Last modified by Mengting Qiu on 2024/04/02 16:44

From version 31.29
edited by Xiaoling
on 2022/06/07 10:26
Change comment: There is no comment for this version
To version 68.1
edited by Xiaoling
on 2022/07/09 08:40
Change comment: Uploaded new attachment "image-20220709084038-1.jpeg", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NDDS75 NB-IoT Distance Detect Sensor User Manual
Content
... ... @@ -1,11 +1,9 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
2 +[[image:1657271519014-786.png]]
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
... ... @@ -12,714 +12,713 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
13 +**Table of Contents:**
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
18 18  
19 -(((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
22 22  
23 -(((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 -)))
26 26  
27 -(((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 -)))
34 34  
35 -(((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 -)))
38 38  
21 += 1.  Introduction =
39 39  
40 -[[image:1654503236291-817.png]]
23 +== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
41 41  
25 +(((
26 +
42 42  
43 -[[image:1654503265560-120.png]]
28 +The Dragino NDDS75 is a **NB-IOT Distance Detection Sensor** for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses **ultrasonic sensing technology** for **distance measurement**, and temperature compensation is performed internally to improve the reliability of data. The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
44 44  
30 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server.
45 45  
32 +**NarrowBand-Internet of Things (NB-IoT)** is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
46 46  
47 -== 1.2 ​Features ==
34 +NDDS75 is powered by 8**500mA Li-SOCI2 battery**; It is designed for long term use up to 5 years*.
48 48  
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
51 -* Monitor Soil Moisture
52 -* Monitor Soil Temperature
53 -* Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 -* AT Commands to change parameters
56 -* Uplink on periodically
57 -* Downlink to change configure
58 -* IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
36 +~* Actually lifetime depends on network coverage and uplink interval and other factors
60 60  
61 -== 1.3 Specification ==
62 -
63 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
64 -
65 -[[image:image-20220606162220-5.png]]
66 -
67 -
68 -
69 -== ​1.4 Applications ==
70 -
71 -* Smart Agriculture
72 -
73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
74 -​
75 -
76 -== 1.5 Firmware Change log ==
77 -
78 -
79 -**LSE01 v1.0 :**  Release
80 -
81 -
82 -
83 -= 2. Configure LSE01 to connect to LoRaWAN network =
84 -
85 -== 2.1 How it works ==
86 -
87 87  (((
88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
39 +
89 89  )))
90 90  
91 -(((
92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
93 -)))
94 -
95 -
96 -
97 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
98 -
99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
100 -
101 -
102 -[[image:1654503992078-669.png]]
103 -
104 -
105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
106 -
107 -
108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
109 -
110 -Each LSE01 is shipped with a sticker with the default device EUI as below:
111 -
112 -[[image:image-20220606163732-6.jpeg]]
113 -
114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
115 -
116 -**Add APP EUI in the application**
117 -
118 -
119 -[[image:1654504596150-405.png]]
120 -
121 -
122 -
123 -**Add APP KEY and DEV EUI**
124 -
125 -[[image:1654504683289-357.png]]
126 -
127 -
128 -
129 -**Step 2**: Power on LSE01
130 -
131 -
132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
133 -
134 -[[image:image-20220606163915-7.png]]
135 -
136 -
137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
138 -
139 -[[image:1654504778294-788.png]]
140 -
141 -
142 -
143 -== 2.3 Uplink Payload ==
144 -
145 -=== 2.3.1 MOD~=0(Default Mode) ===
146 -
147 -LSE01 will uplink payload via LoRaWAN with below payload format: 
148 -
149 -
150 -Uplink payload includes in total 11 bytes.
151 151  
152 -
153 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
154 -|=(((
155 -**Size**
156 -
157 -**(bytes)**
158 -)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1**
159 -|**Value**|(% style="width:46px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:160px" %)(((
160 -Temperature
161 -
162 -(Reserve, Ignore now)
163 -)))|(% style="width:104px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:126px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:114px" %)(((
164 -MOD & Digital Interrupt
165 -
166 -(Optional)
167 167  )))
168 168  
169 -[[image:1654504881641-514.png]]
45 +[[image:1654503236291-817.png]]
170 170  
171 171  
48 +[[image:1657245163077-232.png]]
172 172  
173 -=== 2.3.2 MOD~=1(Original value) ===
174 174  
175 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
176 176  
177 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
178 -|=(((
179 -**Size**
52 +== 1.2 ​ Features ==
180 180  
181 -**(bytes)**
182 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1**
183 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
184 -Temperature
54 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
55 +* Monitor Soil Moisture
56 +* Monitor Soil Temperature
57 +* Monitor Soil Conductivity
58 +* AT Commands to change parameters
59 +* Uplink on periodically
60 +* Downlink to change configure
61 +* IP66 Waterproof Enclosure
62 +* Ultra-Low Power consumption
63 +* AT Commands to change parameters
64 +* Micro SIM card slot for NB-IoT SIM
65 +* 8500mAh Battery for long term use
185 185  
186 -(Reserve, Ignore now)
187 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
188 -MOD & Digital Interrupt
189 189  
190 -(Optional)
191 -)))
192 192  
193 -[[image:1654504907647-967.png]]
69 +== 1.3  Specification ==
194 194  
195 195  
72 +(% style="color:#037691" %)**Common DC Characteristics:**
196 196  
197 -=== 2.3.3 Battery Info ===
74 +* Supply Voltage: 2.1v ~~ 3.6v
75 +* Operating Temperature: -40 ~~ 85°C
198 198  
199 -Check the battery voltage for LSE01.
