Last modified by Mengting Qiu on 2024/04/02 16:44

From version 31.3
edited by Xiaoling
on 2022/06/06 17:22
Change comment: There is no comment for this version
To version 65.2
edited by Xiaoling
on 2022/07/08 15:03
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="848" width="848"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
... ... @@ -8,689 +8,641 @@
8 8  
9 9  
10 10  
11 -= 1. Introduction =
12 12  
13 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 14  
15 -(((
16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 -)))
18 18  
19 -(((
20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
21 -)))
14 +**Table of Contents:**
22 22  
23 -(((
24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
25 -)))
26 26  
27 -(((
28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
29 -)))
30 30  
18 +
19 +
20 +
21 += 1.  Introduction =
22 +
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 +
31 31  (((
32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 -)))
26 +
34 34  
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
35 35  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
36 +
37 +)))
38 +
36 36  [[image:1654503236291-817.png]]
37 37  
38 38  
39 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
40 40  
41 41  
42 42  
43 43  == 1.2 ​Features ==
44 44  
45 -* LoRaWAN 1.0.3 Class A
46 -* Ultra low power consumption
48 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
47 47  * Monitor Soil Moisture
48 48  * Monitor Soil Temperature
49 49  * Monitor Soil Conductivity
50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 51  * AT Commands to change parameters
52 52  * Uplink on periodically
53 53  * Downlink to change configure
54 54  * IP66 Waterproof Enclosure
55 -* 4000mAh or 8500mAh Battery for long term use
56 +* Ultra-Low Power consumption
57 +* AT Commands to change parameters
58 +* Micro SIM card slot for NB-IoT SIM
59 +* 8500mAh Battery for long term use
56 56  
57 -== 1.3 Specification ==
58 58  
59 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
60 60  
61 -[[image:image-20220606162220-5.png]]
62 62  
64 +== 1.3  Specification ==
63 63  
64 64  
65 -== ​1.4 Applications ==
67 +(% style="color:#037691" %)**Common DC Characteristics:**
66 66  
67 -* Smart Agriculture
69 +* Supply Voltage: 2.1v ~~ 3.6v
70 +* Operating Temperature: -40 ~~ 85°C
68 68  
69 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
70 -​
71 71  
72 -== 1.5 Firmware Change log ==
73 73  
74 +(% style="color:#037691" %)**NB-IoT Spec:**
74 74  
75 -**LSE01 v1.0 :**  Release
76 +* - B1 @H-FDD: 2100MHz
77 +* - B3 @H-FDD: 1800MHz
78 +* - B8 @H-FDD: 900MHz
79 +* - B5 @H-FDD: 850MHz
80 +* - B20 @H-FDD: 800MHz
81 +* - B28 @H-FDD: 700MHz
76 76  
77 77  
78 78  
79 -= 2. Configure LSE01 to connect to LoRaWAN network =
85 +Probe(% style="color:#037691" %)** Specification:**
80 80  
81 -== 2.1 How it works ==
87 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
82 82  
83 -(((
84 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
85 -)))
89 +[[image:image-20220708101224-1.png]]
86 86  
87 -(((
88 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
89 -)))
90 90  
91 91  
93 +== ​1.4  Applications ==
92 92  
93 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
95 +* Smart Agriculture
94 94  
95 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
97 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
98 +​
96 96  
100 +== 1.5  Pin Definitions ==
97 97  
98 -[[image:1654503992078-669.png]]
99 99  
103 +[[image:1657246476176-652.png]]
100 100  
101 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
102 102  
103 103  
104 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
107 += 2.  Use NSE01 to communicate with IoT Server =
105 105  
106 -Each LSE01 is shipped with a sticker with the default device EUI as below:
109 +== 2.1  How it works ==
107 107  
108 -[[image:image-20220606163732-6.jpeg]]
109 109  
110 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
112 +(((
113 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
114 +)))
111 111  
112 -**Add APP EUI in the application**
113 113  
117 +(((
118 +The diagram below shows the working flow in default firmware of NSE01:
119 +)))
114 114  
115 -[[image:1654504596150-405.png]]
121 +[[image:image-20220708101605-2.png]]
116 116  
117 -
118 -
119 -**Add APP KEY and DEV EUI**
120 -
121 -[[image:1654504683289-357.png]]
122 -
123 -
124 -
125 -**Step 2**: Power on LSE01
126 -
127 -
128 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
129 -
130 -[[image:image-20220606163915-7.png]]
131 -
132 -
133 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
134 -
135 -[[image:1654504778294-788.png]]
136 -
137 -
138 -
139 -== 2.3 Uplink Payload ==
140 -
141 -=== 2.3.1 MOD~=0(Default Mode) ===
142 -
143 -LSE01 will uplink payload via LoRaWAN with below payload format: 
144 -
145 -
146 -Uplink payload includes in total 11 bytes.
