Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 23 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,9 +3,7 @@ 3 3 4 4 5 5 6 -**Contents:** 7 7 8 -{{toc/}} 9 9 10 10 11 11 ... ... @@ -12,61 +12,81 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 - == 1.1 Whatis LoRaWANSoil Moisture& EC Sensor ==14 +**Table of Contents:** 18 18 19 -((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 22 22 23 -((( 24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 -))) 26 26 27 -((( 28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 -))) 34 34 20 + 21 += 1. Introduction = 22 + 23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 + 35 35 ((( 36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 -))) 26 + 38 38 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 39 39 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 + 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 + 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 + 36 + 37 +))) 38 + 40 40 [[image:1654503236291-817.png]] 41 41 42 42 43 -[[image:16545 03265560-120.png]]42 +[[image:1657245163077-232.png]] 44 44 45 45 46 46 47 47 == 1.2 Features == 48 48 49 - * LoRaWAN 1.0.3 Class A50 -* Ultra lowpower consumption48 + 49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 51 51 * Monitor Soil Moisture 52 52 * Monitor Soil Temperature 53 53 * Monitor Soil Conductivity 54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 55 55 * AT Commands to change parameters 56 56 * Uplink on periodically 57 57 * Downlink to change configure 58 58 * IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 59 +* Micro SIM card slot for NB-IoT SIM 60 +* 8500mAh Battery for long term use 60 60 61 -== 1.3 Specification == 62 +== 1.3 Specification == 62 62 64 + 65 +(% style="color:#037691" %)**Common DC Characteristics:** 66 + 67 +* Supply Voltage: 2.1v ~~ 3.6v 68 +* Operating Temperature: -40 ~~ 85°C 69 + 70 +(% style="color:#037691" %)**NB-IoT Spec:** 71 + 72 +* - B1 @H-FDD: 2100MHz 73 +* - B3 @H-FDD: 1800MHz 74 +* - B8 @H-FDD: 900MHz 75 +* - B5 @H-FDD: 850MHz 76 +* - B20 @H-FDD: 800MHz 77 +* - B28 @H-FDD: 700MHz 78 + 79 +(% style="color:#037691" %)**Probe Specification:** 80 + 63 63 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 64 64 65 -[[image:image-20220 606162220-5.png]]83 +[[image:image-20220708101224-1.png]] 66 66 67 67 68 68 69 -== 1.4 Applications == 87 +== 1.4 Applications == 70 70 71 71 * Smart Agriculture 72 72 ... ... @@ -73,676 +73,579 @@ 73 73 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 74 75 75 76 -== 1.5 Firmware Changelog==94 +== 1.5 Pin Definitions == 77 77 78 78 79 - **LSE01v1.0 :** Release97 +[[image:1657246476176-652.png]] 80 80 81 81 82 82 83 -= 2. ConfigureLSE01 to connect toLoRaWANnetwork=101 += 2. Use NSE01 to communicate with IoT Server = 84 84 85 -== 2.1 How it works == 103 +== 2.1 How it works == 86 86 105 + 87 87 ((( 88 -The LSE01 isconfiguredasLoRaWANOTAAClass Amodebydefault.IthasOTAAkeystojoinLoRaWANnetwork.Toconnect a localLoRaWAN network,you need toinputtheOTAAkeysin theLoRaWANserverandpoweronthe LSE0150. It willautomaticallyjointhenetworkviaOTAA and starttosendthesensor value107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 89 89 ))) 90 90 110 + 91 91 ((( 92 - In case you can’t set the OTAA keys in theLoRaWAN OTAA server,andyouhave tousethe keysfromtheserver, you can [[useAT Commands >>||anchor="H3.UsingtheATCommands"]].112 +The diagram below shows the working flow in default firmware of NSE01: 93 93 ))) 94 94 115 +[[image:image-20220708101605-2.png]] 95 95 96 - 97 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 98 - 99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 100 - 101 - 102 -[[image:1654503992078-669.png]] 103 - 104 - 105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 106 - 107 - 108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 109 - 110 -Each LSE01 is shipped with a sticker with the default device EUI as below: 111 - 112 -[[image:image-20220606163732-6.jpeg]] 