((( 681 -**V1.0.** 682 -))) 689 +=== 2.9.2 Power consumption Analyze === 683 683 684 684 ((( 685 - Release692 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 686 686 ))) 687 687 688 688 689 -== 2.11 Battery Analysis == 690 - 691 -=== 2.11.1 Battery Type === 692 - 693 693 ((( 694 - The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The batteryis non-rechargeablebattery type with a lowdischargerate (<2% per year). Thistype ofbattery is commonly used in IoT devices such aswater meter.697 +Instruction to use as below: 695 695 ))) 696 696 697 697 ((( 698 - Thebatterys designedlastforrethan5 years fortheSN50.701 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 699 699 ))) 700 700 704 + 701 701 ((( 702 -((( 703 -The battery-related documents are as below: 706 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 704 704 ))) 705 -))) 706 706 707 707 * ((( 708 - [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],710 +Product Model 709 709 ))) 710 710 * ((( 711 - [[Lithium-ThionylChloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],713 +Uplink Interval 712 712 ))) 713 713 * ((( 714 - [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]],[[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]716 +Working Mode 715 715 ))) 716 716 717 - [[image:image-20220606171726-9.png]] 719 +((( 720 +And the Life expectation in difference case will be shown on the right. 721 +))) 718 718 723 +[[image:image-20220708141352-7.jpeg]] 719 719 720 720 721 -=== 2.11.2 Battery Note === 722 722 727 +=== 2.9.3 Battery Note === 728 + 723 723 ((( 724 724 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 725 725 ))) ... ... @@ -726,303 +726,195 @@ 726 726 727 727 728 728 729 -=== 2. 11.3Replace the battery ===735 +=== 2.9.4 Replace the battery === 730 730 731 731 ((( 732 - IfBattery is lower than 2.7v,usershouldreplace the battery ofLSE01.738 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 733 733 ))) 734 734 741 + 742 + 743 += 3. Access NB-IoT Module = 744 + 735 735 ((( 736 - You can changethe battery in the LSE01.The type of battery isnot limitedas longas the outputis between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the maincircuit. If you need to use a battery with lessthan 3.3v, pleaseremovethe D1and shortcut thewopadsofitso therewon’tbe voltage drop between battery andmain board.746 +Users can directly access the AT command set of the NB-IoT module. 737 737 ))) 738 738 739 739 ((( 740 -The defaultbattery packof LSE01 includesa ER18505 plussupercapacitor.Ifusercan’tfind this pack locally, theycan find ER18505orequivalence,whichwillalsoworkinmostcase.The SPC can enlargethebattery lifeforigh frequency use(updateperiod below5minutes)750 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 741 741 ))) 742 742 753 +[[image:1657261278785-153.png]] 743 743 744 744 745 -= 3. Using the AT Commands = 746 746 747 -= =3.1AccessAT Commands ==757 += 4. Using the AT Commands = 748 748 759 +== 4.1 Access AT Commands == 749 749 750 - LSE01supportsATCommandsetn the stock firmware.Youcanuse a USB toTTLadaptertoconnect to LSE01forusing ATcommand,asbelow.761 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 751 751 752 -[[image:1654501986557-872.png||height="391" width="800"]] 753 753 764 +AT+<CMD>? : Help on <CMD> 754 754 755 - Orifyouhavebelowboard,usebelowconnection:766 +AT+<CMD> : Run <CMD> 756 756 768 +AT+<CMD>=<value> : Set the value 757 757 758 - [[image:1654502005655-729.png||height="503"width="801"]]770 +AT+<CMD>=? : Get the value 759 759 760 760 761 - 762 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 763 - 764 - 765 - [[image:1654502050864-459.png||height="564" width="806"]] 766 - 767 - 768 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 769 - 770 - 771 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 772 - 773 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 774 - 775 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 776 - 777 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 778 - 779 - 780 780 (% style="color:#037691" %)**General Commands**(%%) 781 781 782 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention775 +AT : Attention 783 783 784 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help777 +AT? : Short Help 785 785 786 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset779 +ATZ : MCU Reset 787 787 788 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval781 +AT+TDC : Application Data Transmission Interval 789 789 783 +AT+CFG : Print all configurations 790 790 791 - (%style="color:#037691"%)**Keys,IDsand EUIs management**785 +AT+CFGMOD : Working mode selection 792 792 793 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI787 +AT+INTMOD : Set the trigger interrupt mode 794 794 795 