123 +(((
147 147  
148 -
149 -|(((
150 -**Size**
151 -
152 -**(bytes)**
153 -)))|**2**|**2**|**2**|**2**|**2**|**1**
154 -|**Value**|[[BAT>>path:#bat]]|(((
155 -Temperature
156 -
157 -(Reserve, Ignore now)
158 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
159 -MOD & Digital Interrupt
160 -
161 -(Optional)
162 162  )))
163 163  
164 -[[image:1654504881641-514.png]]
165 165  
166 166  
129 +== 2.2 ​ Configure the NSE01 ==
167 167  
168 -=== 2.3.2 MOD~=1(Original value) ===
169 169  
170 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
132 +=== 2.2.1 Test Requirement ===
171 171  
172 -|(((
173 -**Size**
174 174  
175 -**(bytes)**
176 -)))|**2**|**2**|**2**|**2**|**2**|**1**
177 -|**Value**|[[BAT>>path:#bat]]|(((
178 -Temperature
135 +To use NSE01 in your city, make sure meet below requirements:
179 179  
180 -(Reserve, Ignore now)
181 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
182 -MOD & Digital Interrupt
137 +* Your local operator has already distributed a NB-IoT Network there.
138 +* The local NB-IoT network used the band that NSE01 supports.
139 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
183 183  
184 -(Optional)
141 +(((
142 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
185 185  )))
186 186  
187 -[[image:1654504907647-967.png]]
188 188  
146 +[[image:1657249419225-449.png]]
189 189  
190 190  
191 -=== 2.3.3 Battery Info ===
192 192  
193 -Check the battery voltage for LSE01.
150 +=== 2.2.2 Insert SIM card ===
194 194  
195 -Ex1: 0x0B45 = 2885mV
152 +Insert the NB-IoT Card get from your provider.
196 196  
197 -Ex2: 0x0B49 = 2889mV
154 +User need to take out the NB-IoT module and insert the SIM card like below:
198 198  
199 199  
157 +[[image:1657249468462-536.png]]
200 200  
201 -=== 2.3.4 Soil Moisture ===
202 202  
203 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
204 204  
205 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
161 +=== 2.2.3 Connect USB TTL to NSE01 to configure it ===
206 206  
207 -
208 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
209 -
210 -
211 -
212 -=== 2.3.5 Soil Temperature ===
213 -
214 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
215 -
216 -**Example**:
217 -
218 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
219 -
220 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
221 -
222 -
223 -
224 -=== 2.3.6 Soil Conductivity (EC) ===
225 -
226 226  (((
227 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
228 -)))
229 -
230 230  (((
231 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
165 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
232 232  )))
233 -
234 -(((
235 -Generally, the EC value of irrigation water is less than 800uS / cm.
236 236  )))
237 237  
238 -(((
239 -
240 -)))
241 241  
242 -(((
243 -
244 -)))
170 +**Connection:**
245 245  
246 -=== 2.3.7 MOD ===
172 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
247 247  
248 -Firmware version at least v2.1 supports changing mode.
174 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
249 249  
250 -For example, bytes[10]=90
176 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
251 251  
252 -mod=(bytes[10]>>7)&0x01=1.
253 253  
179 +In the PC, use below serial tool settings:
254 254  
255 -Downlink Command:
181 +* Baud:  (% style="color:green" %)**9600**
182 +* Data bits:** (% style="color:green" %)8(%%)**
183 +* Stop bits: (% style="color:green" %)**1**
184 +* Parity:  (% style="color:green" %)**None**
185 +* Flow Control: (% style="color:green" %)**None**
256 256  
257 -If payload = 0x0A00, workmode=0
187 +(((
188 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
189 +)))
258 258  
259 -If** **payload =** **0x0A01, workmode=1
191 +[[image:image-20220708110657-3.png]]
260 260  
193 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
261 261  
262 262  
263 -=== 2.3.8 ​Decode payload in The Things Network ===
264 264  
265 -While using TTN network, you can add the payload format to decode the payload.