77 +(% style="color:#037691" %)**NB-IoT Spec:**
200 200  
201 -Ex1: 0x0B45 = 2885mV
79 +* - B1 @H-FDD: 2100MHz
80 +* - B3 @H-FDD: 1800MHz
81 +* - B8 @H-FDD: 900MHz
82 +* - B5 @H-FDD: 850MHz
83 +* - B20 @H-FDD: 800MHz
84 +* - B28 @H-FDD: 700MHz
202 202  
203 -Ex2: 0x0B49 = 2889mV
86 +Probe(% style="color:#037691" %)** Specification:**
204 204  
88 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
205 205  
90 +[[image:image-20220708101224-1.png]]
206 206  
207 -=== 2.3.4 Soil Moisture ===
208 208  
209 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
210 210  
211 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
94 +== ​1.4  Applications ==
212 212  
96 +* Smart Agriculture
213 213  
214 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
98 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
99 +​
215 215  
101 +== 1.5  Pin Definitions ==
216 216  
217 217  
218 -=== 2.3.5 Soil Temperature ===
104 +[[image:1657246476176-652.png]]
219 219  
220 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
221 221  
222 -**Example**:
223 223  
224 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
108 += 2.  Use NSE01 to communicate with IoT Server =
225 225  
226 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
110 +== 2.1  How it works ==
227 227  
228 228  
229 -
230 -=== 2.3.6 Soil Conductivity (EC) ===
231 -
232 232  (((
233 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
114 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
234 234  )))
235 235  
236 -(((
237 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
238 -)))
239 239  
240 240  (((
241 -Generally, the EC value of irrigation water is less than 800uS / cm.
119 +The diagram below shows the working flow in default firmware of NSE01:
242 242  )))
243 243  
244 -(((
245 -
246 -)))
122 +[[image:image-20220708101605-2.png]]
247 247  
248 248  (((
249 249  
250 250  )))
251 251  
252 -=== 2.3.7 MOD ===
253 253  
254 -Firmware version at least v2.1 supports changing mode.
255 255  
256 -For example, bytes[10]=90
130 +== 2.2 ​ Configure the NSE01 ==
257 257  
258 -mod=(bytes[10]>>7)&0x01=1.
259 259  
133 +=== 2.2.1 Test Requirement ===
260 260  
261 -**Downlink Command:**
262 262  
263 -If payload = 0x0A00, workmode=0
136 +(((
137 +To use NSE01 in your city, make sure meet below requirements:
138 +)))
264 264  
265 -If** **payload =** **0x0A01, workmode=1
140 +* Your local operator has already distributed a NB-IoT Network there.
141 +* The local NB-IoT network used the band that NSE01 supports.
142 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
266 266  
144 +(((
145 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
146 +)))
267 267  
268 268  
269 -=== 2.3.8 ​Decode payload in The Things Network ===
149 +[[image:1657249419225-449.png]]
270 270  
271 -While using TTN network, you can add the payload format to decode the payload.
272 272  
273 273  
274 -[[image:1654505570700-128.png]]
153 +=== 2.2.2 Insert SIM card ===
275 275  
276 -The payload decoder function for TTN is here:
155 +(((
156 +Insert the NB-IoT Card get from your provider.
157 +)))
277 277  
278 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
159 +(((
160 +User need to take out the NB-IoT module and insert the SIM card like below:
161 +)))
279 279  
280 280  
164 +[[image:1657249468462-536.png]]
281 281  
282 -== 2.4 Uplink Interval ==
283 283  
284 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
285 285  
168 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
286 286  
170 +(((
171 +(((
172 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
173 +)))
174 +)))
287 287  
288 -== 2.5 Downlink Payload ==
289 289  
290 -By default, LSE50 prints the downlink payload to console port.