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey789 +AT+5VT : Set extend the time of 5V power 796 796 797 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key791 +AT+PRO : Choose agreement 798 798 799 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress793 +AT+WEIGRE : Get weight or set weight to 0 800 800 801 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI795 +AT+WEIGAP : Get or Set the GapValue of weight 802 802 803 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)797 +AT+RXDL : Extend the sending and receiving time 804 804 805 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network799 +AT+CNTFAC : Get or set counting parameters 806 806 807 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode801 +AT+SERVADDR : Server Address 808 808 809 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 810 810 811 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network804 +(% style="color:#037691" %)**COAP Management** 812 812 813 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode806 +AT+URI : Resource parameters 814 814 815 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 816 816 817 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format809 +(% style="color:#037691" %)**UDP Management** 818 818 819 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat811 +AT+CFM : Upload confirmation mode (only valid for UDP) 820 820 821 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 822 822 823 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data814 +(% style="color:#037691" %)**MQTT Management** 824 824 816 +AT+CLIENT : Get or Set MQTT client 825 825 826 - (%style="color:#037691"%)**LoRaNetworkManagement**818 +AT+UNAME : Get or Set MQTT Username 827 827 828 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate820 +AT+PWD : Get or Set MQTT password 829 829 830 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA822 +AT+PUBTOPIC : Get or Set MQTT publish topic 831 831 832 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting824 +AT+SUBTOPIC : Get or Set MQTT subscription topic 833 833 834 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 835 835 836 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink827 +(% style="color:#037691" %)**Information** 837 837 838 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink829 +AT+FDR : Factory Data Reset 839 839 840 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1831 +AT+PWORD : Serial Access Password 841 841 842 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 843 843 844 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 845 845 846 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1835 += 5. FAQ = 847 847 848 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2837 +== 5.1 How to Upgrade Firmware == 849 849 850 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 851 851 852 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 840 +((( 841 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 842 +))) 853 853 854 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 855 - 856 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 857 - 858 - 859 -(% style="color:#037691" %)**Information** 860 - 861 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 862 - 863 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 864 - 865 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 866 - 867 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 868 - 869 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 870 - 871 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 872 - 873 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 874 - 875 - 876 -= 4. FAQ = 877 - 878 -== 4.1 How to change the LoRa Frequency Bands/Region? == 879 - 880 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 881 -When downloading the images, choose the required image file for download. 882 - 883 - 884 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 885 - 886 - 887 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 888 - 889 - 890 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 891 - 892 -[[image:image-20220606154726-3.png]] 893 - 894 -When you use the TTN network, the US915 frequency bands use are: 895 - 896 -* 903.9 - SF7BW125 to SF10BW125 897 -* 904.1 - SF7BW125 to SF10BW125 898 -* 904.3 - SF7BW125 to SF10BW125 899 -* 904.5 - SF7BW125 to SF10BW125 900 -* 904.7 - SF7BW125 to SF10BW125 901 -* 904.9 - SF7BW125 to SF10BW125 902 -* 905.1 - SF7BW125 to SF10BW125 903 -* 905.3 - SF7BW125 to SF10BW125 904 -* 904.6 - SF8BW500 905 - 906 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 907 - 908 -(% class="box infomessage" %) 909 909 ((( 910 - **AT+CHE=2**845 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 911 911 ))) 912 912 913 -(% class="box infomessage" %) 914 914 ((( 915 - **ATZ**849 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 916 916 ))) 917 917 918 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 919 919 920 920 921 - The**AU915**bandissimilar. Below aretheAU915UplinkChannels.854 +== 5.2 Can I calibrate NSE01 to different soil types? == 922 922 923 -[[image:image-20220606154825-4.png]] 856 +((( 857 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. 