113 - 114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 115 - 116 -**Add APP EUI in the application** 117 - 118 - 119 -[[image:1654504596150-405.png]] 120 - 121 - 122 - 123 -**Add APP KEY and DEV EUI** 124 - 125 -[[image:1654504683289-357.png]] 126 - 127 - 128 - 129 -**Step 2**: Power on LSE01 130 - 131 - 132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 - 134 -[[image:image-20220606163915-7.png]] 135 - 136 - 137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 - 139 -[[image:1654504778294-788.png]] 140 - 141 - 142 - 143 -== 2.3 Uplink Payload == 144 - 145 -=== 2.3.1 MOD~=0(Default Mode) === 146 - 147 -LSE01 will uplink payload via LoRaWAN with below payload format: 148 - 149 - 150 -Uplink payload includes in total 11 bytes. 117 +((( 151 151 152 - 153 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 154 -|=((( 155 -**Size** 156 - 157 -**(bytes)** 158 -)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1** 159 -|**Value**|(% style="width:46px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:160px" %)((( 160 -Temperature 161 - 162 -(Reserve, Ignore now) 163 -)))|(% style="width:104px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:126px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:114px" %)((( 164 -MOD & Digital Interrupt 165 - 166 -(Optional) 167 167 ))) 168 168 169 -[[image:1654504881641-514.png]] 170 170 171 171 123 +== 2.2 Configure the NSE01 == 172 172 173 -=== 2.3.2 MOD~=1(Original value) === 174 174 175 - Thismodecangettheoriginal AD value of moistureand original conductivity (with temperature drift compensation).126 +=== 2.2.1 Test Requirement === 176 176 177 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 178 -|=((( 179 -**Size** 180 180 181 -**(bytes)** 182 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1** 183 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 184 -Temperature 129 +To use NSE01 in your city, make sure meet below requirements: 185 185 186 - (Reserve,Ignorenow)187 - )))|[[SoilMoisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[SoilConductivity(EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((188 - MOD&DigitalInterrupt131 +* Your local operator has already distributed a NB-IoT Network there. 132 +* The local NB-IoT network used the band that NSE01 supports. 133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 189 189 190 -(Optional) 135 +((( 136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 191 191 ))) 192 192 193 -[[image:1654504907647-967.png]] 194 194 140 +[[image:1657249419225-449.png]] 195 195 196 196 197 -=== 2.3.3 Battery Info === 198 198 199 - Checkthebattery voltageforLSE01.144 +=== 2.2.2 Insert SIM card === 200 200 201 - Ex1:0x0B45=2885mV146 +Insert the NB-IoT Card get from your provider. 202 202 203 - Ex2:0x0B49=2889mV148 +User need to take out the NB-IoT module and insert the SIM card like below: 204 204 205 205 151 +[[image:1657249468462-536.png]] 206 206 207 -=== 2.3.4 Soil Moisture === 208 208 209 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 210 210 211 - Forexample,ifthedatayougetfromtheregister is __0x050xDC__,themoisturecontentinthesoil is155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 212 212 213 - 214 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 215 - 216 - 217 - 218 -=== 2.3.5 Soil Temperature === 219 - 220 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 221 - 222 -**Example**: 223 - 224 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 225 - 226 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 227 - 228 - 229 - 230 -=== 2.3.6 Soil Conductivity (EC) === 231 - 232 232 ((( 233 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 234 -))) 235 - 236 236 ((( 237 - For example,ifthedatayougetfromtheregister is 0x000xC8,the soilconductivityis00C8(H)=200(D)=200uS/cm.159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 238 238 ))) 239 - 240 -((( 241 -Generally, the EC value of irrigation water is less than 800uS / cm. 242 242 ))) 243 243 244 -((( 245 - 246 -))) 247 247 248 -((( 249 - 250 -))) 164 +**Connection:** 251 251 252 -= ==2.3.7MOD===166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 253 253 254 - Firmwareversionatst v2.1 supportschanging mode.168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 255 255 256 - Forexample,bytes[10]=90170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 257 257 258 -mod=(bytes[10]>>7)&0x01=1. 