177 +**Connection:**
291 291  
292 -[[image:image-20220606165544-8.png]]
179 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
293 293  
181 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
294 294  
295 -**Examples:**
183 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
296 296  
297 297  
298 -* **Set TDC**
186 +In the PC, use below serial tool settings:
299 299  
300 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
188 +* Baud:  (% style="color:green" %)**9600**
189 +* Data bits:** (% style="color:green" %)8(%%)**
190 +* Stop bits: (% style="color:green" %)**1**
191 +* Parity:  (% style="color:green" %)**None**
192 +* Flow Control: (% style="color:green" %)**None**
301 301  
302 -Payload:    01 00 00 1E    TDC=30S
194 +(((
195 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
196 +)))
303 303  
304 -Payload:    01 00 00 3C    TDC=60S
198 +[[image:image-20220708110657-3.png]]
305 305  
200 +(((
201 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
202 +)))
306 306  
307 -* **Reset**
308 308  
309 -If payload = 0x04FF, it will reset the LSE01
310 310  
206 +=== 2.2.4 Use CoAP protocol to uplink data ===
311 311  
312 -* **CFM**
208 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
313 313  
314 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
315 315  
211 +**Use below commands:**
316 316  
213 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
214 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
215 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
317 317  
318 -== 2.6 ​Show Data in DataCake IoT Server ==
217 +For parameter description, please refer to AT command set
319 319  
320 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
219 +[[image:1657249793983-486.png]]
321 321  
322 322  
323 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
222 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
324 324  
325 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
224 +[[image:1657249831934-534.png]]
326 326  
327 327  
328 -[[image:1654505857935-743.png]]
329 329  
228 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
330 330  
331 -[[image:1654505874829-548.png]]
230 +This feature is supported since firmware version v1.0.1
332 332  
333 -Step 3: Create an account or log in Datacake.
334 334  
335 -Step 4: Search the LSE01 and add DevEUI.
233 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
234 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
235 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
336 336  
237 +[[image:1657249864775-321.png]]
337 337  
338 -[[image:1654505905236-553.png]]
339 339  
240 +[[image:1657249930215-289.png]]
340 340  
341 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
342 342  
343 -[[image:1654505925508-181.png]]
344 344  
244 +=== 2.2.6 Use MQTT protocol to uplink data ===
345 345  
246 +This feature is supported since firmware version v110
346 346  
347 -== 2.7 Frequency Plans ==
348 348  
349 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
249 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
250 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
251 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
252 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
253 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
254 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
255 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
350 350  
257 +[[image:1657249978444-674.png]]
351 351  
352 -=== 2.7.1 EU863-870 (EU868) ===
353 353  
354 -(% style="color:#037691" %)** Uplink:**
260 +[[image:1657249990869-686.png]]
355 355  
356 -868.1 - SF7BW125 to SF12BW125
357 357  
358 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
263 +(((
264 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
265 +)))
359 359  
360 -868.5 - SF7BW125 to SF12BW125
361 361  
362 -867.1 - SF7BW125 to SF12BW125
363 363  
364 -867.3 - SF7BW125 to SF12BW125
269 +=== 2.2.7 Use TCP protocol to uplink data ===
365 365  
366 -867.5 - SF7BW125 to SF12BW125
271 +This feature is supported since firmware version v110
367 367  
368 -867.7 - SF7BW125 to SF12BW125
369 369  
370 -867.9 - SF7BW125 to SF12BW125
274 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
275 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
371 371  
372 -868.8 - FSK
277 +[[image:1657250217799-140.png]]
373 373  
374 374  
375 -(% style="color:#037691" %)** Downlink:**
280 +[[image:1657250255956-604.png]]
376 376  
377 -Uplink channels 1-9 (RX1)
378 378  
379 -869.525 - SF9BW125 (RX2 downlink only)
380 380  
284 +=== 2.2.8 Change Update Interval ===
381 381  
286 +User can use below command to change the (% style="color:green" %)**uplink interval**.