197 +=== 2.2.4 Use CoAP protocol to uplink data ===
266 266  
199 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
267 267  
268 -[[image:1654505570700-128.png]]
269 269  
270 -The payload decoder function for TTN is here:
202 +**Use below commands:**
271 271  
272 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
204 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
205 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
206 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
273 273  
208 +For parameter description, please refer to AT command set
274 274  
275 -== 2.4 Uplink Interval ==
210 +[[image:1657249793983-486.png]]
276 276  
277 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
278 278  
279 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
213 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
280 280  
215 +[[image:1657249831934-534.png]]
281 281  
282 282  
283 -== 2.5 Downlink Payload ==
284 284  
285 -By default, LSE50 prints the downlink payload to console port.
219 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
286 286  
287 -[[image:image-20220606165544-8.png]]
221 +This feature is supported since firmware version v1.0.1
288 288  
289 289  
290 -**Examples:**
224 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
225 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
226 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
291 291  
228 +[[image:1657249864775-321.png]]
292 292  
293 -* **Set TDC**
294 294  
295 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
231 +[[image:1657249930215-289.png]]
296 296  
297 -Payload:    01 00 00 1E    TDC=30S
298 298  
299 -Payload:    01 00 00 3C    TDC=60S
300 300  
235 +=== 2.2.6 Use MQTT protocol to uplink data ===
301 301  
302 -* **Reset**
237 +This feature is supported since firmware version v110
303 303  
304 -If payload = 0x04FF, it will reset the LSE01
305 305  
240 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
241 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
242 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
243 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
244 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
245 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
246 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
306 306  
307 -* **CFM**
248 +[[image:1657249978444-674.png]]
308 308  
309 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
310 310  
251 +[[image:1657249990869-686.png]]
311 311  
312 312  
313 -== 2.6 ​Show Data in DataCake IoT Server ==
254 +(((
255 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
256 +)))
314 314  
315 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
316 316  
317 317  
318 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
260 +=== 2.2.7 Use TCP protocol to uplink data ===
319 319  
320 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
262 +This feature is supported since firmware version v110
321 321  
322 322  
323 -[[image:1654505857935-743.png]]
265 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
266 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
324 324  
268 +[[image:1657250217799-140.png]]
325 325  
326 -[[image:1654505874829-548.png]]
327 327  
328 -Step 3: Create an account or log in Datacake.
271 +[[image:1657250255956-604.png]]
329 329  
330 -Step 4: Search the LSE01 and add DevEUI.
331 331  
332 332  
333 -[[image:1654505905236-553.png]]
275 +=== 2.2.8 Change Update Interval ===
334 334  
277 +User can use below command to change the (% style="color:green" %)**uplink interval**.
335 335  
336 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
279 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
337 337  
338 -[[image:1654505925508-181.png]]
281 +(((
282 +(% style="color:red" %)**NOTE:**
283 +)))
339 339  
285 +(((
286 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
287 +)))
340 340  
341 341  
342 -== 2.7 Frequency Plans ==
343 343  
344 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
291 +== 2.3  Uplink Payload ==
345 345  
293 +In this mode, uplink payload includes in total 18 bytes
346 346  
347 -=== 2.7.1 EU863-870 (EU868) ===
295 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
296 +|=(% style="width: 50px;" %)(((
297 +**Size(bytes)**
298 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
299 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
348 348  
349 -(% style="color:#037691" %)** Uplink:**
301 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
350 350  
351 -868.1 - SF7BW125 to SF12BW125
352 352  
353 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
304 +[[image:image-20220708111918-4.png]]
354 354  
355 -868.5 - SF7BW125 to SF12BW125
356 356  
357 -867.1 - SF7BW125 to SF12BW125
307 +The payload is ASCII string, representative same HEX:
358 358  
359 -867.3 - SF7BW125 to SF12BW125
309 +0x72403155615900640c7817075e0a8c02f900 where:
360 360  
361 -867.5 - SF7BW125 to SF12BW125
311 +* Device ID: 0x 724031556159 = 724031556159
312 +* Version: 0x0064=100=1.0.0
362 362  
363 -867.7 - SF7BW125 to SF12BW125
314 +* BAT: 0x0c78 = 3192 mV = 3.192V
315 +* Singal: 0x17 = 23
316 +* Soil Moisture: 0x075e= 1886 = 18.86  %
317 +* Soil Temperature:0x0a8c =2700=27 °C
318 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
319 +* Interrupt: 0x00 = 0
364 364  
365 -867.9 - SF7BW125 to SF12BW125
366 366  
367 -868.8 - FSK
368 368  
369 369  
370 -(% style="color:#037691" %)** Downlink:**
324 +== 2.4  Payload Explanation and Sensor Interface ==
371 371  
372 -Uplink channels 1-9 (RX1)
373 373  
374 -869.525 - SF9BW125 (RX2 downlink only)
327 +=== 2.4.1  Device ID ===
375 375  
329 +By default, the Device ID equal to the last 6 bytes of IMEI.