259 259 173 +In the PC, use below serial tool settings: 260 260 261 -**Downlink Command:** 175 +* Baud: (% style="color:green" %)**9600** 176 +* Data bits:** (% style="color:green" %)8(%%)** 177 +* Stop bits: (% style="color:green" %)**1** 178 +* Parity: (% style="color:green" %)**None** 179 +* Flow Control: (% style="color:green" %)**None** 262 262 263 -If payload = 0x0A00, workmode=0 181 +((( 182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 183 +))) 264 264 265 - If** **payload =** **0x0A01, workmode=1185 +[[image:image-20220708110657-3.png]] 266 266 187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 267 267 268 268 269 -=== 2.3.8 Decode payload in The Things Network === 270 270 271 - WhileusingTTNnetwork,youcan add thepayload formattodecodethepayload.191 +=== 2.2.4 Use CoAP protocol to uplink data === 272 272 193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 273 273 274 -[[image:1654505570700-128.png]] 275 275 276 - Thepayloaddecoder function for TTN ishere:196 +**Use below commands:** 277 277 278 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 198 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 279 279 202 +For parameter description, please refer to AT command set 280 280 204 +[[image:1657249793983-486.png]] 281 281 282 -== 2.4 Uplink Interval == 283 283 284 - TheLSE01 by defaultuplinkthe sensordata every20 minutes. Usercan change thisintervalbyATCommandor LoRaWANDownlinkCommand.Seethislink: [[Change UplinkInterval>>doc:Main.End Device AT Commandsand DownlinkCommand.WebHome||anchor="H4.1ChangeUplinkInterval"]]207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 285 285 209 +[[image:1657249831934-534.png]] 286 286 287 287 288 -== 2.5 Downlink Payload == 289 289 290 - Bydefault,LSE50printsthe downlinkpayloadtonsoleport.213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 291 291 292 - [[image:image-20220606165544-8.png]]215 +This feature is supported since firmware version v1.0.1 293 293 294 294 295 -**Examples:** 218 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 296 296 222 +[[image:1657249864775-321.png]] 297 297 298 -* **Set TDC** 299 299 300 - If the payload=0100003C,itmeans set the END Node’s TDC to 0x00003C=60(S), while type code is 01.225 +[[image:1657249930215-289.png]] 301 301 302 -Payload: 01 00 00 1E TDC=30S 303 303 304 -Payload: 01 00 00 3C TDC=60S 305 305 229 +=== 2.2.6 Use MQTT protocol to uplink data === 306 306 307 - ***Reset**231 +This feature is supported since firmware version v110 308 308 309 -If payload = 0x04FF, it will reset the LSE01 310 310 234 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 237 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 238 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 311 311 312 - * **CFM**242 +[[image:1657249978444-674.png]] 313 313 314 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 315 315 245 +[[image:1657249990869-686.png]] 316 316 317 317 318 -== 2.6 Show Data in DataCake IoT Server == 248 +((( 249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 250 +))) 319 319 320 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 321 321 322 322 323 - **Step1**:Besurethatyour device isprogrammed and properlyconnectedtothenetwork atthis time.254 +=== 2.2.7 Use TCP protocol to uplink data === 324 324 325 - **Step 2**:ToconfiguretheApplication to forward data to DATACAKE you will needto addintegration. To add theDATACAKE integration,perform the following steps:256 +This feature is supported since firmware version v110 326 326 327 327 328 -[[image:1654505857935-743.png]] 259 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 329 329 262 +[[image:1657250217799-140.png]] 330 330 331 -[[image:1654505874829-548.png]] 332 332 333 - Step 3: Create an account or login Datacake.265 +[[image:1657250255956-604.png]] 334 334 335 -Step 4: Search the LSE01 and add DevEUI. 