Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 26 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWANSoil Moisture&ECSensor User Manual1 +NDDS75 NB-IoT Distance Detect Sensor User Manual - Content
-
... ... @@ -1,11 +1,9 @@ 1 1 (% style="text-align:center" %) 2 -[[image: image-20220606151504-2.jpeg||height="554" width="554"]]2 +[[image:1657271519014-786.png]] 3 3 4 4 5 5 6 -**Contents:** 7 7 8 -{{toc/}} 9 9 10 10 11 11 ... ... @@ -12,713 +12,713 @@ 12 12 13 13 14 14 15 - =1.Introduction=13 +**Table of Contents:** 16 16 17 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 18 18 19 -((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 22 22 23 -((( 24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 -))) 26 26 27 -((( 28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 -))) 34 34 35 -((( 36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 -))) 38 38 21 += 1. Introduction = 39 39 40 - [[image:1654503236291-817.png]]23 +== 1.1 What is NDDS75 Distance Detection Sensor == 41 41 25 +((( 26 + 42 42 43 - [[image:1654503265560-120.png]]28 +The Dragino NDDS75 is a **NB-IOT Distance Detection Sensor** for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses **ultrasonic sensing technology** for **distance measurement**, and temperature compensation is performed internally to improve the reliability of data. The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. 44 44 30 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server. 45 45 32 +**NarrowBand-Internet of Things (NB-IoT)** is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 46 46 47 - ==1.2Features==34 +NDDS75 is powered by 8**500mA Li-SOCI2 battery**; It is designed for long term use up to 5 years*. 48 48 49 -* LoRaWAN 1.0.3 Class A 50 -* Ultra low power consumption 51 -* Monitor Soil Moisture 52 -* Monitor Soil Temperature 53 -* Monitor Soil Conductivity 54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 55 -* AT Commands to change parameters 56 -* Uplink on periodically 57 -* Downlink to change configure 58 -* IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 36 +~* Actually lifetime depends on network coverage and uplink interval and other factors 60 60 61 -== 1.3 Specification == 62 - 63 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 64 - 65 -[[image:image-20220606162220-5.png]] 66 - 67 - 68 - 69 -== 1.4 Applications == 70 - 71 -* Smart Agriculture 72 - 73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 - 75 - 76 -== 1.5 Firmware Change log == 77 - 78 - 79 -**LSE01 v1.0 :** Release 80 - 81 - 82 - 83 -= 2. Configure LSE01 to connect to LoRaWAN network = 84 - 85 -== 2.1 How it works == 86 - 87 87 ((( 88 - TheLSE01is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value39 + 89 89 ))) 90 90 91 -((( 92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 93 -))) 94 - 95 - 96 - 97 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 98 - 99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 100 - 101 - 102 -[[image:1654503992078-669.png]] 103 - 104 - 105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 106 - 107 - 108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 109 - 110 -Each LSE01 is shipped with a sticker with the default device EUI as below: 111 - 112 -[[image:image-20220606163732-6.jpeg]] 113 - 114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 115 - 116 -**Add APP EUI in the application** 117 - 118 - 119 -[[image:1654504596150-405.png]] 120 - 121 - 122 - 123 -**Add APP KEY and DEV EUI** 124 - 125 -[[image:1654504683289-357.png]] 126 - 127 - 128 - 129 -**Step 2**: Power on LSE01 130 - 131 - 132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 - 134 -[[image:image-20220606163915-7.png]] 135 - 136 - 137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 - 139 -[[image:1654504778294-788.png]] 140 - 141 - 142 - 143 -== 2.3 Uplink Payload == 144 - 145 -=== 2.3.1 MOD~=0(Default Mode) === 146 - 147 -LSE01 will uplink payload via LoRaWAN with below payload format: 148 - 149 - 150 -Uplink payload includes in total 11 bytes. 151 151 152 - 153 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 154 -|=((( 155 -**Size** 156 - 157 -**(bytes)** 158 -)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1** 159 -|**Value**|(% style="width:46px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:160px" %)((( 160 -Temperature 161 - 162 -(Reserve, Ignore now) 163 -)))|(% style="width:104px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:126px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:114px" %)((( 164 -MOD & Digital Interrupt 165 - 166 -(Optional) 167 167 ))) 168 168 169 -[[image:165450 4881641-514.png]]45 +[[image:1654503236291-817.png]] 170 170 171 171 48 +[[image:1657245163077-232.png]] 172 172 173 -=== 2.3.2 MOD~=1(Original value) === 174 174 175 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 176 176 177 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 178 -|=((( 179 -**Size** 52 +== 1.2 Features == 180 180 181 -**(bytes)** 182 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1** 183 