376 376  
331 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
377 377  
378 -=== 2.7.2 US902-928(US915) ===
333 +**Example:**
379 379  
380 -Used in USA, Canada and South America. Default use CHE=2
335 +AT+DEUI=A84041F15612
381 381  
382 -(% style="color:#037691" %)**Uplink:**
337 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
383 383  
384 -903.9 - SF7BW125 to SF10BW125
385 385  
386 -904.1 - SF7BW125 to SF10BW125
387 387  
388 -904.3 - SF7BW125 to SF10BW125
341 +=== 2.4.2  Version Info ===
389 389  
390 -904.5 - SF7BW125 to SF10BW125
343 +Specify the software version: 0x64=100, means firmware version 1.00.
391 391  
392 -904.7 - SF7BW125 to SF10BW125
345 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
393 393  
394 -904.9 - SF7BW125 to SF10BW125
395 395  
396 -905.1 - SF7BW125 to SF10BW125
397 397  
398 -905.3 - SF7BW125 to SF10BW125
349 +=== 2.4.3  Battery Info ===
399 399  
351 +(((
352 +Check the battery voltage for LSE01.
353 +)))
400 400  
401 -(% style="color:#037691" %)**Downlink:**
355 +(((
356 +Ex1: 0x0B45 = 2885mV
357 +)))
402 402  
403 -923.3 - SF7BW500 to SF12BW500
359 +(((
360 +Ex2: 0x0B49 = 2889mV
361 +)))
404 404  
405 -923.9 - SF7BW500 to SF12BW500
406 406  
407 -924.5 - SF7BW500 to SF12BW500
408 408  
409 -925.1 - SF7BW500 to SF12BW500
365 +=== 2.4.4  Signal Strength ===
410 410  
411 -925.7 - SF7BW500 to SF12BW500
367 +NB-IoT Network signal Strength.
412 412  
413 -926.3 - SF7BW500 to SF12BW500
369 +**Ex1: 0x1d = 29**
414 414  
415 -926.9 - SF7BW500 to SF12BW500
371 +(% style="color:blue" %)**0**(%%)  -113dBm or less
416 416  
417 -927.5 - SF7BW500 to SF12BW500
373 +(% style="color:blue" %)**1**(%%)  -111dBm
418 418  
419 -923.3 - SF12BW500(RX2 downlink only)
375 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
420 420  
377 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
421 421  
379 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
422 422  
423 -=== 2.7.3 CN470-510 (CN470) ===
424 424  
425 -Used in China, Default use CHE=1
426 426  
427 -(% style="color:#037691" %)**Uplink:**
383 +=== 2.4.5  Soil Moisture ===
428 428  
429 -486.3 - SF7BW125 to SF12BW125
385 +(((
386 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
387 +)))
430 430  
431 -486.5 - SF7BW125 to SF12BW125
389 +(((
390 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
391 +)))
432 432  
433 -486.7 - SF7BW125 to SF12BW125
393 +(((
394 +
395 +)))
434 434  
435 -486.9 - SF7BW125 to SF12BW125
397 +(((
398 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
399 +)))
436 436  
437 -487.1 - SF7BW125 to SF12BW125
438 438  
439 -487.3 - SF7BW125 to SF12BW125
440 440  
441 -487.5 - SF7BW125 to SF12BW125
403 +=== 2.4. Soil Temperature ===
442 442  
443 -487.7 - SF7BW125 to SF12BW125
405 +(((
406 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
407 +)))
444 444  
409 +(((
410 +**Example**:
411 +)))
445 445  
446 -(% style="color:#037691" %)**Downlink:**
413 +(((
414 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
415 +)))
447 447  
448 -506.7 - SF7BW125 to SF12BW125
417 +(((
418 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
419 +)))
449 449  
450 -506.9 - SF7BW125 to SF12BW125
451 451  
452 -507.1 - SF7BW125 to SF12BW125
453 453  
454 -507.3 - SF7BW125 to SF12BW125
423 +=== 2.4.7  Soil Conductivity (EC) ===
455 455  
456 -507.5 - SF7BW125 to SF12BW125
425 +(((
426 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
427 +)))
457 457  
458 -507.7 - SF7BW125 to SF12BW125
429 +(((
430 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
431 +)))
459 459  
460 -507.9 - SF7BW125 to SF12BW125
433 +(((
434 +Generally, the EC value of irrigation water is less than 800uS / cm.