382 382  
383 -=== 2.7.2 US902-928(US915) ===
288 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
384 384  
385 -Used in USA, Canada and South America. Default use CHE=2
290 +(((
291 +(% style="color:red" %)**NOTE:**
292 +)))
386 386  
387 -(% style="color:#037691" %)**Uplink:**
294 +(((
295 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
296 +)))
388 388  
389 -903.9 - SF7BW125 to SF10BW125
390 390  
391 -904.1 - SF7BW125 to SF10BW125
392 392  
393 -904.3 - SF7BW125 to SF10BW125
300 +== 2.3  Uplink Payload ==
394 394  
395 -904.5 - SF7BW125 to SF10BW125
302 +In this mode, uplink payload includes in total 18 bytes
396 396  
397 -904.7 - SF7BW125 to SF10BW125
304 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
305 +|=(% style="width: 60px;" %)(((
306 +**Size(bytes)**
307 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
308 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
398 398  
399 -904.9 - SF7BW125 to SF10BW125
310 +(((
311 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
312 +)))
400 400  
401 -905.1 - SF7BW125 to SF10BW125
402 402  
403 -905.3 - SF7BW125 to SF10BW125
315 +[[image:image-20220708111918-4.png]]
404 404  
405 405  
406 -(% style="color:#037691" %)**Downlink:**
318 +The payload is ASCII string, representative same HEX:
407 407  
408 -923.3 - SF7BW500 to SF12BW500
320 +0x72403155615900640c7817075e0a8c02f900 where:
409 409  
410 -923.9 - SF7BW500 to SF12BW500
322 +* Device ID: 0x 724031556159 = 724031556159
323 +* Version: 0x0064=100=1.0.0
411 411  
412 -924.5 - SF7BW500 to SF12BW500
325 +* BAT: 0x0c78 = 3192 mV = 3.192V
326 +* Singal: 0x17 = 23
327 +* Soil Moisture: 0x075e= 1886 = 18.86  %
328 +* Soil Temperature:0x0a8c =2700=27 °C
329 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
330 +* Interrupt: 0x00 = 0
413 413  
414 -925.1 - SF7BW500 to SF12BW500
415 415  
416 -925.7 - SF7BW500 to SF12BW500
417 417  
418 -926.3 - SF7BW500 to SF12BW500
334 +== 2. Payload Explanation and Sensor Interface ==
419 419  
420 -926.9 - SF7BW500 to SF12BW500
421 421  
422 -927.5 - SF7BW500 to SF12BW500
337 +=== 2.4.1  Device ID ===
423 423  
424 -923.3 - SF12BW500(RX2 downlink only)
339 +(((
340 +By default, the Device ID equal to the last 6 bytes of IMEI.
341 +)))
425 425  
343 +(((
344 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
345 +)))
426 426  
347 +(((
348 +**Example:**
349 +)))
427 427  
428 -=== 2.7.3 CN470-510 (CN470) ===
351 +(((
352 +AT+DEUI=A84041F15612
353 +)))
429 429  
430 -Used in China, Default use CHE=1
355 +(((
356 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
357 +)))
431 431  
432 -(% style="color:#037691" %)**Uplink:**
433 433  
434 -486.3 - SF7BW125 to SF12BW125
435 435  
436 -486.5 - SF7BW125 to SF12BW125
361 +=== 2.4.2  Version Info ===
437 437  
438 -486.7 - SF7BW125 to SF12BW125
363 +(((
364 +Specify the software version: 0x64=100, means firmware version 1.00.
365 +)))
439 439  
440 -486.9 - SF7BW125 to SF12BW125
367 +(((
368 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
369 +)))
441 441  
442 -487.1 - SF7BW125 to SF12BW125
443 443  
444 -487.3 - SF7BW125 to SF12BW125
445 445  
446 -487.5 - SF7BW125 to SF12BW125
373 +=== 2.4. Battery Info ===
447 447  
448 -487.7 - SF7BW125 to SF12BW125
375 +(((
376 +Check the battery voltage for LSE01.
377 +)))
449 449  
379 +(((
380 +Ex1: 0x0B45 = 2885mV
381 +)))
450 450  
451 -(% style="color:#037691" %)**Downlink:**
383 +(((
384 +Ex2: 0x0B49 = 2889mV
385 +)))
452 452  
453 -506.7 - SF7BW125 to SF12BW125
454 454  
455 -506.9 - SF7BW125 to SF12BW125
456 456  
457 -507.1 - SF7BW125 to SF12BW125
389 +=== 2.4.4  Signal Strength ===
458 458  
459 -507.3 - SF7BW125 to SF12BW125
391 +(((
392 +NB-IoT Network signal Strength.