336 336 337 337 338 - [[image:1654505905236-553.png]]269 +=== 2.2.8 Change Update Interval === 339 339 271 +User can use below command to change the (% style="color:green" %)**uplink interval**. 340 340 341 - Afteradded,thesensordata arrive TTN,itwillalsoarriveandshow inMydevices.273 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 342 342 343 -[[image:1654505925508-181.png]] 275 +((( 276 +(% style="color:red" %)**NOTE:** 277 +))) 344 344 279 +((( 280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 281 +))) 345 345 346 346 347 -== 2.7 Frequency Plans == 348 348 349 - TheLSE01uses OTAA mode and below frequencyplans by default. If user want to useit with differentfrequencyplan, please refer the AT commandsets.285 +== 2.3 Uplink Payload == 350 350 287 +In this mode, uplink payload includes in total 18 bytes 351 351 352 -=== 2.7.1 EU863-870 (EU868) === 289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 290 +|=(% style="width: 50px;" %)((( 291 +**Size(bytes)** 292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 353 353 354 - (%style="color:#037691"%)** Uplink:**295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 355 355 356 -868.1 - SF7BW125 to SF12BW125 357 357 358 - 868.3-SF7BW125 to SF12BW125 and SF7BW250298 +[[image:image-20220708111918-4.png]] 359 359 360 -868.5 - SF7BW125 to SF12BW125 361 361 362 - 867.1-SF7BW125toSF12BW125301 +The payload is ASCII string, representative same HEX: 363 363 364 - 867.3- SF7BW125to SF12BW125303 +0x72403155615900640c7817075e0a8c02f900 where: 365 365 366 -867.5 - SF7BW125 to SF12BW125 305 +* Device ID: 0x 724031556159 = 724031556159 306 +* Version: 0x0064=100=1.0.0 367 367 368 -867.7 - SF7BW125 to SF12BW125 308 +* BAT: 0x0c78 = 3192 mV = 3.192V 309 +* Singal: 0x17 = 23 310 +* Soil Moisture: 0x075e= 1886 = 18.86 % 311 +* Soil Temperature:0x0a8c =2700=27 °C 312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 313 +* Interrupt: 0x00 = 0 369 369 370 - 867.9- SF7BW125to SF12BW125315 +== 2.4 Payload Explanation and Sensor Interface == 371 371 372 -868.8 - FSK 373 373 318 +=== 2.4.1 Device ID === 374 374 375 - (% style="color:#037691"%)**Downlink:**320 +By default, the Device ID equal to the last 6 bytes of IMEI. 376 376 377 -U plinkchannels1-9(RX1)322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 378 378 379 - 869.525 - SF9BW125 (RX2 downlink only)324 +**Example:** 380 380 326 +AT+DEUI=A84041F15612 381 381 328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 382 382 383 -=== 2.7.2 US902-928(US915) === 384 384 385 -Used in USA, Canada and South America. Default use CHE=2 386 386 387 - (%style="color:#037691" %)**Uplink:**332 +=== 2.4.2 Version Info === 388 388 389 - 903.9 -SF7BW125toSF10BW125334 +Specify the software version: 0x64=100, means firmware version 1.00. 390 390 391 - 904.1-SF7BW125toSF10BW125336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 392 392 393 -904.3 - SF7BW125 to SF10BW125 394 394 395 -904.5 - SF7BW125 to SF10BW125 396 396 397 - 904.7- SF7BW125toSF10BW125340 +=== 2.4.3 Battery Info === 398 398 399 -904.9 - SF7BW125 to SF10BW125 342 +((( 343 +Check the battery voltage for LSE01. 344 +))) 400 400 401 -905.1 - SF7BW125 to SF10BW125 346 +((( 347 +Ex1: 0x0B45 = 2885mV 348 +))) 402 402 403 -905.3 - SF7BW125 to SF10BW125 350 +((( 351 +Ex2: 0x0B49 = 2889mV 352 +))) 404 404 405 405 406 -(% style="color:#037691" %)**Downlink:** 407 407 408 - 923.3-SF7BW500toSF12BW500356 +=== 2.4.4 Signal Strength === 409 409 410 - 923.9-SF7BW500to SF12BW500358 +NB-IoT Network signal Strength. 