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 184 -Temperature 54 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 55 +* Monitor Soil Moisture 56 +* Monitor Soil Temperature 57 +* Monitor Soil Conductivity 58 +* AT Commands to change parameters 59 +* Uplink on periodically 60 +* Downlink to change configure 61 +* IP66 Waterproof Enclosure 62 +* Ultra-Low Power consumption 63 +* AT Commands to change parameters 64 +* Micro SIM card slot for NB-IoT SIM 65 +* 8500mAh Battery for long term use 185 185 186 -(Reserve, Ignore now) 187 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 188 -MOD & Digital Interrupt 189 189 190 -(Optional) 191 -))) 192 192 193 - [[image:1654504907647-967.png]]69 +== 1.3 Specification == 194 194 195 195 72 +(% style="color:#037691" %)**Common DC Characteristics:** 196 196 197 -=== 2.3.3 Battery Info === 74 +* Supply Voltage: 2.1v ~~ 3.6v 75 +* Operating Temperature: -40 ~~ 85°C 198 198 199 - Checkthe batteryvoltageforLSE01.77 +(% style="color:#037691" %)**NB-IoT Spec:** 200 200 201 -Ex1: 0x0B45 = 2885mV 79 +* - B1 @H-FDD: 2100MHz 80 +* - B3 @H-FDD: 1800MHz 81 +* - B8 @H-FDD: 900MHz 82 +* - B5 @H-FDD: 850MHz 83 +* - B20 @H-FDD: 800MHz 84 +* - B28 @H-FDD: 700MHz 202 202 203 - Ex2:0x0B49= 2889mV86 +Probe(% style="color:#037691" %)** Specification:** 204 204 88 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 205 205 90 +[[image:image-20220708101224-1.png]] 206 206 207 -=== 2.3.4 Soil Moisture === 208 208 209 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 210 210 211 - Forexample,if the data you get from the register is __0x05 0xDC__, the moisture content in thesoilis94 +== 1.4 Applications == 212 212 96 +* Smart Agriculture 213 213 214 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 98 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 99 + 215 215 101 +== 1.5 Pin Definitions == 216 216 217 217 218 - === 2.3.5 Soil Temperature===104 +[[image:1657246476176-652.png]] 219 219 220 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 221 221 222 -**Example**: 223 223 224 - Ifpayloadis 0105H:((0x0105& 0x8000)>>15 === 0),temp=0105(H)/100=2.61 °C108 += 2. Use NSE01 to communicate with IoT Server = 225 225 226 - If payload is FF7EH: ((FF7E & 0x8000)>>15===1),temp= (FF7E(H)-FFFF(H))/100=-1.29°C110 +== 2.1 How it works == 227 227 228 228 229 - 230 -=== 2.3.6 Soil Conductivity (EC) === 231 - 232 232 ((( 233 - Obtain(%style="color:#4f81bd"%)**__solublesaltconcentration__**(%%)insoil or (% style="color:#4f81bd"%)**__soluble ionconcentrationinliquidfertilizer__**(%%)or(% style="color:#4f81bd"%)**__plantingmedium__**(%%). Thevaluerangeftheregister is0 - 20000(Decimal)(Canbegreaterthan20000).114 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 234 234 ))) 235 235 236 -((( 237 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 238 -))) 239 239 240 240 ((( 241 - Generally,theEC valueof irrigationwateris lessthan800uS/ cm.119 +The diagram below shows the working flow in default firmware of NSE01: 242 242 ))) 243 243 244 -((( 245 - 246 -))) 122 +[[image:image-20220708101605-2.png]] 247 247 248 248 ((( 249 249 250 250 ))) 251 251 252 -=== 2.3.7 MOD === 253 253 254 -Firmware version at least v2.1 supports changing mode. 255 255 256 - Forxample,bytes[10]=90130 +== 2.2 Configure the NSE01 == 257 257 258 -mod=(bytes[10]>>7)&0x01=1. 259 259 133 +=== 2.2.1 Test Requirement === 260 260 261 -**Downlink Command:** 262 262 263 -If payload = 0x0A00, workmode=0 136 +((( 137 +To use NSE01 in your city, make sure meet below requirements: 138 +))) 264 264 265 -If** **payload =** **0x0A01, workmode=1 140 +* Your local operator has already distributed a NB-IoT Network there. 141 +* The local NB-IoT network used the band that NSE01 supports. 142 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 266 266 144 +((( 145 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 146 +))) 267 267 268 268 269 - ===2.3.8 Decodepayload inThe Things Network ===149 +[[image:1657249419225-449.png]] 270 270 271 -While using TTN network, you can add the payload format to decode the payload. 272 272 273 273 274 - [[image:1654505570700-128.png]]153 +=== 2.2.2 Insert SIM card === 275 275 276 -The payload decoder function for TTN is here: 155 +((( 156 +Insert the NB-IoT Card get from your provider. 157 +))) 277 277 278 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 159 +((( 160 +User need to take out the NB-IoT module and insert the SIM card like below: 161 +))) 279 279 280 280 281 - ==2.4Uplink Interval ==164 +[[image:1657249468462-536.png]] 282 282 283 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 284 284 285 285 168 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 286 286 287 -== 2.5 Downlink Payload == 170 +((( 171 +((( 172 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 173 +))) 174 +))) 288 288 289 -By default, LSE50 prints the downlink payload to console port. 290 290 291 - [[image:image-20220606165544-8.png]]177 +**Connection:** 292 292 179 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 293 293 294 - **Examples:**181 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 