393 +)))
460 460  
461 -507.5 - SF7BW125 to SF12BW125
395 +(((
396 +**Ex1: 0x1d = 29**
397 +)))
462 462  
463 -507.7 - SF7BW125 to SF12BW125
399 +(((
400 +(% style="color:blue" %)**0**(%%)  -113dBm or less
401 +)))
464 464  
465 -507.9 - SF7BW125 to SF12BW125
403 +(((
404 +(% style="color:blue" %)**1**(%%)  -111dBm
405 +)))
466 466  
467 -508.1 - SF7BW125 to SF12BW125
407 +(((
408 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
409 +)))
468 468  
469 -505.3 - SF12BW125 (RX2 downlink only)
411 +(((
412 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
413 +)))
470 470  
415 +(((
416 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
417 +)))
471 471  
472 472  
473 -=== 2.7.4 AU915-928(AU915) ===
474 474  
475 -Default use CHE=2
421 +=== 2.4.5  Soil Moisture ===
476 476  
477 -(% style="color:#037691" %)**Uplink:**
423 +(((
424 +(((
425 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
426 +)))
427 +)))
478 478  
479 -916.8 - SF7BW125 to SF12BW125
429 +(((
430 +(((
431 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
432 +)))
433 +)))
480 480  
481 -917.0 - SF7BW125 to SF12BW125
435 +(((
436 +
437 +)))
482 482  
483 -917.2 - SF7BW125 to SF12BW125
439 +(((
440 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
441 +)))
484 484  
485 -917.4 - SF7BW125 to SF12BW125
486 486  
487 -917.6 - SF7BW125 to SF12BW125
488 488  
489 -917.8 - SF7BW125 to SF12BW125
445 +=== 2.4.6  Soil Temperature ===
490 490  
491 -918.0 - SF7BW125 to SF12BW125
447 +(((
448 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
449 +)))
492 492  
493 -918.2 - SF7BW125 to SF12BW125
451 +(((
452 +**Example**:
453 +)))
494 494  
455 +(((
456 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
457 +)))
495 495  
496 -(% style="color:#037691" %)**Downlink:**
459 +(((
460 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
461 +)))
497 497  
498 -923.3 - SF7BW500 to SF12BW500
499 499  
500 -923.9 - SF7BW500 to SF12BW500
501 501  
502 -924.5 - SF7BW500 to SF12BW500
465 +=== 2.4. Soil Conductivity (EC) ===
503 503  
504 -925.1 - SF7BW500 to SF12BW500
467 +(((
468 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
469 +)))
505 505  
506 -925.7 - SF7BW500 to SF12BW500
471 +(((
472 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
473 +)))
507 507  
508 -926.3 - SF7BW500 to SF12BW500
475 +(((
476 +Generally, the EC value of irrigation water is less than 800uS / cm.
477 +)))
509 509  
510 -926.9 - SF7BW500 to SF12BW500
479 +(((
480 +
481 +)))
511 511  
512 -927.5 - SF7BW500 to SF12BW500
483 +(((
484 +
485 +)))
513 513  
514 -923.3 - SF12BW500(RX2 downlink only)
487 +=== 2.4.8  Digital Interrupt ===
515 515  
489 +(((
490 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
491 +)))
516 516  
493 +(((
494 +The command is:
495 +)))
517 517  
518 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
497 +(((
498 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
499 +)))
519 519  
520 -(% style="color:#037691" %)**Default Uplink channel:**
521 521  
522 -923.2 - SF7BW125 to SF10BW125
502 +(((
503 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
504 +)))
523 523  
524 -923.4 - SF7BW125 to SF10BW125
525 525  
507 +(((
508 +Example:
509 +)))
526 526  
527 -(% style="color:#037691" %)**Additional Uplink Channel**:
511 +(((
512 +0x(00): Normal uplink packet.
513 +)))
528 528  
529 -(OTAA mode, channel added by JoinAccept message)
515 +(((
516 +0x(01): Interrupt Uplink Packet.
517 +)))
530 530  
531 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
532 532  
533 -922.2 - SF7BW125 to SF10BW125
534 534  
535 -922.4 - SF7BW125 to SF10BW125
521 +=== 2.4.9  ​+5V Output ===
536 536  
537 -922.6 - SF7BW125 to SF10BW125
523 +(((
524 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
525 +)))
538 538  
539 -922.8 - SF7BW125 to SF10BW125
540 540  
541 -923.0 - SF7BW125 to SF10BW125
528 +(((
529 +The 5V output time can be controlled by AT Command.
530 +)))
542 542  
543 -922.0 - SF7BW125 to SF10BW125
532 +(((
533 +(% style="color:blue" %)**AT+5VT=1000**
534 +)))
544 544  
536 +(((
537 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
538 +)))
545 545  
546 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
547 547  
548 -923.6 - SF7BW125 to SF10BW125
549 549  
550 -923.8 - SF7BW125 to SF10BW125
542 +== 2.5  Downlink Payload ==
551 551  
552 -924.0 - SF7BW125 to SF10BW125
544 +By default, NSE01 prints the downlink payload to console port.
