Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 24 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,9 +3,7 @@ 3 3 4 4 5 5 6 -**Contents:** 7 7 8 -{{toc/}} 9 9 10 10 11 11 ... ... @@ -12,1012 +12,825 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 - == 1.1 Whatis LoRaWANSoil Moisture& EC Sensor ==14 +**Table of Contents:** 18 18 19 -((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 22 22 23 -((( 24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 -))) 26 26 27 -((( 28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 -))) 34 34 20 + 21 += 1. Introduction = 22 + 23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 + 35 35 ((( 36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 -))) 26 + 38 38 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 39 39 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 + 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 + 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 + 36 + 37 +))) 38 + 40 40 [[image:1654503236291-817.png]] 41 41 42 42 43 -[[image:16545 03265560-120.png]]42 +[[image:1657245163077-232.png]] 44 44 45 45 46 46 47 47 == 1.2 Features == 48 48 49 -* LoRaWAN 1.0.3 Class A 50 -* Ultra low power consumption 48 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 51 51 * Monitor Soil Moisture 52 52 * Monitor Soil Temperature 53 53 * Monitor Soil Conductivity 54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 55 55 * AT Commands to change parameters 56 56 * Uplink on periodically 57 57 * Downlink to change configure 58 58 * IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 56 +* Ultra-Low Power consumption 57 +* AT Commands to change parameters 58 +* Micro SIM card slot for NB-IoT SIM 59 +* 8500mAh Battery for long term use 60 60 61 -== 1.3 Specification == 62 62 63 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 64 64 65 -[[image:image-20220606162220-5.png]] 66 66 64 +== 1.3 Specification == 67 67 68 68 69 - ==1.4 Applications==67 +(% style="color:#037691" %)**Common DC Characteristics:** 70 70 71 -* Smart Agriculture 69 +* Supply Voltage: 2.1v ~~ 3.6v 70 +* Operating Temperature: -40 ~~ 85°C 72 72 73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 - 75 75 76 -== 1.5 Firmware Change log == 77 77 74 +(% style="color:#037691" %)**NB-IoT Spec:** 78 78 79 -**LSE01 v1.0 :** Release 76 +* - B1 @H-FDD: 2100MHz 77 +* - B3 @H-FDD: 1800MHz 78 +* - B8 @H-FDD: 900MHz 79 +* - B5 @H-FDD: 850MHz 80 +* - B20 @H-FDD: 800MHz 81 +* - B28 @H-FDD: 700MHz 80 80 81 81 82 82 83 - = 2. ConfigureLSE01to connect toLoRaWANnetwork =85 +Probe(% style="color:#037691" %)** Specification:** 84 84 85 - ==2.1Howitworks==87 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 86 86 87 -((( 88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 -))) 89 +[[image:image-20220708101224-1.png]] 90 90 91 -((( 92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 93 -))) 94 94 95 95 93 +== 1.4 Applications == 96 96 97 - ==2.2Quick guideto connect to LoRaWAN server (OTAA) ==95 +* Smart Agriculture 98 98 99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 97 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 98 + 100 100 100 +== 1.5 Pin Definitions == 101 101 102 -[[image:1654503992078-669.png]] 103 103 103 +[[image:1657246476176-652.png]] 104 104 105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 106 106 107 107 108 - **Step1**:Createa devicein TTNwiththe OTAAkeys fromLSE01.107 += 2. Use NSE01 to communicate with IoT Server = 109 109 110 - EachLSE01is shippedwitha sticker withthe default device EUI asbelow:109 +== 2.1 How it works == 111 111 112 -[[image:image-20220606163732-6.jpeg]] 113 113 114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 112 +((( 113 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 114 +))) 115 115 116 -**Add APP EUI in the application** 117 117 117 +((( 118 +The diagram below shows the working flow in default firmware of NSE01: 119 +))) 118 118 119 -[[image:1 654504596150-405.png]]121 +[[image:image-20220708101605-2.png]] 120 120 121 - 122 - 123 -**Add APP KEY and DEV EUI** 124 - 125 -[[image:1654504683289-357.png]] 126 - 127 - 128 - 129 -**Step 2**: Power on LSE01 130 - 131 - 132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 - 134 -[[image:image-20220606163915-7.png]] 135 - 136 - 137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 - 139 -[[image:1654504778294-788.png]] 140 - 141 - 142 - 143 -== 2.3 Uplink Payload == 144 - 145 -=== 2.3.1 MOD~=0(Default Mode) === 146 - 147 -LSE01 will uplink payload via LoRaWAN with below payload format: 148 - 149 - 150 -Uplink payload includes in total 11 bytes. 