295 295 183 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 296 296 297 -* **Set TDC** 298 298 299 -I fthepayload=0100003C,it meanssettheEND Node’s TDC to 0x00003C=60(S),whiletype codeis01.186 +In the PC, use below serial tool settings: 300 300 301 -Payload: 01 00 00 1E TDC=30S 188 +* Baud: (% style="color:green" %)**9600** 189 +* Data bits:** (% style="color:green" %)8(%%)** 190 +* Stop bits: (% style="color:green" %)**1** 191 +* Parity: (% style="color:green" %)**None** 192 +* Flow Control: (% style="color:green" %)**None** 302 302 303 -Payload: 01 00 00 3C TDC=60S 194 +((( 195 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 196 +))) 304 304 198 +[[image:image-20220708110657-3.png]] 305 305 306 -* **Reset** 200 +((( 201 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 202 +))) 307 307 308 -If payload = 0x04FF, it will reset the LSE01 309 309 310 310 311 - ***CFM**206 +=== 2.2.4 Use CoAP protocol to uplink data === 312 312 313 - DownlinkPayload:05000001,SetAT+CFM=1or05000000,setAT+CFM=0208 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 314 314 315 315 211 +**Use below commands:** 316 316 317 -== 2.6 Show Data in DataCake IoT Server == 213 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 214 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 215 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 318 318 319 - [[DATACAKE>>url:https://datacake.co/]]providesahuman friendly interfaceto show theensordata,once we have data in TTN,wecan use[[DATACAKE>>url:https://datacake.co/]] to connectto TTNand seethe data in DATACAKE. Below are the steps:217 +For parameter description, please refer to AT command set 320 320 219 +[[image:1657249793983-486.png]] 321 321 322 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 323 323 324 - **Step2**: Toconfigure theApplication to forwarddatatoDATACAKEyou willneedtoadd integration.Toaddthe DATACAKE integration,performthefollowingsteps:222 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 325 325 224 +[[image:1657249831934-534.png]] 326 326 327 -[[image:1654505857935-743.png]] 328 328 329 329 330 - [[image:1654505874829-548.png]]228 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 331 331 332 - Step3: CreateanaccountorloginDatacake.230 +This feature is supported since firmware version v1.0.1 333 333 334 -Step 4: Search the LSE01 and add DevEUI. 335 335 233 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 234 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 235 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 336 336 337 -[[image:1654 505905236-553.png]]237 +[[image:1657249864775-321.png]] 338 338 339 339 340 - After added, the sensor data arrive TTN, it willalso arriveand show in Mydevices.240 +[[image:1657249930215-289.png]] 341 341 342 -[[image:1654505925508-181.png]] 343 343 344 344 244 +=== 2.2.6 Use MQTT protocol to uplink data === 345 345 346 - ==2.7 FrequencyPlans==246 +This feature is supported since firmware version v110 347 347 348 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 349 349 249 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 250 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 251 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 252 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 253 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 254 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 255 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 350 350 351 - === 2.7.1EU863-870 (EU868) ===257 +[[image:1657249978444-674.png]] 352 352 353 -(% style="color:#037691" %)** Uplink:** 354 354 355 -868. 1 - SF7BW125 to SF12BW125260 +[[image:1657249990869-686.png]] 356 356 357 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 358 358 359 -868.5 - SF7BW125 to SF12BW125 263 +((( 264 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 265 +))) 360 360 361 -867.1 - SF7BW125 to SF12BW125 362 362 363 -867.3 - SF7BW125 to SF12BW125 364 364 365 - 867.5-SF7BW125toSF12BW125269 +=== 2.2.7 Use TCP protocol to uplink data === 366 366 367 - 867.7-SF7BW125toSF12BW125271 +This feature is supported since firmware version v110 368 368 369 -867.9 - SF7BW125 to SF12BW125 370 370 371 -868.8 - FSK 274 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 275 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 372 372 277 +[[image:1657250217799-140.png]] 373 373 374 -(% style="color:#037691" %)** Downlink:** 375 375 376 - Uplink channels1-9(RX1)280 +[[image:1657250255956-604.png]] 377 377 378 -869.525 - SF9BW125 (RX2 downlink only) 379 379 380 380 284 +=== 2.2.8 Change Update Interval === 381 381 382 - ===2.7.2US902-928(US915)===286 +User can use below command to change the (% style="color:green" %)**uplink interval**. 