Last modified by Mengting Qiu on 2024/04/02 16:44

From version 31.28
edited by Xiaoling
on 2022/06/07 10:25
Change comment: There is no comment for this version
To version 45.4
edited by Xiaoling
on 2022/07/08 10:36
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,9 +3,7 @@
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
... ... @@ -12,61 +12,85 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 +**Table of Contents:**
18 18  
19 -(((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
22 22  
23 -(((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 -)))
26 26  
27 -(((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 -)))
34 34  
20 +
21 += 1.  Introduction =
22 +
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 +
35 35  (((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 -)))
26 +
38 38  
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
39 39  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
36 +
37 +)))
38 +
40 40  [[image:1654503236291-817.png]]
41 41  
42 42  
43 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
44 44  
45 45  
46 46  
47 47  == 1.2 ​Features ==
48 48  
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
51 51  * Monitor Soil Moisture
52 52  * Monitor Soil Temperature
53 53  * Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 55  * AT Commands to change parameters
56 56  * Uplink on periodically
57 57  * Downlink to change configure
58 58  * IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
60 60  
61 -== 1.3 Specification ==
62 62  
63 +
64 +== 1.3  Specification ==
65 +
66 +
67 +(% style="color:#037691" %)**Common DC Characteristics:**
68 +
69 +* Supply Voltage: 2.1v ~~ 3.6v
70 +* Operating Temperature: -40 ~~ 85°C
71 +
72 +
73 +(% style="color:#037691" %)**NB-IoT Spec:**
74 +
75 +* - B1 @H-FDD: 2100MHz
76 +* - B3 @H-FDD: 1800MHz
77 +* - B8 @H-FDD: 900MHz
78 +* - B5 @H-FDD: 850MHz
79 +* - B20 @H-FDD: 800MHz
80 +* - B28 @H-FDD: 700MHz
81 +
82 +
83 +(% style="color:#037691" %)**Probe Specification:**
84 +
63 63  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
64 64  
65 -[[image:image-20220606162220-5.png]]
87 +[[image:image-20220708101224-1.png]]
66 66  
67 67  
68 68  
69 -== ​1.4 Applications ==
91 +== ​1.4  Applications ==
70 70  
71 71  * Smart Agriculture
72 72  
... ... @@ -73,157 +73,314 @@
73 73  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
74 74  ​
75 75  
76 -== 1.5 Firmware Change log ==
98 +== 1.5  Pin Definitions ==
77 77  
78 78  
79 -**LSE01 v1.0 :**  Release
101 +[[image:1657246476176-652.png]]
80 80  
81 81  
82 82  
83 -= 2. Configure LSE01 to connect to LoRaWAN network =
105 += 2.  Use NSE01 to communicate with IoT Server =
84 84  
85 -== 2.1 How it works ==
107 +== 2.1  How it works ==
86 86  
109 +
87 87  (((
88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
111 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
89 89  )))
90 90  
114 +
91 91  (((
92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
116 +The diagram below shows the working flow in default firmware of NSE01:
93 93  )))
94 94  
119 +[[image:image-20220708101605-2.png]]
95 95  
121 +(((
122 +
123 +)))
96 96  
97 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
98 98  
99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
100 100  
127 +== 2.2 ​ Configure the NSE01 ==
101 101  
102 -[[image:1654503992078-669.png]]
129 +=== 2.2.1 Test Requirement ===
103 103  
104 104  
105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
132 +To use NSE01 in your city, make sure meet below requirements:
106 106  
134 +* Your local operator has already distributed a NB-IoT Network there.
135 +* The local NB-IoT network used the band that NSE01 supports.
136 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
107 107  
108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
109 109  
110 -Each LSE01 is shipped with a sticker with the default device EUI as below:
139 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
111 111  
112 -[[image:image-20220606163732-6.jpeg]]
113 113  
114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
142 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.gif]]
115 115  
116 -**Add APP EUI in the application**
117 117  
118 118  
119 -[[image:1654504596150-405.png]]
146 +1.
147 +11.
148 +111. Insert SIM card
120 120  
150 +Insert the NB-IoT Card get from your provider.
121 121  
122 122  
123 -**Add APP KEY and DEV EUI**
153 +User need to take out the NB-IoT module and insert the SIM card like below:
124 124  
125 -[[image:1654504683289-357.png]]
126 126  
156 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.gif]]
127 127  
128 128  
129 -**Step 2**: Power on LSE01
159 +1.
160 +11.