123 +((( 151 151 152 - 153 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 154 -|=((( 155 -**Size** 156 - 157 -**(bytes)** 158 -)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1** 159 -|**Value**|(% style="width:46px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:160px" %)((( 160 -Temperature 161 - 162 -(Reserve, Ignore now) 163 -)))|(% style="width:104px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:126px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:114px" %)((( 164 -MOD & Digital Interrupt 165 - 166 -(Optional) 167 167 ))) 168 168 169 -[[image:1654504881641-514.png]] 170 170 171 171 129 +== 2.2 Configure the NSE01 == 172 172 173 -=== 2.3.2 MOD~=1(Original value) === 174 174 175 - Thismodecangettheoriginal AD value of moistureand original conductivity (with temperature drift compensation).132 +=== 2.2.1 Test Requirement === 176 176 177 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 178 -|=((( 179 -**Size** 180 180 181 -**(bytes)** 182 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1** 183 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 184 -Temperature 135 +To use NSE01 in your city, make sure meet below requirements: 185 185 186 - (Reserve,Ignorenow)187 - )))|[[SoilMoisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[SoilConductivity(EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((188 - MOD&DigitalInterrupt137 +* Your local operator has already distributed a NB-IoT Network there. 138 +* The local NB-IoT network used the band that NSE01 supports. 139 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 189 189 190 -(Optional) 141 +((( 142 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 191 191 ))) 192 192 193 -[[image:1654504907647-967.png]] 194 194 146 +[[image:1657249419225-449.png]] 195 195 196 196 197 -=== 2.3.3 Battery Info === 198 198 199 - Checkthebattery voltageforLSE01.150 +=== 2.2.2 Insert SIM card === 200 200 201 - Ex1:0x0B45=2885mV152 +Insert the NB-IoT Card get from your provider. 202 202 203 - Ex2:0x0B49=2889mV154 +User need to take out the NB-IoT module and insert the SIM card like below: 204 204 205 205 157 +[[image:1657249468462-536.png]] 206 206 207 -=== 2.3.4 Soil Moisture === 208 208 209 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 210 210 211 - Forexample,ifthedatayougetfromtheregister is __0x050xDC__,themoisturecontentinthesoil is161 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 212 212 213 - 214 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 215 - 216 - 217 - 218 -=== 2.3.5 Soil Temperature === 219 - 220 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 221 - 222 -**Example**: 223 - 224 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 225 - 226 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 227 - 228 - 229 - 230 -=== 2.3.6 Soil Conductivity (EC) === 231 - 232 232 ((( 233 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 234 -))) 235 - 236 236 ((( 237 - For example,ifthedatayougetfromtheregister is 0x000xC8,the soilconductivityis00C8(H)=200(D)=200uS/cm.165 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 238 238 ))) 239 - 240 -((( 241 -Generally, the EC value of irrigation water is less than 800uS / cm. 242 242 ))) 243 243 244 -((( 245 - 246 -))) 247 247 248 -((( 249 - 250 -))) 170 +**Connection:** 251 251 252 -= ==2.3.7MOD===172 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 253 253 254 - Firmwareversionatst v2.1 supportschanging mode.174 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 255 255 256 - Forexample,bytes[10]=90176 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 257 257 258 -mod=(bytes[10]>>7)&0x01=1. 