383 383 384 - UsedinUSA,Canadaand South America. Defaultuse CHE=2288 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 385 385 386 -(% style="color:#037691" %)**Uplink:** 290 +((( 291 +(% style="color:red" %)**NOTE:** 292 +))) 387 387 388 -903.9 - SF7BW125 to SF10BW125 294 +((( 295 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 296 +))) 389 389 390 -904.1 - SF7BW125 to SF10BW125 391 391 392 -904.3 - SF7BW125 to SF10BW125 393 393 394 - 904.5- SF7BW125toSF10BW125300 +== 2.3 Uplink Payload == 395 395 396 - 904.7-SF7BW125toSF10BW125302 +In this mode, uplink payload includes in total 18 bytes 397 397 398 -904.9 - SF7BW125 to SF10BW125 304 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 305 +|=(% style="width: 60px;" %)((( 306 +**Size(bytes)** 307 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 308 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 399 399 400 -905.1 - SF7BW125 to SF10BW125 310 +((( 311 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 312 +))) 401 401 402 -905.3 - SF7BW125 to SF10BW125 403 403 315 +[[image:image-20220708111918-4.png]] 404 404 405 -(% style="color:#037691" %)**Downlink:** 406 406 407 - 923.3-SF7BW500toSF12BW500318 +The payload is ASCII string, representative same HEX: 408 408 409 - 923.9- SF7BW500to SF12BW500320 +0x72403155615900640c7817075e0a8c02f900 where: 410 410 411 -924.5 - SF7BW500 to SF12BW500 322 +* Device ID: 0x 724031556159 = 724031556159 323 +* Version: 0x0064=100=1.0.0 412 412 413 -925.1 - SF7BW500 to SF12BW500 325 +* BAT: 0x0c78 = 3192 mV = 3.192V 326 +* Singal: 0x17 = 23 327 +* Soil Moisture: 0x075e= 1886 = 18.86 % 328 +* Soil Temperature:0x0a8c =2700=27 °C 329 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 330 +* Interrupt: 0x00 = 0 414 414 415 -925.7 - SF7BW500 to SF12BW500 416 416 417 -926.3 - SF7BW500 to SF12BW500 418 418 419 - 926.9-SF7BW500to SF12BW500334 +== 2.4 Payload Explanation and Sensor Interface == 420 420 421 -927.5 - SF7BW500 to SF12BW500 422 422 423 - 923.3 - SF12BW500(RX2 downlinkonly)337 +=== 2.4.1 Device ID === 424 424 339 +((( 340 +By default, the Device ID equal to the last 6 bytes of IMEI. 341 +))) 425 425 343 +((( 344 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 345 +))) 426 426 427 -=== 2.7.3 CN470-510 (CN470) === 347 +((( 348 +**Example:** 349 +))) 428 428 429 -Used in China, Default use CHE=1 351 +((( 352 +AT+DEUI=A84041F15612 353 +))) 430 430 431 -(% style="color:#037691" %)**Uplink:** 355 +((( 356 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 357 +))) 432 432 433 -486.3 - SF7BW125 to SF12BW125 434 434 435 -486.5 - SF7BW125 to SF12BW125 436 436 437 -4 86.7 - SF7BW125toSF12BW125361 +=== 2.4.2 Version Info === 438 438 439 -486.9 - SF7BW125 to SF12BW125 363 +((( 364 +Specify the software version: 0x64=100, means firmware version 1.00. 365 +))) 440 440 441 -487.1 - SF7BW125 to SF12BW125 367 +((( 368 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 369 +))) 442 442 443 -487.3 - SF7BW125 to SF12BW125 444 444 445 -487.5 - SF7BW125 to SF12BW125 446 446 447 -4 87.7- SF7BW125toSF12BW125373 +=== 2.4.3 Battery Info === 448 448 375 +((( 376 +Check the battery voltage for LSE01. 377 +))) 449 449 450 -(% style="color:#037691" %)**Downlink:** 379 +((( 380 +Ex1: 0x0B45 = 2885mV 381 +))) 451 451 452 -506.7 - SF7BW125 to SF12BW125 383 +((( 384 +Ex2: 0x0B49 = 2889mV 385 +))) 453 453 454 -506.9 - SF7BW125 to SF12BW125 455 455 456 -507.1 - SF7BW125 to SF12BW125 457 457 458 - 507.3-SF7BW125toSF12BW125389 +=== 2.4.4 Signal Strength === 459 459 460 -507.5 - SF7BW125 to SF12BW125 391 +((( 392 +NB-IoT Network signal Strength. 393 +))) 461 461 462 -507.7 - SF7BW125 to SF12BW125 395 +((( 396 +**Ex1: 0x1d = 29** 397 +))) 463 463 464 -507.9 - SF7BW125 to SF12BW125 399 +((( 400 +(% style="color:blue" %)**0**(%%) -113dBm or less 401 +))) 465 465 466 -508.1 - SF7BW125 to SF12BW125 403 +((( 404 +(% style="color:blue" %)**1**(%%) -111dBm 405 +))) 467 467 468 -505.3 - SF12BW125 (RX2 downlink only) 407 +((( 408 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 409 +))) 469 469 411 +((( 412 +(% style="color:blue" %)**31** (%%) -51dBm or greater 413 +))) 470 470 415 +((( 416 +(% style="color:blue" %)**99** (%%) Not known or not detectable 417 +))) 471 471 472 -=== 2.7.4 AU915-928(AU915) === 473 473 474 -Default use CHE=2 475 475 476 - (% style="color:#037691"%)**Uplink:**421 +=== 2.4.5 Soil Moisture === 477 477 478 -916.8 - SF7BW125 to SF12BW125 423 +((( 424 +((( 425 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 426 +))) 427 +))) 479 479 480 -917.0 - SF7BW125 to SF12BW125 429 +((( 430 +((( 431 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 432 +))) 433 +))) 481 481 482 -917.2 - SF7BW125 to SF12BW125 435 +((( 436 + 437 +))) 483 483 484 -917.4 - SF7BW125 to SF12BW125 439 +((( 440 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 441 +))) 485 485 486 -917.6 - SF7BW125 to SF12BW125 487 487 488 -917.8 - SF7BW125 to SF12BW125 489 489 490 - 918.0-SF7BW125toSF12BW125445 +=== 2.4.6 Soil Temperature === 491 491 492 -918.2 - SF7BW125 to SF12BW125 447 +((( 448 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 449 +))) 493 493 451 +((( 452 +**Example**: 453 +))) 494 494 495 -(% style="color:#037691" %)**Downlink:** 455 +((( 456 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 457 +))) 496 496 497 -923.3 - SF7BW500 to SF12BW500 459 +((( 460 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 