553 553  
554 -924.2 - SF7BW125 to SF10BW125
546 +[[image:image-20220708133731-5.png]]
555 555  
556 -924.4 - SF7BW125 to SF10BW125
557 557  
558 -924.6 - SF7BW125 to SF10BW125
549 +(((
550 +(% style="color:blue" %)**Examples:**
551 +)))
559 559  
553 +(((
554 +
555 +)))
560 560  
561 -(% style="color:#037691" %)** Downlink:**
557 +* (((
558 +(% style="color:blue" %)**Set TDC**
559 +)))
562 562  
563 -Uplink channels 1-8 (RX1)
561 +(((
562 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
563 +)))
564 564  
565 -923.2 - SF10BW125 (RX2)
565 +(((
566 +Payload:    01 00 00 1E    TDC=30S
567 +)))
566 566  
569 +(((
570 +Payload:    01 00 00 3C    TDC=60S
571 +)))
567 567  
573 +(((
574 +
575 +)))
568 568  
569 -=== 2.7.6 KR920-923 (KR920) ===
577 +* (((
578 +(% style="color:blue" %)**Reset**
579 +)))
570 570  
571 -Default channel:
581 +(((
582 +If payload = 0x04FF, it will reset the NSE01
583 +)))
572 572  
573 -922.1 - SF7BW125 to SF12BW125
574 574  
575 -922.3 - SF7BW125 to SF12BW125
586 +* (% style="color:blue" %)**INTMOD**
576 576  
577 -922.5 - SF7BW125 to SF12BW125
588 +(((
589 +Downlink Payload: 06000003, Set AT+INTMOD=3
590 +)))
578 578  
579 579  
580 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
581 581  
582 -922.1 - SF7BW125 to SF12BW125
594 +== 2. ​LED Indicator ==
583 583  
584 -922.3 - SF7BW125 to SF12BW125
596 +(((
597 +The NSE01 has an internal LED which is to show the status of different state.
585 585  
586 -922.5 - SF7BW125 to SF12BW125
587 587  
588 -922.7 - SF7BW125 to SF12BW125
600 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
601 +* Then the LED will be on for 1 second means device is boot normally.
602 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
603 +* For each uplink probe, LED will be on for 500ms.
604 +)))
589 589  
590 -922.9 - SF7BW125 to SF12BW125
591 591  
592 -923.1 - SF7BW125 to SF12BW125
593 593  
594 -923.3 - SF7BW125 to SF12BW125
595 595  
609 +== 2.7  Installation in Soil ==
596 596  
597 -(% style="color:#037691" %)**Downlink:**
611 +__**Measurement the soil surface**__
598 598  
599 -Uplink channels 1-7(RX1)
613 +(((
614 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
615 +)))
600 600  
601 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
617 +[[image:1657259653666-883.png]] ​
602 602  
603 603  
620 +(((
621 +
604 604  
605 -=== 2.7.7 IN865-867 (IN865) ===
623 +(((
624 +Dig a hole with diameter > 20CM.
625 +)))
606 606  
607 -(% style="color:#037691" %)** Uplink:**
627 +(((
628 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
629 +)))
630 +)))
608 608  
609 -865.0625 - SF7BW125 to SF12BW125
632 +[[image:1654506665940-119.png]]
610 610  
611 -865.4025 - SF7BW125 to SF12BW125
634 +(((
635 +
636 +)))
612 612  
613 -865.9850 - SF7BW125 to SF12BW125
614 614  
639 +== 2.8  ​Firmware Change Log ==
615 615  
616 -(% style="color:#037691" %) **Downlink:**
617 617  
618 -Uplink channels 1-3 (RX1)
642 +Download URL & Firmware Change log
619 619  
620 -866.550 - SF10BW125 (RX2)
644 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
621 621  
622 622  
647 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
623 623  
624 624  
625 -== 2.8 LED Indicator ==
626 626  
627 -The LSE01 has an internal LED which is to show the status of different state.
651 +== 2.9  ​Battery Analysis ==
628 628  
629 -* Blink once when device power on.
630 -* Solid ON for 5 seconds once device successful Join the network.
631 -* Blink once when device transmit a packet.
653 +=== 2.9.1  ​Battery Type ===
632 632  
633 -== 2.9 Installation in Soil ==
634 634  
635 -**Measurement the soil surface**
636 -
637 -
638 -[[image:1654506634463-199.png]] ​
639 -
640 640  (((
641 -(((
642 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
657 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
643 643  )))
644 -)))
645 645  
646 646  
647 -[[image:1654506665940-119.png]]
648 -
649 649  (((
650 -Dig a hole with diameter > 20CM.
662 +The battery is designed to last for several years depends on the actually use environment and update interval. 
651 651  )))
652 652  
653 -(((
654 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
655 -)))
656 656  
657 -
658 -== 2.10 ​Firmware Change Log ==
659 -
660 660  (((
661 -**Firmware download link:**
667 +The battery related documents as below:
662 662  )))
663 663  
664 -(((
665 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
666 -)))
670 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
671 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
672 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
667 667  
668 668  (((
669 -
675 +[[image:image-20220708140453-6.png]]
670 670  )))
671 671  
672 -(((
673 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
674 -)))
675 675  
676 -(((
677 -
678 -)))
679 679  
680 -(((
681 -**V1.0.**
682 -)))
680 +=== 2.9.2  Power consumption Analyze ===
683 683  
684 684  (((
685 -Release
683 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
686 686  )))
687 687  
688 688  
689 -== 2.11 ​Battery Analysis ==
690 -
691 -=== 2.11.1 ​Battery Type ===
692 -
693 693  (((
694 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
688 +Instruction to use as below:
695 695  )))
696 696  
697 697  (((
698 -The battery is designed to last for more than 5 years for the LSN50.