259 259 179 +In the PC, use below serial tool settings: 260 260 261 -**Downlink Command:** 181 +* Baud: (% style="color:green" %)**9600** 182 +* Data bits:** (% style="color:green" %)8(%%)** 183 +* Stop bits: (% style="color:green" %)**1** 184 +* Parity: (% style="color:green" %)**None** 185 +* Flow Control: (% style="color:green" %)**None** 262 262 263 -If payload = 0x0A00, workmode=0 187 +((( 188 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 189 +))) 264 264 265 - If** **payload =** **0x0A01, workmode=1191 +[[image:image-20220708110657-3.png]] 266 266 193 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 267 267 268 268 269 -=== 2.3.8 Decode payload in The Things Network === 270 270 271 - WhileusingTTNnetwork,youcan add thepayload formattodecodethepayload.197 +=== 2.2.4 Use CoAP protocol to uplink data === 272 272 199 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 273 273 274 -[[image:1654505570700-128.png]] 275 275 276 - Thepayloaddecoder function for TTN ishere:202 +**Use below commands:** 277 277 278 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 204 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 205 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 206 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 279 279 208 +For parameter description, please refer to AT command set 280 280 281 - ==2.4Uplink Interval ==210 +[[image:1657249793983-486.png]] 282 282 283 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 284 284 213 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 285 285 215 +[[image:1657249831934-534.png]] 286 286 287 -== 2.5 Downlink Payload == 288 288 289 -By default, LSE50 prints the downlink payload to console port. 290 290 291 - [[image:image-20220606165544-8.png]]219 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 292 292 221 +This feature is supported since firmware version v1.0.1 293 293 294 -**Examples:** 295 295 224 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 225 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 226 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 296 296 297 - * **Set TDC**228 +[[image:1657249864775-321.png]] 298 298 299 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 300 300 301 - Payload:0100 00 1E TDC=30S231 +[[image:1657249930215-289.png]] 302 302 303 -Payload: 01 00 00 3C TDC=60S 304 304 305 305 306 - ***Reset**235 +=== 2.2.6 Use MQTT protocol to uplink data === 307 307 308 - If payload= 0x04FF,itwillresettheLSE01237 +This feature is supported since firmware version v110 309 309 310 310 311 -* **CFM** 240 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 241 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 242 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 243 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 244 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 245 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 246 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 312 312 313 - Downlink Payload:05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0248 +[[image:1657249978444-674.png]] 314 314 315 315 251 +[[image:1657249990869-686.png]] 316 316 317 -== 2.6 Show Data in DataCake IoT Server == 318 318 319 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 254 +((( 255 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 256 +))) 320 320 321 321 322 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 323 323 324 - **Step2**:ToconfiguretheApplicationtoforwarddata toDATACAKE youwillneedto add integration. Toaddthe DATACAKE integration, perform the following steps:260 +=== 2.2.7 Use TCP protocol to uplink data === 325 325 262 +This feature is supported since firmware version v110 326 326 327 -[[image:1654505857935-743.png]] 328 328 265 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 266 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 329 329 330 -[[image:165 4505874829-548.png]]268 +[[image:1657250217799-140.png]] 331 331 332 -Step 3: Create an account or log in Datacake. 333 333 334 - Step 4: Search theLSE01and add DevEUI.271 +[[image:1657250255956-604.png]] 335 335 336 336 337 -[[image:1654505905236-553.png]] 338 338 275 +=== 2.2.8 Change Update Interval === 339 339 340 - After added,thesensordataarriveTTN, itwillalsoarriveandshowinMydevices.277 +User can use below command to change the (% style="color:green" %)**uplink interval**. 