461 +))) 498 498 499 -923.9 - SF7BW500 to SF12BW500 500 500 501 -924.5 - SF7BW500 to SF12BW500 502 502 503 - 925.1-SF7BW500toSF12BW500465 +=== 2.4.7 Soil Conductivity (EC) === 504 504 505 -925.7 - SF7BW500 to SF12BW500 467 +((( 468 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 469 +))) 506 506 507 -926.3 - SF7BW500 to SF12BW500 471 +((( 472 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 473 +))) 508 508 509 -926.9 - SF7BW500 to SF12BW500 475 +((( 476 +Generally, the EC value of irrigation water is less than 800uS / cm. 477 +))) 510 510 511 -927.5 - SF7BW500 to SF12BW500 479 +((( 480 + 481 +))) 512 512 513 -923.3 - SF12BW500(RX2 downlink only) 483 +((( 484 + 485 +))) 514 514 487 +=== 2.4.8 Digital Interrupt === 515 515 489 +((( 490 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 491 +))) 516 516 517 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 493 +((( 494 +The command is: 495 +))) 518 518 519 -(% style="color:#037691" %)**Default Uplink channel:** 497 +((( 498 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 499 +))) 520 520 521 -923.2 - SF7BW125 to SF10BW125 522 522 523 -923.4 - SF7BW125 to SF10BW125 502 +((( 503 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 504 +))) 524 524 525 525 526 -(% style="color:#037691" %)**Additional Uplink Channel**: 507 +((( 508 +Example: 509 +))) 527 527 528 -(OTAA mode, channel added by JoinAccept message) 511 +((( 512 +0x(00): Normal uplink packet. 513 +))) 529 529 530 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 515 +((( 516 +0x(01): Interrupt Uplink Packet. 517 +))) 531 531 532 -922.2 - SF7BW125 to SF10BW125 533 533 534 -922.4 - SF7BW125 to SF10BW125 535 535 536 - 922.6- SF7BW125 toSF10BW125521 +=== 2.4.9 +5V Output === 537 537 538 -922.8 - SF7BW125 to SF10BW125 523 +((( 524 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 525 +))) 539 539 540 -923.0 - SF7BW125 to SF10BW125 541 541 542 -922.0 - SF7BW125 to SF10BW125 528 +((( 529 +The 5V output time can be controlled by AT Command. 530 +))) 543 543 532 +((( 533 +(% style="color:blue" %)**AT+5VT=1000** 534 +))) 544 544 545 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 536 +((( 537 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 538 +))) 546 546 547 -923.6 - SF7BW125 to SF10BW125 548 548 549 -923.8 - SF7BW125 to SF10BW125 550 550 551 - 924.0- SF7BW125toSF10BW125542 +== 2.5 Downlink Payload == 552 552 553 - 924.2-SF7BW125toSF10BW125544 +By default, NSE01 prints the downlink payload to console port. 554 554 555 - 924.4-SF7BW125 to SF10BW125546 +[[image:image-20220708133731-5.png]] 556 556 557 -924.6 - SF7BW125 to SF10BW125 558 558 549 +((( 550 +(% style="color:blue" %)**Examples:** 551 +))) 559 559 560 -(% style="color:#037691" %)** Downlink:** 553 +((( 554 + 555 +))) 561 561 562 -Uplink channels 1-8 (RX1) 557 +* ((( 558 +(% style="color:blue" %)**Set TDC** 559 +))) 563 563 564 -923.2 - SF10BW125 (RX2) 561 +((( 562 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 563 +))) 565 565 565 +((( 566 +Payload: 01 00 00 1E TDC=30S 567 +))) 566 566 569 +((( 570 +Payload: 01 00 00 3C TDC=60S 571 +))) 567 567 568 -=== 2.7.6 KR920-923 (KR920) === 573 +((( 574 + 575 +))) 569 569 570 -Default channel: 577 +* ((( 578 +(% style="color:blue" %)**Reset** 579 +))) 571 571 572 -922.1 - SF7BW125 to SF12BW125 581 +((( 582 +If payload = 0x04FF, it will reset the NSE01 583 +))) 573 573 574 -922.3 - SF7BW125 to SF12BW125 575 575 576 - 922.5-SF7BW125toSF12BW125586 +* (% style="color:blue" %)**INTMOD** 577 577 588 +((( 589 +Downlink Payload: 06000003, Set AT+INTMOD=3 590 +))) 578 578 579 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 580 580 581 -922.1 - SF7BW125 to SF12BW125 582 582 583 - 922.3-SF7BW125toSF12BW125594 +== 2.6 LED Indicator == 584 584 585 -922.5 - SF7BW125 to SF12BW125 596 +((( 597 +The NSE01 has an internal LED which is to show the status of different state. 586 586 587 -922.7 - SF7BW125 to SF12BW125 588 588 589 -922.9 - SF7BW125 to SF12BW125 600 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 601 +* Then the LED will be on for 1 second means device is boot normally. 602 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 603 +* For each uplink probe, LED will be on for 500ms. 604 +))) 590 590 591 -923.1 - SF7BW125 to SF12BW125 592 592 593 -923.3 - SF7BW125 to SF12BW125 594 594 595 595 596 - (%style="color:#037691" %)**Downlink:**609 +== 2.7 Installation in Soil == 597 597 598 - Uplinkchannels1-7(RX1)611 +__**Measurement the soil surface**__ 599 599 600 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 613 +((( 614 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 615 +))) 601 601 617 +[[image:1657259653666-883.png]] 602 602 603 603 604 -=== 2.7.7 IN865-867 (IN865) === 620 +((( 621 + 605 605 606 -(% style="color:#037691" %)** Uplink:** 623 +((( 624 +Dig a hole with diameter > 20CM. 625 +))) 607 607 608 -865.0625 - SF7BW125 to SF12BW125 627 +((( 628 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 629 +))) 630 +))) 609 609 610 - 865.4025SF7BW125 to SF12BW125632 +[[image:1654506665940-119.png]] 611 611 612 -865.9850 - SF7BW125 to SF12BW125 634 +((( 635 + 636 +))) 613 613 614 614 615 - (% style="color:#037691"%)**Downlink:**639 +== 2.8 Firmware Change Log == 616 616 617 -Uplink channels 1-3 (RX1) 618 618 619 - 866.550-SF10BW125(RX2)642 +Download URL & Firmware Change log 620 620 644 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 621 621 622 622 647 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 623 623 624 -== 2.8 LED Indicator == 625 625 626 -The LSE01 has an internal LED which is to show the status of different state. 