161 +111. Connect USB – TTL to NSE01 to configure it
130 130  
131 131  
132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
164 +User need to configure NSE01 via serial port to set the **Server Address** / **Uplink Topic** to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
133 133  
134 -[[image:image-20220606163915-7.png]]
135 135  
136 136  
137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
138 138  
139 -[[image:1654504778294-788.png]]
169 +Connection:
140 140  
171 +USB TTL GND <~-~-~-~-> GND
141 141  
173 +USB TTL TXD <~-~-~-~-> UART_RXD
142 142  
175 +USB TTL RXD <~-~-~-~-> UART_TXD
176 +
177 +
178 +
179 +In the PC, use below serial tool settings:
180 +
181 +* Baud: **9600**
182 +* Data bits:** 8**
183 +* Stop bits: **1**
184 +* Parity: **None**
185 +* Flow Control: **None**
186 +
187 +
188 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the **password: 12345678** to access AT Command input.
189 +
190 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.jpg]]
191 +
192 +Note: the valid AT Commands can be found at:
193 +
194 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
195 +
196 +
197 +1.
198 +11.
199 +111. Use CoAP protocol to uplink data 
200 +
201 +
202 +Note: if you don’t have CoAP server, you can refer this link to set up one:
203 +
204 +[[http:~~/~~/wiki.dragino.com/index.php?title=Set_up_CoAP_Server>>url:http://wiki.dragino.com/index.php?title=Set_up_CoAP_Server]]
205 +
206 +
207 +Use below commands:
208 +
209 +* **AT+PRO=1**    ~/~/ Set to use CoAP protocol to uplink
210 +* **AT+SERVADDR=120.24.4.116,5683   **~/~/ to set CoAP server address and port
211 +* **AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0"       **~/~/Set COAP resource path
212 +
213 +
214 +For parameter description, please refer to AT command set
215 +
216 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.jpg]]
217 +
218 +
219 +After configure the server address and **reset the device** (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
220 +
221 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.jpg]]
222 +
223 +1.
224 +11.
225 +111. Use UDP protocol to uplink data(Default protocol)
226 +
227 +
228 +This feature is supported since firmware version v1.0.1
229 +
230 +
231 +* **AT+PRO=2   ** ~/~/ Set to use UDP protocol to uplink
232 +* **AT+SERVADDR=120.24.4.116,5601   **~/~/ to set UDP server address and port
233 +* **AT+CFM=1       **~/~/If the server does not respond, this command is unnecessary
234 +
235 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.jpg]]
236 +
237 +
238 +
239 +
240 +
241 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.jpg]]
242 +
243 +
244 +1.
245 +11.
246 +111. Use MQTT protocol to uplink data
247 +
248 +
249 +This feature is supported since firmware version v110
250 +
251 +
252 +* **AT+PRO=3   ** ~/~/Set to use MQTT protocol to uplink
253 +* **AT+SERVADDR=120.24.4.116,1883   **~/~/Set MQTT server address and port
254 +* **AT+CLIENT=CLIENT **~/~/Set up the CLIENT of MQTT
255 +* **AT+UNAME=UNAME                           **~/~/Set the username of MQTT
256 +* **AT+PWD=PWD                                      **~/~/Set the password of MQTT
257 +* **AT+PUBTOPIC=NSE01_PUB   **~/~/Set the sending topic of MQTT
258 +* **AT+SUBTOPIC=NSE01_SUB    **~/~/Set the subscription topic of MQTT
259 +
260 +
261 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.gif]]
262 +
263 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.jpg]]
264 +
265 +
266 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
267 +
268 +
269 +1.
270 +11.
271 +111. Use TCP protocol to uplink data
272 +
273 +
274 +This feature is supported since firmware version v110
275 +
276 +
277 +* **AT+PRO=4   ** ~/~/ Set to use TCP protocol to uplink
278 +* **AT+SERVADDR=120.24.4.116,5600   **~/~/ to set TCP server address and port
279 +
280 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.jpg]]
281 +
282 +
283 +
284 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
285 +
286 +
287 +1.
288 +11.
289 +111. Change Update Interval
290 +
291 +User can use below command to change the **uplink interval**.
292 +
293 +**~ AT+TDC=600      **~/~/ Set Update Interval to 600s
294 +
295 +
296 +**NOTE:**
297 +
298 +1. By default, the device will send an uplink message every 1 hour.
299 +
300 +
301 +
302 +
303 +
304 +
305 +
143 143  == 2.3 Uplink Payload ==
144 144  
308 +
145 145  === 2.3.1 MOD~=0(Default Mode) ===
146 146  
147 147  LSE01 will uplink payload via LoRaWAN with below payload format: 
148 148  
149 -
313 +(((
150 150  Uplink payload includes in total 11 bytes.