341 341 342 - [[image:1654505925508-181.png]]279 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 343 343 281 +((( 282 +(% style="color:red" %)**NOTE:** 283 +))) 344 344 285 +((( 286 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 287 +))) 345 345 346 -== 2.7 Frequency Plans == 347 347 348 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 349 349 291 +== 2.3 Uplink Payload == 350 350 351 - ===2.7.1EU863-870(EU868)===293 +In this mode, uplink payload includes in total 18 bytes 352 352 353 -(% style="color:#037691" %)** Uplink:** 295 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 296 +|=(% style="width: 50px;" %)((( 297 +**Size(bytes)** 298 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 299 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 354 354 355 - 868.1-SF7BW125to SF12BW125301 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 356 356 357 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 358 358 359 - 868.5-SF7BW125 to SF12BW125304 +[[image:image-20220708111918-4.png]] 360 360 361 -867.1 - SF7BW125 to SF12BW125 362 362 363 - 867.3-SF7BW125toSF12BW125307 +The payload is ASCII string, representative same HEX: 364 364 365 - 867.5- SF7BW125to SF12BW125309 +0x72403155615900640c7817075e0a8c02f900 where: 366 366 367 -867.7 - SF7BW125 to SF12BW125 311 +* Device ID: 0x 724031556159 = 724031556159 312 +* Version: 0x0064=100=1.0.0 368 368 369 -867.9 - SF7BW125 to SF12BW125 314 +* BAT: 0x0c78 = 3192 mV = 3.192V 315 +* Singal: 0x17 = 23 316 +* Soil Moisture: 0x075e= 1886 = 18.86 % 317 +* Soil Temperature:0x0a8c =2700=27 °C 318 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 319 +* Interrupt: 0x00 = 0 370 370 371 -868.8 - FSK 372 372 373 373 374 -(% style="color:#037691" %)** Downlink:** 375 375 376 - Uplinkchannels1-9(RX1)324 +== 2.4 Payload Explanation and Sensor Interface == 377 377 378 -869.525 - SF9BW125 (RX2 downlink only) 379 379 327 +=== 2.4.1 Device ID === 380 380 329 +By default, the Device ID equal to the last 6 bytes of IMEI. 381 381 382 - ===2.7.2US902-928(US915)===331 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 383 383 384 - Used in USA, Canada and South America. Default useCHE=2333 +**Example:** 385 385 386 - (% style="color:#037691" %)**Uplink:**335 +AT+DEUI=A84041F15612 387 387 388 - 903.9-SF7BW125toSF10BW125337 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 389 389 390 -904.1 - SF7BW125 to SF10BW125 391 391 392 -904.3 - SF7BW125 to SF10BW125 393 393 394 - 904.5 - SF7BW125toSF10BW125341 +=== 2.4.2 Version Info === 395 395 396 - 904.7-SF7BW125toSF10BW125343 +Specify the software version: 0x64=100, means firmware version 1.00. 397 397 398 - 904.9-SF7BW125toSF10BW125345 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 399 399 400 -905.1 - SF7BW125 to SF10BW125 401 401 402 -905.3 - SF7BW125 to SF10BW125 403 403 349 +=== 2.4.3 Battery Info === 404 404 405 -(% style="color:#037691" %)**Downlink:** 351 +((( 352 +Check the battery voltage for LSE01. 353 +))) 406 406 407 -923.3 - SF7BW500 to SF12BW500 355 +((( 356 +Ex1: 0x0B45 = 2885mV 357 +))) 408 408 409 -923.9 - SF7BW500 to SF12BW500 359 +((( 360 +Ex2: 0x0B49 = 2889mV 361 +))) 410 410 411 -924.5 - SF7BW500 to SF12BW500 412 412 413 -925.1 - SF7BW500 to SF12BW500 414 414 415 - 925.7-SF7BW500toSF12BW500365 +=== 2.4.4 Signal Strength === 416 416 417 - 926.3-SF7BW500to SF12BW500367 +NB-IoT Network signal Strength. 418 418 419 - 926.9- SF7BW500toSF12BW500369 +**Ex1: 0x1d = 29** 420 420 421 - 927.5-SF7BW500toSF12BW500371 +(% style="color:blue" %)**0**(%%) -113dBm or less 422 422 423 - 923.3 - SF12BW500(RX2downlinkonly)373 +(% style="color:blue" %)**1**(%%) -111dBm 424 424 375 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 425 425 377 +(% style="color:blue" %)**31** (%%) -51dBm or greater 426 426 427 -= ==2.7.3CN470-510(CN470)===379 +(% style="color:blue" %)**99** (%%) Not known or not detectable 428 428 429 -Used in China, Default use CHE=1 430 430 431 -(% style="color:#037691" %)**Uplink:** 432 432 433 -4 86.3-SF7BW125toSF12BW125383 +=== 2.4.5 Soil Moisture === 434 434 435 -486.5 - SF7BW125 to SF12BW125 385 +((( 386 