411 411 412 - 924.5- SF7BW500toSF12BW500360 +**Ex1: 0x1d = 29** 413 413 414 - 925.1-SF7BW500toSF12BW500362 +(% style="color:blue" %)**0**(%%) -113dBm or less 415 415 416 - 925.7- SF7BW500toSF12BW500364 +(% style="color:blue" %)**1**(%%) -111dBm 417 417 418 - 926.3- SF7BW500to SF12BW500366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 419 419 420 - 926.9- SF7BW500toSF12BW500368 +(% style="color:blue" %)**31** (%%) -51dBm or greater 421 421 422 -9 27.5-SF7BW500toSF12BW500370 +(% style="color:blue" %)**99** (%%) Not known or not detectable 423 423 424 -923.3 - SF12BW500(RX2 downlink only) 425 425 426 426 374 +=== 2.4.5 Soil Moisture === 427 427 428 -=== 2.7.3 CN470-510 (CN470) === 376 +((( 377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 378 +))) 429 429 430 -Used in China, Default use CHE=1 380 +((( 381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 382 +))) 431 431 432 -(% style="color:#037691" %)**Uplink:** 384 +((( 385 + 386 +))) 433 433 434 -486.3 - SF7BW125 to SF12BW125 388 +((( 389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 390 +))) 435 435 436 -486.5 - SF7BW125 to SF12BW125 437 437 438 -486.7 - SF7BW125 to SF12BW125 439 439 440 -4 86.9-SF7BW125toSF12BW125394 +=== 2.4.6 Soil Temperature === 441 441 442 -487.1 - SF7BW125 to SF12BW125 396 +((( 397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 398 +))) 443 443 444 -487.3 - SF7BW125 to SF12BW125 400 +((( 401 +**Example**: 402 +))) 445 445 446 -487.5 - SF7BW125 to SF12BW125 404 +((( 405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 406 +))) 447 447 448 -487.7 - SF7BW125 to SF12BW125 408 +((( 409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 410 +))) 449 449 450 450 451 -(% style="color:#037691" %)**Downlink:** 452 452 453 - 506.7-SF7BW125toSF12BW125414 +=== 2.4.7 Soil Conductivity (EC) === 454 454 455 -506.9 - SF7BW125 to SF12BW125 416 +((( 417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 418 +))) 456 456 457 -507.1 - SF7BW125 to SF12BW125 420 +((( 421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 422 +))) 458 458 459 -507.3 - SF7BW125 to SF12BW125 424 +((( 425 +Generally, the EC value of irrigation water is less than 800uS / cm. 426 +))) 460 460 461 -507.5 - SF7BW125 to SF12BW125 428 +((( 429 + 430 +))) 462 462 463 -507.7 - SF7BW125 to SF12BW125 432 +((( 433 + 434 +))) 464 464 465 - 507.9- SF7BW125toSF12BW125436 +=== 2.4.8 Digital Interrupt === 466 466 467 - 508.1-SF7BW125toSF12BW125438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 468 468 469 - 505.3- SF12BW125 (RX2 downlinkonly)440 +The command is: 470 470 442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 471 471 472 472 473 - ===2.7.4AU915-928(AU915)===445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 474 474 475 -Default use CHE=2 476 476 477 - (% style="color:#037691" %)**Uplink:**448 +Example: 478 478 479 - 916.8-SF7BW125to SF12BW125450 +0x(00): Normal uplink packet. 480 480 481 - 917.0- SF7BW125toSF12BW125452 +0x(01): Interrupt Uplink Packet. 482 482 483 -917.2 - SF7BW125 to SF12BW125 484 484 485 -917.4 - SF7BW125 to SF12BW125 486 486 487 - 917.6- SF7BW125 toSF12BW125456 +=== 2.4.9 +5V Output === 488 488 489 - 917.8-SF7BW125 toSF12BW125458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 490 490 491 -918.0 - SF7BW125 to SF12BW125 492 492 493 - 918.2- SF7BW125 toSF12BW125461 +The 5V output time can be controlled by AT Command. 494 494 463 +(% style="color:blue" %)**AT+5VT=1000** 495 495 496 - (%style="color:#037691"%)**Downlink:**465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 497 497 498 -923.3 - SF7BW500 to SF12BW500 499 499 500 -923.9 - SF7BW500 to SF12BW500 501 501 502 - 924.5-SF7BW500 toSF12BW500469 +== 2.5 Downlink Payload == 503 503 504 - 925.1-SF7BW500toSF12BW500471 +By default, NSE01 prints the downlink payload to console port. 505 505 506 - 925.7-SF7BW500 to SF12BW500473 +[[image:image-20220708133731-5.png]] 507 507 508 -926.3 - SF7BW500 to SF12BW500 509 509 510 -926.9 - SF7BW500 to SF12BW500 511 511 512 -927.5 - SF7BW500 to SF12BW500 477 +((( 478 +(% style="color:blue" %)**Examples:** 479 +))) 513 513 514 -923.3 - SF12BW500(RX2 