151 -
315 +)))
152 152  
153 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
154 -|=(((
317 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
318 +|(((
155 155  **Size**
156 156  
157 157  **(bytes)**
158 -)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1**
159 -|**Value**|(% style="width:46px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:160px" %)(((
322 +)))|**2**|**2**|**2**|**2**|**2**|**1**
323 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
160 160  Temperature
161 161  
162 162  (Reserve, Ignore now)
163 -)))|(% style="width:104px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:126px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:114px" %)(((
327 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
164 164  MOD & Digital Interrupt
165 165  
166 166  (Optional)
167 167  )))
168 168  
169 -[[image:1654504881641-514.png]]
170 -
171 -
172 -
173 173  === 2.3.2 MOD~=1(Original value) ===
174 174  
175 175  This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
176 176  
177 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
178 -|=(((
337 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
338 +|(((
179 179  **Size**
180 180  
181 181  **(bytes)**
182 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1**
342 +)))|**2**|**2**|**2**|**2**|**2**|**1**
183 183  |**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
184 184  Temperature
185 185  
186 186  (Reserve, Ignore now)
187 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
347 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
188 188  MOD & Digital Interrupt
189 189  
190 190  (Optional)
191 191  )))
192 192  
193 -[[image:1654504907647-967.png]]
194 -
195 -
196 -
197 197  === 2.3.3 Battery Info ===
198 198  
355 +(((
199 199  Check the battery voltage for LSE01.
357 +)))
200 200  
359 +(((
201 201  Ex1: 0x0B45 = 2885mV
361 +)))
202 202  
363 +(((
203 203  Ex2: 0x0B49 = 2889mV
365 +)))
204 204  
205 205  
206 206  
207 207  === 2.3.4 Soil Moisture ===
208 208  
371 +(((
209 209  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
373 +)))
210 210  
375 +(((
211 211  For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
377 +)))
212 212  
379 +(((
380 +
381 +)))
213 213  
383 +(((
214 214  (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
385 +)))
215 215  
216 216  
217 217  
218 218  === 2.3.5 Soil Temperature ===
219 219  
391 +(((
220 220   Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
393 +)))
221 221  
395 +(((
222 222  **Example**:
397 +)))
223 223  
399 +(((
224 224  If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
401 +)))
225 225  
403 +(((
226 226  If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
405 +)))
227 227  
228 228  
229 229  
... ... @@ -273,12 +273,15 @@
273 273  
274 274  [[image:1654505570700-128.png]]
275 275  
455 +(((
276 276  The payload decoder function for TTN is here:
457 +)))
277 277  
278 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
459 +(((
460 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
461 +)))
279 279  
280 280  
281 -
282 282  == 2.4 Uplink Interval ==
283 283  
284 284  The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
... ... @@ -292,24 +292,44 @@
292 292  [[image:image-20220606165544-8.png]]
293 293  
294 294  
295 -**Examples:**
477 +(((
478 +(% style="color:blue" %)**Examples:**
479 +)))
296 296  
481 +(((
482 +
483 +)))
297 297  
298 -* **Set TDC**
485 +* (((
486 +(% style="color:blue" %)**Set TDC**
487 +)))
299 299  
489 +(((
300 300  If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
491 +)))
301 301  
493 +(((
302 302  Payload:    01 00 00 1E    TDC=30S
495 +)))
303 303  
497 +(((
304 304  Payload:    01 00 00 3C    TDC=60S
499 +)))
305 305  
501 +(((
502 +
503 +)))
306 306  
307 -* **Reset**
505 +* (((
506 +(% style="color:blue" %)**Reset**
507 +)))
308 308  
509 +(((
309 309  If payload = 0x04FF, it will reset the LSE01
511 +)))
310 310  
311 311  
312 -* **CFM**
514 +* (% style="color:blue" %)**CFM**
313 313  
314 314  Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
315 315  
... ... @@ -317,12 +317,21 @@
317 317  
318 318  == 2.6 ​Show Data in DataCake IoT Server ==
319 319  
522 +(((
320 320  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
524 +)))
321 321  
526 +(((
527 +
528 +)))
322 322  
323 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
530 +(((
531 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
532 +)))
324 324  
325 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
534 +(((
535 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
536 +)))
326 326  
327 327  
328 328  [[image:1654505857935-743.png]]
... ... @@ -330,11 +330,12 @@
330 330  
331 331  [[image:1654505874829-548.png]]
332 332  
333 -Step 3: Create an account or log in Datacake.