627 627 628 -* Blink once when device power on. 629 -* Solid ON for 5 seconds once device successful Join the network. 630 -* Blink once when device transmit a packet. 651 +== 2.9 Battery Analysis == 631 631 632 -== 2.9 InstallationinSoil==653 +=== 2.9.1 Battery Type === 633 633 634 -**Measurement the soil surface** 635 635 636 - 637 -[[image:1654506634463-199.png]] 638 - 639 639 ((( 640 -((( 641 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 657 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 642 642 ))) 643 -))) 644 644 645 645 646 -[[image:1654506665940-119.png]] 647 - 648 648 ((( 649 - Dig aholewithdiameter>20CM.662 +The battery is designed to last for several years depends on the actually use environment and update interval. 650 650 ))) 651 651 652 -((( 653 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 654 -))) 655 655 656 - 657 -== 2.10 Firmware Change Log == 658 - 659 659 ((( 660 - **Firmware downloadlink:**667 +The battery related documents as below: 661 661 ))) 662 662 663 - (((664 -[[ http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]665 - )))670 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 671 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 672 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 666 666 667 667 ((( 668 - 675 +[[image:image-20220708140453-6.png]] 669 669 ))) 670 670 671 -((( 672 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 673 -))) 674 674 675 -((( 676 - 677 -))) 678 678 679 -((( 680 -**V1.0.** 681 -))) 680 +=== 2.9.2 Power consumption Analyze === 682 682 683 683 ((( 684 - Release683 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 685 685 ))) 686 686 687 687 688 -== 2.11 Battery Analysis == 689 - 690 -=== 2.11.1 Battery Type === 691 - 692 692 ((( 693 - The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The batteryis non-rechargeablebattery type with a lowdischargerate (<2% per year). Thistype ofbattery is commonly used in IoT devices such aswater meter.688 +Instruction to use as below: 694 694 ))) 695 695 696 696 ((( 697 - Thebatterys designedlastforrethan5 years fortheSN50.692 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 698 698 ))) 699 699 695 + 700 700 ((( 701 -((( 702 -The battery-related documents are as below: 697 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 703 703 ))) 704 -))) 705 705 706 706 * ((( 707 - [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],701 +Product Model 708 708 ))) 709 709 * ((( 710 - [[Lithium-ThionylChloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],704 +Uplink Interval 711 711 ))) 712 712 * ((( 713 - [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]],[[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]707 +Working Mode 714 714 ))) 715 715 716 - [[image:image-20220606171726-9.png]] 710 +((( 711 +And the Life expectation in difference case will be shown on the right. 712 +))) 717 717 714 +[[image:image-20220708141352-7.jpeg]] 718 718 719 719 720 -=== 2.11.2 Battery Note === 721 721 718 +=== 2.9.3 Battery Note === 719 + 722 722 ((( 723 723 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 724 724 ))) ... ... @@ -725,299 +725,195 @@ 725 725 726 726 727 727 728 -=== 2. 11.3Replace the battery ===726 +=== 2.9.4 Replace the battery === 729 729 730 730 ((( 731 - IfBattery is lower than 2.7v,usershouldreplace the battery ofLSE01.729 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 732 732 ))) 733 733 732 + 733 + 734 += 3. Access NB-IoT Module = 735 + 734 734 ((( 735 - You can changethe battery in the LSE01.The type of battery isnot limitedas longas the outputis between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the maincircuit. If you need to use a battery with lessthan 3.3v, pleaseremovethe D1and shortcut thewopadsofitso therewon’tbe voltage drop between battery andmain board.737 +Users can directly access the AT command set of the NB-IoT module. 