435 +)))
461 461  
462 -508.1 - SF7BW125 to SF12BW125
437 +(((
438 +
439 +)))
463 463  
464 -505.3 - SF12BW125 (RX2 downlink only)
441 +(((
442 +
443 +)))
465 465  
445 +=== 2.4.8  Digital Interrupt ===
466 466  
447 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
467 467  
468 -=== 2.7.4 AU915-928(AU915) ===
449 +The command is:
469 469  
470 -Default use CHE=2
451 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
471 471  
472 -(% style="color:#037691" %)**Uplink:**
473 473  
474 -916.8 - SF7BW125 to SF12BW125
454 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
475 475  
476 -917.0 - SF7BW125 to SF12BW125
477 477  
478 -917.2 - SF7BW125 to SF12BW125
457 +Example:
479 479  
480 -917.4 - SF7BW125 to SF12BW125
459 +0x(00): Normal uplink packet.
481 481  
482 -917.6 - SF7BW125 to SF12BW125
461 +0x(01): Interrupt Uplink Packet.
483 483  
484 -917.8 - SF7BW125 to SF12BW125
485 485  
486 -918.0 - SF7BW125 to SF12BW125
487 487  
488 -918.2 - SF7BW125 to SF12BW125
465 +=== 2.4.9  ​+5V Output ===
489 489  
467 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
490 490  
491 -(% style="color:#037691" %)**Downlink:**
492 492  
493 -923.3 - SF7BW500 to SF12BW500
470 +The 5V output time can be controlled by AT Command.
494 494  
495 -923.9 - SF7BW500 to SF12BW500
472 +(% style="color:blue" %)**AT+5VT=1000**
496 496  
497 -924.5 - SF7BW500 to SF12BW500
474 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
498 498  
499 -925.1 - SF7BW500 to SF12BW500
500 500  
501 -925.7 - SF7BW500 to SF12BW500
502 502  
503 -926.3 - SF7BW500 to SF12BW500
478 +== 2.5  Downlink Payload ==
504 504  
505 -926.9 - SF7BW500 to SF12BW500
480 +By default, NSE01 prints the downlink payload to console port.
506 506  
507 -927.5 - SF7BW500 to SF12BW500
482 +[[image:image-20220708133731-5.png]]
508 508  
509 -923.3 - SF12BW500(RX2 downlink only)
510 510  
485 +(((
486 +(% style="color:blue" %)**Examples:**
487 +)))
511 511  
489 +(((
490 +
491 +)))
512 512  
513 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
493 +* (((
494 +(% style="color:blue" %)**Set TDC**
495 +)))
514 514  
515 -(% style="color:#037691" %)**Default Uplink channel:**
497 +(((
498 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
499 +)))
516 516  
517 -923.2 - SF7BW125 to SF10BW125
501 +(((
502 +Payload:    01 00 00 1E    TDC=30S
503 +)))
518 518  
519 -923.4 - SF7BW125 to SF10BW125
505 +(((
506 +Payload:    01 00 00 3C    TDC=60S
507 +)))
520 520  
509 +(((
510 +
511 +)))
521 521  
522 -(% style="color:#037691" %)**Additional Uplink Channel**:
513 +* (((
514 +(% style="color:blue" %)**Reset**
515 +)))
523 523  
524 -(OTAA mode, channel added by JoinAccept message)
517 +(((
518 +If payload = 0x04FF, it will reset the NSE01
519 +)))
525 525  
526 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
527 527  
528 -922.2 - SF7BW125 to SF10BW125
522 +* (% style="color:blue" %)**INTMOD**
529 529  
530 -922.4 - SF7BW125 to SF10BW125
524 +Downlink Payload: 06000003, Set AT+INTMOD=3
531 531  
532 -922.6 - SF7BW125 to SF10BW125
533 533  
534 -922.8 - SF7BW125 to SF10BW125
535 535  
536 -923.0 - SF7BW125 to SF10BW125
528 +== 2. ​LED Indicator ==
537 537  
538 -922.0 - SF7BW125 to SF10BW125
530 +(((
531 +The NSE01 has an internal LED which is to show the status of different state.
539 539  
540 540  
541 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
534 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
535 +* Then the LED will be on for 1 second means device is boot normally.
536 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
537 +* For each uplink probe, LED will be on for 500ms.