334 334  
335 -Step 4: Search the LSE01 and add DevEUI.
545 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
336 336  
547 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
337 337  
549 +
338 338  [[image:1654505905236-553.png]]
339 339  
340 340  
... ... @@ -644,6 +644,7 @@
644 644  )))
645 645  
646 646  
859 +
647 647  [[image:1654506665940-119.png]]
648 648  
649 649  (((
... ... @@ -705,16 +705,16 @@
705 705  )))
706 706  
707 707  * (((
708 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
921 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
709 709  )))
710 710  * (((
711 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
924 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
712 712  )))
713 713  * (((
714 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
927 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
715 715  )))
716 716  
717 - [[image:image-20220606171726-9.png]]
930 + [[image:image-20220610172436-1.png]]
718 718  
719 719  
720 720  
... ... @@ -765,7 +765,7 @@
765 765   [[image:1654502050864-459.png||height="564" width="806"]]
766 766  
767 767  
768 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
981 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
769 769  
770 770  
771 771  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -877,20 +877,38 @@
877 877  
878 878  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
879 879  
1093 +(((
880 880  You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
881 881  When downloading the images, choose the required image file for download. ​
1096 +)))
882 882  
1098 +(((
1099 +
1100 +)))
883 883  
1102 +(((
884 884  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
1104 +)))
885 885  
1106 +(((
1107 +
1108 +)))
886 886  
1110 +(((
887 887  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1112 +)))
888 888  
1114 +(((
1115 +
1116 +)))
889 889  
1118 +(((
890 890  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1120 +)))
891 891  
892 892  [[image:image-20220606154726-3.png]]
893 893  
1124 +
894 894  When you use the TTN network, the US915 frequency bands use are:
895 895  
896 896  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -903,37 +903,47 @@
903 903  * 905.3 - SF7BW125 to SF10BW125
904 904  * 904.6 - SF8BW500
905 905  
1137 +(((
906 906  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
907 907  
908 -(% class="box infomessage" %)
909 -(((
910 -**AT+CHE=2**
1140 +* (% style="color:#037691" %)**AT+CHE=2**
1141 +* (% style="color:#037691" %)**ATZ**
911 911  )))
912 912  
913 -(% class="box infomessage" %)
914 914  (((
915 -**ATZ**
916 -)))
1145 +
917 917  
918 918  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1148 +)))
919 919  
1150 +(((
1151 +
1152 +)))
920 920  
1154 +(((
921 921  The **AU915** band is similar. Below are the AU915 Uplink Channels.
1156 +)))
922 922  
923 923  [[image:image-20220606154825-4.png]]
924 924  
925 925  
1161 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
926 926  
1163 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1164 +
1165 +
927 927  = 5. Trouble Shooting =
928 928  
929 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
1168 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
930 930  
931 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1170 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
932 932  
933 933  
934 -== 5.2 AT Command input doesnt work ==
1173 +== 5.2 AT Command input doesn't work ==
935 935  
936 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1175 +(((
1176 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1177 +)))
937 937  
938 938  
939 939  == 5.3 Device rejoin in at the second uplink packet ==
... ... @@ -945,7 +945,9 @@
945 945  
946 946  (% style="color:#4f81bd" %)**Cause for this issue:**
947 947  
1189 +(((
948 948  The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1191 +)))
949 949  
950 950  
951 951  (% style="color:#4f81bd" %)**Solution: **
... ... @@ -952,7 +952,7 @@
952 952  
953 953  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
954 954  
955 -[[image:1654500929571-736.png]]
1198 +[[image:1654500929571-736.png||height="458" width="832"]]
956 956  
957 957  
958 958  = 6. ​Order Info =
... ... @@ -985,7 +985,9 @@
985 985  = 7. Packing Info =
986 986  
987 987  (((
988 -**Package Includes**:
1231 +
1232 +
1233 +(% style="color:#037691" %)**Package Includes**:
989 989  )))
990 990  
991 991  * (((
... ... @@ -994,10 +994,8 @@
994 994  
995 995  (((
996 996  
997 -)))
998 998  
999 -(((
1000 -**Dimension and weight**:
1243 +(% style="color:#037691" %)**Dimension and weight**:
1001 1001  )))
1002 1002  
1003 1003  * (((
... ... @@ -1012,7 +1012,6 @@
1012 1012  * (((
1013 1013  Weight / pcs : g
1014 1014  
1015 -
1016 1016  
1017 1017  )))
1018 1018  
... ... @@ -1020,5 +1020,3 @@
1020 1020  
1021 1021  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1022 1022  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1023 -
1024 -
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content