736 736 ))) 737 737 738 738 ((( 739 -The defaultbattery packof LSE01 includesa ER18505 plussupercapacitor.Ifusercan’tfind this pack locally, theycan find ER18505orequivalence,whichwillalsoworkinmostcase.The SPC can enlargethebattery lifeforigh frequency use(updateperiod below5minutes)741 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 740 740 ))) 741 741 744 +[[image:1657261278785-153.png]] 742 742 743 743 744 -= 3. Using the AT Commands = 745 745 746 -= =3.1AccessAT Commands ==748 += 4. Using the AT Commands = 747 747 750 +== 4.1 Access AT Commands == 748 748 749 - LSE01supportsATCommandsetn the stock firmware.Youcanuse a USB toTTLadaptertoconnect to LSE01forusing ATcommand,asbelow.752 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 750 750 751 -[[image:1654501986557-872.png]] 752 752 755 +AT+<CMD>? : Help on <CMD> 753 753 754 - Orifyouhavebelowboard,usebelowconnection:757 +AT+<CMD> : Run <CMD> 755 755 759 +AT+<CMD>=<value> : Set the value 756 756 757 - [[image:1654502005655-729.png]]761 +AT+<CMD>=? : Get the value 758 758 759 759 760 - 761 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 762 - 763 - 764 - [[image:1654502050864-459.png]] 765 - 766 - 767 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 768 - 769 - 770 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 771 - 772 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 773 - 774 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 775 - 776 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 777 - 778 - 779 779 (% style="color:#037691" %)**General Commands**(%%) 780 780 781 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention766 +AT : Attention 782 782 783 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help768 +AT? : Short Help 784 784 785 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset770 +ATZ : MCU Reset 786 786 787 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval772 +AT+TDC : Application Data Transmission Interval 788 788 774 +AT+CFG : Print all configurations 789 789 790 - (%style="color:#037691"%)**Keys,IDsand EUIs management**776 +AT+CFGMOD : Working mode selection 791 791 792 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI778 +AT+INTMOD : Set the trigger interrupt mode 793 793 794 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey780 +AT+5VT : Set extend the time of 5V power 795 795 796 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key782 +AT+PRO : Choose agreement 797 797 798 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress784 +AT+WEIGRE : Get weight or set weight to 0 799 799 800 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI786 +AT+WEIGAP : Get or Set the GapValue of weight 801 801 802 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)788 +AT+RXDL : Extend the sending and receiving time 803 803 804 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network790 +AT+CNTFAC : Get or set counting parameters 805 805 806 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode792 +AT+SERVADDR : Server Address 807 807 808 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 809 809 810 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network795 +(% style="color:#037691" %)**COAP Management** 811 811 812 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode797 +AT+URI : Resource parameters 813 813 814 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 815 815 816 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format800 +(% style="color:#037691" %)**UDP Management** 817 817 818 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat802 +AT+CFM : Upload confirmation mode (only valid for UDP) 819 819 820 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 821 821 822 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data805 +(% style="color:#037691" %)**MQTT Management** 823 823 807 +AT+CLIENT : Get or Set MQTT client 824 824 825 - (%style="color:#037691"%)**LoRaNetworkManagement**809 +AT+UNAME : Get or Set MQTT Username 826 826 827 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate811 +AT+PWD : Get or Set MQTT password 828 828 829 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA813 +AT+PUBTOPIC : Get or Set MQTT publish topic 830 830 831 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting815 +AT+SUBTOPIC : Get or Set MQTT subscription topic 832 832 833 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 834 834 835 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink818 +(% style="color:#037691" %)**Information** 836 836 837 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink820 +AT+FDR : Factory Data Reset 838 838 839 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1822 +AT+PWORD : Serial Access Password 840 840 841 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 842 842 843 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 844 844 845 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1826 += 5. FAQ = 846 846 847 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2828 +== 5.1 How to Upgrade Firmware == 848 848 849 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 850 850 851 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 831 +((( 832 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 833 +))) 852 852 853 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 835 +((( 836 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 837 +))) 854 854 855 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 839 +((( 840 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 841 +))) 856 856 857 857 858 -(% style="color:#037691" %)**Information** 859 859 860 - (% style="background-color:#dcdcdc"%)**AT+RSSI**(%%):RSSIoftheLastReceivedPacket845 +== 5.2 Can I calibrate NSE01 to different soil types? == 861 861 862 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 847 +((( 848 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. 