538 +)))
542 542  
543 -923.6 - SF7BW125 to SF10BW125
544 544  
545 -923.8 - SF7BW125 to SF10BW125
546 546  
547 -924.0 - SF7BW125 to SF10BW125
548 548  
549 -924.2 - SF7BW125 to SF10BW125
543 +== 2.7  Installation in Soil ==
550 550  
551 -924.4 - SF7BW125 to SF10BW125
545 +__**Measurement the soil surface**__
552 552  
553 -924.6 - SF7BW125 to SF10BW125
547 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
554 554  
549 +[[image:1657259653666-883.png]] ​
555 555  
556 -(% style="color:#037691" %)** Downlink:**
557 557  
558 -Uplink channels 1-8 (RX1)
552 +(((
553 +
559 559  
560 -923.2 - SF10BW125 (RX2)
555 +(((
556 +Dig a hole with diameter > 20CM.
557 +)))
561 561  
559 +(((
560 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
561 +)))
562 +)))
562 562  
564 +[[image:1654506665940-119.png]]
563 563  
564 -=== 2.7.6 KR920-923 (KR920) ===
566 +(((
567 +
568 +)))
565 565  
566 -Default channel:
567 567  
568 -922.1 - SF7BW125 to SF12BW125
571 +== 2. Firmware Change Log ==
569 569  
570 -922.3 - SF7BW125 to SF12BW125
571 571  
572 -922.5 - SF7BW125 to SF12BW125
574 +Download URL & Firmware Change log
573 573  
576 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
574 574  
575 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
576 576  
577 -922.1 - SF7BW125 to SF12BW125
579 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
578 578  
579 -922.3 - SF7BW125 to SF12BW125
580 580  
581 -922.5 - SF7BW125 to SF12BW125
582 582  
583 -922.7 - SF7BW125 to SF12BW125
583 +== 2. Battery Analysis ==
584 584  
585 -922.9 - SF7BW125 to SF12BW125
585 +=== 2.9.1  ​Battery Type ===
586 586  
587 -923.1 - SF7BW125 to SF12BW125
588 588  
589 -923.3 - SF7BW125 to SF12BW125
588 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
590 590  
591 591  
592 -(% style="color:#037691" %)**Downlink:**
591 +The battery is designed to last for several years depends on the actually use environment and update interval. 
593 593  
594 -Uplink channels 1-7(RX1)
595 595  
596 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
594 +The battery related documents as below:
597 597  
596 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
597 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
598 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
598 598  
600 +(((
601 +[[image:image-20220708140453-6.png]]
602 +)))
599 599  
600 -=== 2.7.7 IN865-867 (IN865) ===
601 601  
602 -(% style="color:#037691" %)** Uplink:**
603 603  
604 -865.0625 - SF7BW125 to SF12BW125
606 +=== 2.9.2  Power consumption Analyze ===
605 605  
606 -865.4025 - SF7BW125 to SF12BW125
608 +(((
609 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
610 +)))
607 607  
608 -865.9850 - SF7BW125 to SF12BW125
609 609  
613 +(((
614 +Instruction to use as below:
615 +)))
610 610  
611 -(% style="color:#037691" %) **Downlink:**
612 -
613 -Uplink channels 1-3 (RX1)
614 -
615 -866.550 - SF10BW125 (RX2)
616 -
617 -
618 -
619 -
620 -== 2.8 LED Indicator ==
621 -
622 -The LSE01 has an internal LED which is to show the status of different state.
623 -
624 -* Blink once when device power on.
625 -* Solid ON for 5 seconds once device successful Join the network.
626 -* Blink once when device transmit a packet.
627 -
628 -
629 -== 2.9 Installation in Soil ==
630 -
631 -**Measurement the soil surface**
632 -
633 -
634 -[[image:1654506634463-199.png]] ​
635 -
636 636  (((
637 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
618 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
638 638  )))
639 639  
640 640  
641 -
642 -[[image:1654506665940-119.png]]
643 -
644 -Dig a hole with diameter > 20CM.
645 -
646 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
647 -
648 -
649 -== 2.10 ​Firmware Change Log ==
650 -
651 -**Firmware download link:**
652 -
653 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
654 -
655 -
656 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
657 -
658 -
659 -**V1.0.**
660 -
661 -Release
662 -
663 -
664 -== 2.11 ​Battery Analysis ==
665 -
666 -=== 2.11.1 ​Battery Type ===
667 -
668 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
669 -
670 -
671 -The battery is designed to last for more than 5 years for the LSN50.