858 +))) 924 924 925 925 861 += 6. Trouble Shooting = 926 926 927 -= 5.TroubleShooting =863 +== 6.1 Connection problem when uploading firmware == 928 928 929 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 930 930 931 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 932 - 933 - 934 -== 5.2 AT Command input doesn’t work == 935 - 936 936 ((( 937 - In thecaseif user can seethe console outputbut can’t typeinput tothe device. Please checkif youalready includethe (%yle="color:green"%)**ENTER**(%%) whileendingouthecommand. Someserial tooldoesn’tsend (% style="color:green"%)**ENTER**(%%) whileess the sendkey,userneed toadd ENTER in theirstring.867 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 938 938 ))) 939 939 940 - 941 -== 5.3 Device rejoin in at the second uplink packet == 942 - 943 -(% style="color:#4f81bd" %)**Issue describe as below:** 944 - 945 -[[image:1654500909990-784.png]] 946 - 947 - 948 -(% style="color:#4f81bd" %)**Cause for this issue:** 949 - 870 +(% class="wikigeneratedid" %) 950 950 ((( 951 - Thefuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.872 + 952 952 ))) 953 953 954 954 955 - (% style="color:#4f81bd"%)**Solution:**876 +== 6.2 AT Command input doesn't work == 956 956 957 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 878 +((( 879 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 958 958 959 -[[image:1654500929571-736.png||height="458" width="832"]] 881 + 882 +))) 960 960 961 961 962 -= 6. Order Info =885 += 7. Order Info = 963 963 964 964 965 -Part Number**:** LSE01-XX-YY**888 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 966 966 967 967 968 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 969 - 970 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 971 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 972 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 973 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 974 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 975 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 976 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 977 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 978 - 979 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 980 - 981 -* (% style="color:red" %)**4**(%%): 4000mAh battery 982 -* (% style="color:red" %)**8**(%%): 8500mAh battery 983 - 984 984 (% class="wikigeneratedid" %) 985 985 ((( 986 986 987 987 ))) 988 988 989 -= 7. Packing Info =896 += 8. Packing Info = 990 990 991 991 ((( 992 -**Package Includes**: 993 -))) 899 + 994 994 995 -* ((( 996 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 901 +(% style="color:#037691" %)**Package Includes**: 902 + 903 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 904 +* External antenna x 1 997 997 ))) 998 998 999 999 ((( 1000 1000 1001 -))) 1002 1002 1003 -((( 1004 -**Dimension and weight**: 1005 -))) 910 +(% style="color:#037691" %)**Dimension and weight**: 1006 1006 1007 -* (((1008 - DeviceSize:cm912 +* Size: 195 x 125 x 55 mm 913 +* Weight: 420g 1009 1009 ))) 1010 -* ((( 1011 -Device Weight: g 1012 -))) 1013 -* ((( 1014 -Package Size / pcs : cm 1015 -))) 1016 -* ((( 1017 -Weight / pcs : g 1018 1018 916 +((( 917 + 1019 1019 919 + 1020 1020 1021 1021 ))) 1022 1022 1023 -= 8. Support =923 += 9. Support = 1024 1024 1025 1025 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1026 1026 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1027 - 1028 -
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.3 KB - Content
- 1657328609906-564.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657328659945-416.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.8 KB - Content
- 1657328756309-230.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.5 KB - Content
- 1657328884227-504.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657329814315-101.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.3 KB - Content
- 1657330452568-615.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.3 KB - Content
- 1657330472797-498.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +68.9 KB - Content
- 1657330501006-241.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +119.2 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +200.4 KB - Content
- image-20220709092052-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +247.3 KB - Content