849 +))) 863 863 864 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 865 865 866 - (% style="background-color:#dcdcdc"%)**AT+FDR**(%%) : Factory DataReset852 += 6. Trouble Shooting = 867 867 868 - (%style="background-color:#dcdcdc"%)**AT+PORT**(%%): ApplicationPort854 +== 6.1 Connection problem when uploading firmware == 869 869 870 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 871 871 872 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 873 - 874 - 875 -= 4. FAQ = 876 - 877 -== 4.1 How to change the LoRa Frequency Bands/Region? == 878 - 879 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 880 -When downloading the images, choose the required image file for download. 881 - 882 - 883 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 884 - 885 - 886 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 887 - 888 - 889 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 890 - 891 -[[image:image-20220606154726-3.png]] 892 - 893 -When you use the TTN network, the US915 frequency bands use are: 894 - 895 -* 903.9 - SF7BW125 to SF10BW125 896 -* 904.1 - SF7BW125 to SF10BW125 897 -* 904.3 - SF7BW125 to SF10BW125 898 -* 904.5 - SF7BW125 to SF10BW125 899 -* 904.7 - SF7BW125 to SF10BW125 900 -* 904.9 - SF7BW125 to SF10BW125 901 -* 905.1 - SF7BW125 to SF10BW125 902 -* 905.3 - SF7BW125 to SF10BW125 903 -* 904.6 - SF8BW500 904 - 905 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 906 - 907 -(% class="box infomessage" %) 908 908 ((( 909 -** AT+CHE=2**858 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 910 910 ))) 911 911 912 -(% class=" boxinfomessage" %)861 +(% class="wikigeneratedid" %) 913 913 ((( 914 - **ATZ**863 + 915 915 ))) 916 916 917 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 918 918 867 +== 6.2 AT Command input doesn't work == 919 919 920 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 869 +((( 870 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 921 921 922 -[[image:image-20220606154825-4.png]] 872 + 873 +))) 923 923 924 924 876 += 7. Order Info = 925 925 926 -= 5. Trouble Shooting = 927 927 928 - == 5.1 Why I can’tjoin TTNin US915 / AU915bands?==879 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 929 929 930 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 931 931 932 - 933 -== 5.2 AT Command input doesn’t work == 934 - 935 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 936 - 937 - 938 -== 5.3 Device rejoin in at the second uplink packet == 939 - 940 -(% style="color:#4f81bd" %)**Issue describe as below:** 941 - 942 -[[image:1654500909990-784.png]] 943 - 944 - 945 -(% style="color:#4f81bd" %)**Cause for this issue:** 946 - 947 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 948 - 949 - 950 -(% style="color:#4f81bd" %)**Solution: ** 951 - 952 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 953 - 954 -[[image:1654500929571-736.png]] 955 - 956 - 957 -= 6. Order Info = 958 - 959 - 960 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 961 - 962 - 963 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 964 - 965 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 966 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 967 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 968 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 969 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 970 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 971 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 972 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 973 - 974 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 975 - 976 -* (% style="color:red" %)**4**(%%): 4000mAh battery 977 -* (% style="color:red" %)**8**(%%): 8500mAh battery 978 - 979 979 (% class="wikigeneratedid" %) 980 980 ((( 981 981 982 982 ))) 983 983 984 -= 7. Packing Info =887 += 8. Packing Info = 985 985 986 986 ((( 987 -**Package Includes**: 988 -))) 890 + 989 989 990 -* ((( 991 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 892 +(% style="color:#037691" %)**Package Includes**: 893 + 894 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 895 +* External antenna x 1 992 992 ))) 993 993 994 994 ((( 995 995 996 -))) 997 997 998 -((( 999 -**Dimension and weight**: 1000 -))) 901 +(% style="color:#037691" %)**Dimension and weight**: 1001 1001 1002 -* (((1003 - DeviceSize:cm903 +* Size: 195 x 125 x 55 mm 904 +* Weight: 420g 1004 1004 ))) 1005 -* ((( 1006 -Device Weight: g 1007 -))) 1008 -* ((( 1009 -Package Size / pcs : cm 1010 -))) 1011 -* ((( 1012 -Weight / pcs : g 1013 1013 907 +((( 908 + 1014 1014 910 + 1015 1015 1016 1016 ))) 1017 1017 1018 -= 8. Support =914 += 9. Support = 1019 1019 1020 1020 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1021 1021 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1022 - 1023 -
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.5 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content