692 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
699 699  )))
700 700  
695 +
701 701  (((
702 -(((
703 -The battery-related documents are as below:
697 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
704 704  )))
705 -)))
706 706  
707 707  * (((
708 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
701 +Product Model
709 709  )))
710 710  * (((
711 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
704 +Uplink Interval
712 712  )))
713 713  * (((
714 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
707 +Working Mode
715 715  )))
716 716  
717 - [[image:image-20220606171726-9.png]]
710 +(((
711 +And the Life expectation in difference case will be shown on the right.
712 +)))
718 718  
714 +[[image:image-20220708141352-7.jpeg]]
719 719  
720 720  
721 -=== 2.11.2 ​Battery Note ===
722 722  
718 +=== 2.9.3  ​Battery Note ===
719 +
723 723  (((
724 724  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
725 725  )))
... ... @@ -726,301 +726,195 @@
726 726  
727 727  
728 728  
729 -=== 2.11.3 Replace the battery ===
726 +=== 2.9. Replace the battery ===
730 730  
731 731  (((
732 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
729 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
733 733  )))
734 734  
732 +
733 +
734 += 3. ​ Access NB-IoT Module =
735 +
735 735  (((
736 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
737 +Users can directly access the AT command set of the NB-IoT module.
737 737  )))
738 738  
739 739  (((
740 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
741 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
741 741  )))
742 742  
744 +[[image:1657261278785-153.png]]
743 743  
744 744  
745 -= 3. ​Using the AT Commands =
746 746  
747 -== 3.1 Access AT Commands ==
748 += 4.  Using the AT Commands =
748 748  
750 +== 4.1  Access AT Commands ==
749 749  
750 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
752 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
751 751  
752 -[[image:1654501986557-872.png||height="391" width="800"]]
753 753  
755 +AT+<CMD>?  : Help on <CMD>
754 754  
755 -Or if you have below board, use below connection:
757 +AT+<CMD>         : Run <CMD>
756 756  
759 +AT+<CMD>=<value> : Set the value
757 757  
758 -[[image:1654502005655-729.png||height="503" width="801"]]
761 +AT+<CMD>=?  : Get the value
759 759  
760 760  
761 -
762 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
763 -
764 -
765 - [[image:1654502050864-459.png||height="564" width="806"]]
766 -
767 -
768 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
769 -
770 -
771 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
772 -
773 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
774 -
775 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
776 -
777 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
778 -
779 -
780 780  (% style="color:#037691" %)**General Commands**(%%)      
781 781  
782 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
766 +AT  : Attention       
783 783  
784 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
768 +AT?  : Short Help     
785 785  
786 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
770 +ATZ  : MCU Reset    
787 787  
788 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
772 +AT+TDC  : Application Data Transmission Interval
789 789  
774 +AT+CFG  : Print all configurations
790 790  
791 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
776 +AT+CFGMOD           : Working mode selection
792 792  
793 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
778 +AT+INTMOD            : Set the trigger interrupt mode
794 794  
795 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
780 +AT+5VT  : Set extend the time of 5V power  
796 796  
797 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
782 +AT+PRO  : Choose agreement
798 798  
799 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
784 +AT+WEIGRE  : Get weight or set weight to 0
800 800  
801 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
786 +AT+WEIGAP  : Get or Set the GapValue of weight
802 802  
803 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
788 +AT+RXDL  : Extend the sending and receiving time
804 804  
805 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
790 +AT+CNTFAC  : Get or set counting parameters
806 806  
807 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
792 +AT+SERVADDR  : Server Address
808 808  
809 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
810 810  
811 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
795 +(% style="color:#037691" %)**COAP Management**      
812 812  
813 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
797 +AT+URI            : Resource parameters
814 814  
815 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
816 816  
817 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
800 +(% style="color:#037691" %)**UDP Management**
818 818  
819 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
802 +AT+CFM          : Upload confirmation mode (only valid for UDP)
820 820  
821 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
822 822  
823 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
805 +(% style="color:#037691" %)**MQTT Management**
824 824  
807 +AT+CLIENT               : Get or Set MQTT client
825 825  
826 -(% style="color:#037691" %)**LoRa Network Management**
809 +AT+UNAME  : Get or Set MQTT Username
827 827  
828 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
811 +AT+PWD                  : Get or Set MQTT password
829 829  
830 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
813 +AT+PUBTOPI : Get or Set MQTT publish topic
831 831  
832 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
815 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
833 833  
834 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
835 835  
836 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
818 +(% style="color:#037691" %)**Information**          
837 837  
838 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
820 +AT+FDR  : Factory Data Reset
839 839  
840 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