downlink only) 481 +((( 482 + 483 +))) 515 515 485 +* ((( 486 +(% style="color:blue" %)**Set TDC** 487 +))) 516 516 489 +((( 490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 491 +))) 517 517 518 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 493 +((( 494 +Payload: 01 00 00 1E TDC=30S 495 +))) 519 519 520 -(% style="color:#037691" %)**Default Uplink channel:** 497 +((( 498 +Payload: 01 00 00 3C TDC=60S 499 +))) 521 521 522 -923.2 - SF7BW125 to SF10BW125 501 +((( 502 + 503 +))) 523 523 524 -923.4 - SF7BW125 to SF10BW125 505 +* ((( 506 +(% style="color:blue" %)**Reset** 507 +))) 525 525 509 +((( 510 +If payload = 0x04FF, it will reset the NSE01 511 +))) 526 526 527 -(% style="color:#037691" %)**Additional Uplink Channel**: 528 528 529 -( OTAAmode,channeladded by JoinAcceptmessage)514 +* (% style="color:blue" %)**INTMOD** 530 530 531 - (%style="color:#037691" %)**AS920~~AS923for Japan,Malaysia,Singapore**:516 +Downlink Payload: 06000003, Set AT+INTMOD=3 532 532 533 -922.2 - SF7BW125 to SF10BW125 534 534 535 -922.4 - SF7BW125 to SF10BW125 536 536 537 - 922.6-SF7BW125toSF10BW125520 +== 2.6 LED Indicator == 538 538 539 -922.8 - SF7BW125 to SF10BW125 522 +((( 523 +The NSE01 has an internal LED which is to show the status of different state. 540 540 541 -923.0 - SF7BW125 to SF10BW125 542 542 543 -922.0 - SF7BW125 to SF10BW125 526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 527 +* Then the LED will be on for 1 second means device is boot normally. 528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 529 +* For each uplink probe, LED will be on for 500ms. 530 +))) 544 544 545 545 546 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 547 547 548 -923.6 - SF7BW125 to SF10BW125 549 549 550 - 923.8 - SF7BW125to SF10BW125535 +== 2.7 Installation in Soil == 551 551 552 - 924.0- SF7BW125toSF10BW125537 +__**Measurement the soil surface**__ 553 553 554 - 924.2-SF7BW125SF10BW125539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 555 555 556 - 924.4 - SF7BW125to SF10BW125541 +[[image:1657259653666-883.png]] 557 557 558 -924.6 - SF7BW125 to SF10BW125 559 559 544 +((( 545 + 560 560 561 -(% style="color:#037691" %)** Downlink:** 547 +((( 548 +Dig a hole with diameter > 20CM. 549 +))) 562 562 563 -Uplink channels 1-8 (RX1) 551 +((( 552 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 553 +))) 554 +))) 564 564 565 -9 23.2-SF10BW125 (RX2)556 +[[image:1654506665940-119.png]] 566 566 558 +((( 559 + 560 +))) 567 567 568 568 569 -== =2.7.6KR920-923(KR920)===563 +== 2.8 Firmware Change Log == 570 570 571 -Default channel: 572 572 573 - 922.1-SF7BW125toSF12BW125566 +Download URL & Firmware Change log 574 574 575 - 922.3-F7BW125toSF12BW125568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 576 576 577 -922.5 - SF7BW125 to SF12BW125 578 578 571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 579 579 580 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 581 581 582 -922.1 - SF7BW125 to SF12BW125 583 583 584 - 922.3- SF7BW125toSF12BW125575 +== 2.9 Battery Analysis == 585 585 586 - 922.5 - SF7BW125toSF12BW125577 +=== 2.9.1 Battery Type === 587 587 588 -922.7 - SF7BW125 to SF12BW125 589 589 590 - 922.9-SF7BW125to SF12BW125580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 591 591 592 -923.1 - SF7BW125 to SF12BW125 593 593 594 - 923.3-SF7BW125toSF12BW125583 +The battery is designed to last for several years depends on the actually use environment and update interval. 595 595 596 596 597 - (%style="color:#037691"%)**Downlink:**586 +The battery related documents as below: 598 598 599 -Uplink channels 1-7(RX1) 588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 600 600 601 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 602 - 603 - 604 - 605 -=== 2.7.7 IN865-867 (IN865) === 606 - 607 -(% style="color:#037691" %)** Uplink:** 608 - 609 -865.0625 - SF7BW125 to SF12BW125 610 - 611 -865.4025 - SF7BW125 to SF12BW125 612 - 613 -865.9850 - SF7BW125 to SF12BW125 614 - 615 - 616 -(% style="color:#037691" %) **Downlink:** 617 - 618 -Uplink channels 1-3 (RX1) 619 - 620 -866.550 - SF10BW125 (RX2) 621 - 622 - 623 - 624 - 625 -== 2.8 LED Indicator == 626 - 627 -The LSE01 has an internal LED which is to show the status of different state. 