672 -
673 -
674 674  (((
675 -The battery-related documents are as below:
623 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
676 676  )))
677 677  
678 678  * (((
679 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
627 +Product Model
680 680  )))
681 681  * (((
682 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
630 +Uplink Interval
683 683  )))
684 684  * (((
685 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
633 +Working Mode
686 686  )))
687 687  
688 - [[image:image-20220606171726-9.png]]
636 +(((
637 +And the Life expectation in difference case will be shown on the right.
638 +)))
689 689  
640 +[[image:image-20220708141352-7.jpeg]]
690 690  
691 691  
692 -=== 2.11.2 ​Battery Note ===
693 693  
644 +=== 2.9.3  ​Battery Note ===
645 +
694 694  (((
695 695  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
696 696  )))
... ... @@ -697,294 +697,186 @@
697 697  
698 698  
699 699  
700 -=== 2.11.3 Replace the battery ===
652 +=== 2.9. Replace the battery ===
701 701  
702 702  (((
703 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
655 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
704 704  )))
705 705  
658 +
659 +
660 += 3. ​ Access NB-IoT Module =
661 +
706 706  (((
707 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
663 +Users can directly access the AT command set of the NB-IoT module.
708 708  )))
709 709  
710 710  (((
711 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
667 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
712 712  )))
713 713  
670 +[[image:1657261278785-153.png]]
714 714  
715 715  
716 716  
674 += 4.  Using the AT Commands =
717 717  
676 +== 4.1  Access AT Commands ==
718 718  
719 -= 3. ​Using the AT Commands =
678 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
720 720  
721 -== 3.1 Access AT Commands ==
722 722  
681 +AT+<CMD>?  : Help on <CMD>
723 723  
724 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
683 +AT+<CMD>         : Run <CMD>
725 725  
726 -[[image:1654501986557-872.png]]
685 +AT+<CMD>=<value> : Set the value
727 727  
687 +AT+<CMD>=?  : Get the value
728 728  
729 -Or if you have below board, use below connection:
730 730  
731 -
732 -[[image:1654502005655-729.png]]
733 -
734 -
735 -
736 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
737 -
738 -
739 - [[image:1654502050864-459.png]]
740 -
741 -
742 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
743 -
744 -
745 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
746 -
747 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
748 -
749 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
750 -
751 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
752 -
753 -
754 754  (% style="color:#037691" %)**General Commands**(%%)      
755 755  
756 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
692 +AT  : Attention       
757 757  
758 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
694 +AT?  : Short Help     
759 759  
760 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
696 +ATZ  : MCU Reset    
761 761  
762 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
698 +AT+TDC  : Application Data Transmission Interval
763 763  
700 +AT+CFG  : Print all configurations
764 764  
765 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
702 +AT+CFGMOD           : Working mode selection
766 766  
767 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
704 +AT+INTMOD            : Set the trigger interrupt mode
768 768  
769 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
706 +AT+5VT  : Set extend the time of 5V power  
770 770  
771 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
708 +AT+PRO  : Choose agreement
772 772  
773 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
710 +AT+WEIGRE  : Get weight or set weight to 0
774 774  
775 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
712 +AT+WEIGAP  : Get or Set the GapValue of weight
776 776  
777 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
714 +AT+RXDL  : Extend the sending and receiving time
778 778  
779 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
716 +AT+CNTFAC  : Get or set counting parameters
780 780  
781 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
718 +AT+SERVADDR  : Server Address
782 782  
783 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
784 784  
785 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
721 +(% style="color:#037691" %)**COAP Management**      
786 786  
787 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
723 +AT+URI            : Resource parameters
788 788  
789 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
790 790  
791 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
726 +(% style="color:#037691" %)**UDP Management**
792 792  
793 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
728 +AT+CFM          : Upload confirmation mode (only valid for UDP)
794 794  
795 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
796 796  
797 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
731 +(% style="color:#037691" %)**MQTT Management**
798 798  
733 +AT+CLIENT               : Get or Set MQTT client
799 799  
800 -(% style="color:#037691" %)**LoRa Network Management**
735 +AT+UNAME  : Get or Set MQTT Username
801 801  
802 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
737 +AT+PWD                  : Get or Set MQTT password
803 803  
804 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
739 +AT+PUBTOPI : Get or Set MQTT publish topic
805 805  
806 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
741 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
807 807  
808 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
809 809  
810 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
744 +(% style="color:#037691" %)**Information**          
811 811  
812 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
746 +AT+FDR  : Factory Data Reset
813 813  