822 +AT+PWOR : Serial Access Password
841 841  
842 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
843 843  
844 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
845 845  
846 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
826 += ​5.  FAQ =
847 847  
848 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
828 +== 5.1 How to Upgrade Firmware ==
849 849  
850 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
851 851  
852 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
831 +(((
832 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
833 +)))
853 853  
854 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
855 -
856 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
857 -
858 -
859 -(% style="color:#037691" %)**Information** 
860 -
861 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
862 -
863 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
864 -
865 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
866 -
867 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
868 -
869 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
870 -
871 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
872 -
873 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
874 -
875 -
876 -= ​4. FAQ =
877 -
878 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
879 -
880 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
881 -When downloading the images, choose the required image file for download. ​
882 -
883 -
884 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
885 -
886 -
887 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
888 -
889 -
890 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
891 -
892 -[[image:image-20220606154726-3.png]]
893 -
894 -When you use the TTN network, the US915 frequency bands use are:
895 -
896 -* 903.9 - SF7BW125 to SF10BW125
897 -* 904.1 - SF7BW125 to SF10BW125
898 -* 904.3 - SF7BW125 to SF10BW125
899 -* 904.5 - SF7BW125 to SF10BW125
900 -* 904.7 - SF7BW125 to SF10BW125
901 -* 904.9 - SF7BW125 to SF10BW125
902 -* 905.1 - SF7BW125 to SF10BW125
903 -* 905.3 - SF7BW125 to SF10BW125
904 -* 904.6 - SF8BW500
905 -
906 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
907 -
908 -(% class="box infomessage" %)
909 909  (((
910 -**AT+CHE=2**
836 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
911 911  )))
912 912  
913 -(% class="box infomessage" %)
914 914  (((
915 -**ATZ**
840 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
916 916  )))
917 917  
918 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
919 919  
920 920  
921 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
845 +== 5.2  Can I calibrate NSE01 to different soil types? ==
922 922  
923 -[[image:image-20220606154825-4.png]]
847 +(((
848 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
849 +)))
924 924  
925 925  
852 += 6.  Trouble Shooting =
926 926  
927 -= 5. Trouble Shooting =
854 +== 6. ​Connection problem when uploading firmware ==
928 928  
929 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
930 930  
931 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
857 +(((
858 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
859 +)))
932 932  
933 -
934 -== 5.2 AT Command input doesn’t work ==
935 -
861 +(% class="wikigeneratedid" %)
936 936  (((
937 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
863 +
938 938  )))
939 939  
940 940  
941 -== 5.3 Device rejoin in at the second uplink packet ==
867 +== 6. AT Command input doesn't work ==
942 942  
943 -(% style="color:#4f81bd" %)**Issue describe as below:**
869 +(((
870 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
944 944  
945 -[[image:1654500909990-784.png]]
872 +
873 +)))
946 946  
947 947  
948 -(% style="color:#4f81bd" %)**Cause for this issue:**
876 += 7. ​ Order Info =
949 949  
950 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
951 951  
879 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
952 952  
953 -(% style="color:#4f81bd" %)**Solution: **
954 954  
955 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
956 -
957 -[[image:1654500929571-736.png]]
958 -
959 -
960 -= 6. ​Order Info =
961 -
962 -
963 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
964 -
965 -
966 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
967 -
968 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
969 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
970 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
971 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
972 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
973 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
974 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
975 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
976 -
977 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
978 -
979 -* (% style="color:red" %)**4**(%%): 4000mAh battery
980 -* (% style="color:red" %)**8**(%%): 8500mAh battery
981 -
982 982  (% class="wikigeneratedid" %)
983 983  (((
984 984  
985 985  )))
986 986  
987 -= 7. Packing Info =
887 += 8.  Packing Info =
988 988  
989 989  (((
990 -**Package Includes**:
991 -)))
890 +
992 992  
993 -* (((
994 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
892 +(% style="color:#037691" %)**Package Includes**:
893 +
894 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
895 +* External antenna x 1
995 995  )))
996 996  
997 997  (((
998 998  
999 -)))
1000 1000  
1001 -(((
1002 -**Dimension and weight**:
1003 -)))
901 +(% style="color:#037691" %)**Dimension and weight**:
1004 1004  
1005 -* (((
1006 -Device Size: cm
903 +* Size: 195 x 125 x 55 mm
904 +* Weight:   420g
1007 1007  )))
1008 -* (((
1009 -Device Weight: g
1010 -)))
1011 -* (((
1012 -Package Size / pcs : cm
1013 -)))
1014 -* (((
1015 -Weight / pcs : g
1016 1016  
907 +(((
908 +
1017 1017  
910 +
1018 1018  
1019 1019  )))
1020 1020  
1021 -= 8. Support =
914 += 9.  Support =
1022 1022  
1023 1023  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1024 1024  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1025 -
1026 -
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content