628 - 629 -* Blink once when device power on. 630 -* Solid ON for 5 seconds once device successful Join the network. 631 -* Blink once when device transmit a packet. 632 - 633 -== 2.9 Installation in Soil == 634 - 635 -**Measurement the soil surface** 636 - 637 - 638 -[[image:1654506634463-199.png]] 639 - 640 640 ((( 641 -((( 642 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 593 +[[image:image-20220708140453-6.png]] 643 643 ))) 644 -))) 645 645 646 646 647 -[[image:1654506665940-119.png]] 648 648 649 -((( 650 -Dig a hole with diameter > 20CM. 651 -))) 598 +=== 2.9.2 Power consumption Analyze === 652 652 653 653 ((( 654 - Horizontalinsertthe probeto the soil andfill the holefor longtermmeasurement.601 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 655 655 ))) 656 656 657 657 658 -== 2.10 Firmware Change Log == 659 - 660 660 ((( 661 - **Firmware downloadlink:**606 +Instruction to use as below: 662 662 ))) 663 663 664 664 ((( 665 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/ LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]610 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 666 666 ))) 667 667 668 -((( 669 - 670 -))) 671 671 672 672 ((( 673 - **FirmwareUpgradeMethod: **[[FirmwareUpgradeInstruction>>doc:Main.FirmwareUpgradeInstruction for STM32 baseproducts.WebHome]]615 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 674 674 ))) 675 675 676 -((( 677 - 618 +* ((( 619 +Product Model 678 678 ))) 679 - 680 -((( 681 -**V1.0.** 621 +* ((( 622 +Uplink Interval 682 682 ))) 624 +* ((( 625 +Working Mode 626 +))) 683 683 684 684 ((( 685 - Release629 +And the Life expectation in difference case will be shown on the right. 686 686 ))) 687 687 632 +[[image:image-20220708141352-7.jpeg]] 688 688 689 -== 2.11 Battery Analysis == 690 690 691 -=== 2.11.1 Battery Type === 692 692 693 -((( 694 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 695 -))) 636 +=== 2.9.3 Battery Note === 696 696 697 697 ((( 698 -The battery is designed to last for more than5 yearsfor theLSN50.639 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 699 699 ))) 700 700 701 -((( 702 -((( 703 -The battery-related documents are as below: 704 -))) 705 -))) 706 706 707 -* ((( 708 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 709 -))) 710 -* ((( 711 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 712 -))) 713 -* ((( 714 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 715 -))) 716 716 717 - [[image:image-20220606171726-9.png]]644 +=== 2.9.4 Replace the battery === 718 718 719 - 720 - 721 -=== 2.11.2 Battery Note === 722 - 723 723 ((( 724 -The Li-SICObatteryisdesigned forsmallcurrent/longperiodapplication. Itis notgood to use ahigh current,shortperiodtransmitmethod. Therecommendedminimum periodfor use ofthisbatteryis5minutes.If you useahorterperiodtimeto transmitLoRa, then the battery lifemaybe decreased.647 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 725 725 ))) 726 726 727 727 728 728 729 -= ==2.11.3Replacethebattery===652 += 3. Access NB-IoT Module = 730 730 731 731 ((( 732 - If Battery islower than2.7v, user shouldplace thebatteryofLSE01.655 +Users can directly access the AT command set of the NB-IoT module. 