814 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
748 +AT+PWOR : Serial Access Password
815 815  
816 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
817 817  
818 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
819 819  
820 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
752 += ​5.  FAQ =
821 821  
822 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
754 +== 5.1 How to Upgrade Firmware ==
823 823  
824 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
825 825  
826 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
757 +(((
758 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
759 +)))
827 827  
828 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
829 -
830 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
831 -
832 -
833 -(% style="color:#037691" %)**Information** 
834 -
835 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
836 -
837 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
838 -
839 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
840 -
841 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
842 -
843 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
844 -
845 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
846 -
847 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
848 -
849 -
850 -= ​4. FAQ =
851 -
852 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
853 -
854 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
855 -When downloading the images, choose the required image file for download. ​
856 -
857 -
858 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
859 -
860 -
861 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
862 -
863 -
864 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
865 -
866 -[[image:image-20220606154726-3.png]]
867 -
868 -When you use the TTN network, the US915 frequency bands use are:
869 -
870 -* 903.9 - SF7BW125 to SF10BW125
871 -* 904.1 - SF7BW125 to SF10BW125
872 -* 904.3 - SF7BW125 to SF10BW125
873 -* 904.5 - SF7BW125 to SF10BW125
874 -* 904.7 - SF7BW125 to SF10BW125
875 -* 904.9 - SF7BW125 to SF10BW125
876 -* 905.1 - SF7BW125 to SF10BW125
877 -* 905.3 - SF7BW125 to SF10BW125
878 -* 904.6 - SF8BW500
879 -
880 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
881 -
882 -(% class="box infomessage" %)
883 883  (((
884 -**AT+CHE=2**
762 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
885 885  )))
886 886  
887 -(% class="box infomessage" %)
888 888  (((
889 -**ATZ**
766 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
890 890  )))
891 891  
892 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
893 893  
894 894  
895 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
771 += 6.  Trouble Shooting =
896 896  
897 -[[image:image-20220606154825-4.png]]
773 +== 6.1  ​Connection problem when uploading firmware ==
898 898  
899 899  
776 +(% class="wikigeneratedid" %)
777 +(((
778 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
779 +)))
900 900  
901 -= 5. Trouble Shooting =
902 902  
903 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
904 904  
905 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
783 +== 6. AT Command input doesn't work ==
906 906  
785 +(((
786 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
787 +)))
907 907  
908 -== 5.2 AT Command input doesn’t work ==
909 909  
910 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
911 911  
791 += 7. ​ Order Info =
912 912  
913 -== 5.3 Device rejoin in at the second uplink packet ==
914 914  
915 -(% style="color:#4f81bd" %)**Issue describe as below:**
794 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
916 916  
917 -[[image:1654500909990-784.png]]
918 918  
797 +(% class="wikigeneratedid" %)
798 +(((
799 +
800 +)))
919 919  
920 -(% style="color:#4f81bd" %)**Cause for this issue:**
802 += 8 Packing Info =
921 921  
922 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
804 +(((
805 +
923 923  
807 +(% style="color:#037691" %)**Package Includes**:
924 924  
925 -(% style="color:#4f81bd" %)**Solution: **
926 926  
927 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
810 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
811 +* External antenna x 1
812 +)))
928 928  
929 -[[image:1654500929571-736.png]]
814 +(((
815 +
930 930  
817 +(% style="color:#037691" %)**Dimension and weight**:
931 931  
932 -= 6. ​Order Info =
933 933  
934 -
935 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
936 -
937 -
938 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
939 -
940 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
941 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
942 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
943 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
944 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
945 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
946 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
947 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
948 -
949 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
950 -
951 -* (% style="color:red" %)**4**(%%): 4000mAh battery
952 -* (% style="color:red" %)**8**(%%): 8500mAh battery
953 -
954 -= 7. Packing Info =
955 -
956 -(((
957 -**Package Includes**:
820 +* Size: 195 x 125 x 55 mm
821 +* Weight:   420g
958 958  )))
959 959  
960 -* (((
961 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
962 -)))
963 -
964 964  (((
965 965  
966 -)))
967 967  
968 -(((
969 -**Dimension and weight**:
970 -)))
971 971  
972 -* (((
973 -Device Size: cm
828 +
974 974  )))
975 -* (((
976 -Device Weight: g
977 -)))
978 -* (((
979 -Package Size / pcs : cm
980 -)))
981 -* (((
982 -Weight / pcs : g
983 -)))
984 984  
985 -= 8. Support =
831 += 9.  Support =
986 986  
987 987  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
988 988  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
989 -
990 -
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content