733 733 ))) 734 734 735 735 ((( 736 - Youcan changethebatteryintheLSE01.Thetypeofbattery is notlimitedaslongas the outputisbetween3v to3.6v. On themainboard, there isa diode(D1) between the battery andthe main circuit. If you needo usea battery with lessthan 3.3v, pleaseremovethe D1 andshortcut thetwopadsofit sothere won’t be voltageop between battery andmain board.659 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 737 737 ))) 738 738 739 -((( 740 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 741 -))) 662 +[[image:1657261119050-993.png]] 742 742 664 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.jpg]] 743 743 744 744 745 -= 3. Using the AT Commands = 746 746 747 747 == 3.1 Access AT Commands == 748 748 ... ... @@ -765,7 +765,7 @@ 765 765 [[image:1654502050864-459.png||height="564" width="806"]] 766 766 767 767 768 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>> url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]689 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 769 769 770 770 771 771 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> ... ... @@ -877,20 +877,38 @@ 877 877 878 878 == 4.1 How to change the LoRa Frequency Bands/Region? == 879 879 801 +((( 880 880 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 881 881 When downloading the images, choose the required image file for download. 804 +))) 882 882 806 +((( 807 + 808 +))) 883 883 810 +((( 884 884 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 812 +))) 885 885 814 +((( 815 + 816 +))) 886 886 818 +((( 887 887 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 820 +))) 888 888 822 +((( 823 + 824 +))) 889 889 826 +((( 890 890 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 828 +))) 891 891 892 892 [[image:image-20220606154726-3.png]] 893 893 832 + 894 894 When you use the TTN network, the US915 frequency bands use are: 895 895 896 896 * 903.9 - SF7BW125 to SF10BW125 ... ... @@ -903,38 +903,46 @@ 903 903 * 905.3 - SF7BW125 to SF10BW125 904 904 * 904.6 - SF8BW500 905 905 845 +((( 906 906 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 907 907 908 -(% class="box infomessage" %) 909 -((( 910 -**AT+CHE=2** 848 +* (% style="color:#037691" %)**AT+CHE=2** 849 +* (% style="color:#037691" %)**ATZ** 911 911 ))) 912 912 913 -(% class="box infomessage" %) 914 914 ((( 915 -**ATZ** 916 -))) 853 + 917 917 918 918 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 856 +))) 919 919 858 +((( 859 + 860 +))) 920 920 862 +((( 921 921 The **AU915** band is similar. Below are the AU915 Uplink Channels. 864 +))) 922 922 923 923 [[image:image-20220606154825-4.png]] 924 924 925 925 869 +== 4.2 Can I calibrate LSE01 to different soil types? == 926 926 871 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 872 + 873 + 927 927 = 5. Trouble Shooting = 928 928 929 -== 5.1 Why I can ’t join TTN in US915 / AU915 bands? ==876 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 930 930 931 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. LoRaWANCommunication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.878 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 932 932 933 933 934 -== 5.2 AT Command input doesn ’t work ==881 +== 5.2 AT Command input doesn't work == 935 935 936 936 ((( 937 -In the case if user can see the console output but can ’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.884 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 938 938 ))) 939 939 940 940 ... ... @@ -956,7 +956,7 @@ 956 956 957 957 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 958 958 959 -[[image:1654500929571-736.png]] 906 +[[image:1654500929571-736.png||height="458" width="832"]] 960 960 961 961 962 962 = 6. Order Info = ... ... @@ -989,7 +989,9 @@ 989 989 = 7. Packing Info = 990 990 991 991 ((( 992 -**Package Includes**: 939 + 940 + 941 +(% style="color:#037691" %)**Package Includes**: 993 993 ))) 994 994 995 995 * ((( ... ... @@ -998,10 +998,8 @@ 998 998 999 999 ((( 1000 1000 1001 -))) 1002 1002 1003 -((( 1004 -**Dimension and weight**: 951 +(% style="color:#037691" %)**Dimension and weight**: 1005 1005 ))) 1006 1006 1007 1007 * ((( ... ... @@ -1016,7 +1016,6 @@ 1016 1016 * ((( 1017 1017 Weight / pcs : g 1018 1018 1019 - 1020 1020 1021 1021 ))) 1022 1022 ... ... @@ -1024,5 +1024,3 @@ 1024 1024 1025 1025 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1026 1026 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1027 - 1028 -
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content