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 387 +))) 436 436 437 -486.7 - SF7BW125 to SF12BW125 389 +((( 390 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 391 +))) 438 438 439 -486.9 - SF7BW125 to SF12BW125 393 +((( 394 + 395 +))) 440 440 441 -487.1 - SF7BW125 to SF12BW125 397 +((( 398 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 399 +))) 442 442 443 -487.3 - SF7BW125 to SF12BW125 444 444 445 -487.5 - SF7BW125 to SF12BW125 446 446 447 -4 87.7-SF7BW125toSF12BW125403 +=== 2.4.6 Soil Temperature === 448 448 405 +((( 406 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 407 +))) 449 449 450 -(% style="color:#037691" %)**Downlink:** 409 +((( 410 +**Example**: 411 +))) 451 451 452 -506.7 - SF7BW125 to SF12BW125 413 +((( 414 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 415 +))) 453 453 454 -506.9 - SF7BW125 to SF12BW125 417 +((( 418 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 419 +))) 455 455 456 -507.1 - SF7BW125 to SF12BW125 457 457 458 -507.3 - SF7BW125 to SF12BW125 459 459 460 - 507.5-SF7BW125toSF12BW125423 +=== 2.4.7 Soil Conductivity (EC) === 461 461 462 -507.7 - SF7BW125 to SF12BW125 425 +((( 426 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 427 +))) 463 463 464 -507.9 - SF7BW125 to SF12BW125 429 +((( 430 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 431 +))) 465 465 466 -508.1 - SF7BW125 to SF12BW125 433 +((( 434 +Generally, the EC value of irrigation water is less than 800uS / cm. 435 +))) 467 467 468 -505.3 - SF12BW125 (RX2 downlink only) 437 +((( 438 + 439 +))) 469 469 441 +((( 442 + 443 +))) 470 470 445 +=== 2.4.8 Digital Interrupt === 471 471 472 -= ==2.7.4AU915-928(AU915)===447 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 473 473 474 - Defaultuse CHE=2449 +The command is: 475 475 476 -(% style="color: #037691" %)**Uplink:**451 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 477 477 478 -916.8 - SF7BW125 to SF12BW125 479 479 480 - 917.0-SF7BW125toSF12BW125454 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 481 481 482 -917.2 - SF7BW125 to SF12BW125 483 483 484 - 917.4 - SF7BW125 to SF12BW125457 +Example: 485 485 486 - 917.6-SF7BW125to SF12BW125459 +0x(00): Normal uplink packet. 487 487 488 - 917.8-SF7BW125to SF12BW125461 +0x(01): Interrupt Uplink Packet. 489 489 490 -918.0 - SF7BW125 to SF12BW125 491 491 492 -918.2 - SF7BW125 to SF12BW125 493 493 465 +=== 2.4.9 +5V Output === 494 494 495 - (%style="color:#037691"%)**Downlink:**467 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 496 496 497 -923.3 - SF7BW500 to SF12BW500 498 498 499 - 923.9- SF7BW500toSF12BW500470 +The 5V output time can be controlled by AT Command. 500 500 501 - 924.5- SF7BW500toSF12BW500472 +(% style="color:blue" %)**AT+5VT=1000** 502 502 503 - 925.1-SF7BW500 toSF12BW500474 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 504 504 505 -925.7 - SF7BW500 to SF12BW500 506 506 507 -926.3 - SF7BW500 to SF12BW500 508 508 509 - 926.9 - SF7BW500toSF12BW500478 +== 2.5 Downlink Payload == 510 510 511 - 927.5-SF7BW500toSF12BW500480 +By default, NSE01 prints the downlink payload to console port. 512 512 513 - 923.3- SF12BW500(RX2 downlink only)482 +[[image:image-20220708133731-5.png]] 514 514 515 515 485 +((( 486 +(% style="color:blue" %)**Examples:** 487 +))) 516 516 517 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 489 +((( 490 + 491 +))) 518 518 519 -(% style="color:#037691" %)**Default Uplink channel:** 493 +* ((( 494 +(% style="color:blue" %)**Set TDC** 495 +))) 520 520 521 -923.2 - SF7BW125 to SF10BW125 497 +((( 498 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 499 +))) 522 522 523 -923.4 - SF7BW125 to SF10BW125 501 +((( 502 +Payload: 01 00 00 1E TDC=30S 503 +))) 524 524 505 +((( 506 +Payload: 01 00 00 3C TDC=60S 507 +))) 525 525 526 -(% style="color:#037691" %)**Additional Uplink Channel**: 509 +((( 510 + 511 +))) 527 527 528 -(OTAA mode, channel added by JoinAccept message) 513 +* ((( 514 +(% style="color:blue" %)**Reset** 515 +))) 529 529 530 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 517 +((( 518 +If payload = 0x04FF, it will reset the NSE01 519 +))) 531 531 532 -922.2 - SF7BW125 to SF10BW125 533 533 534 - 922.4-SF7BW125toSF10BW125522 +* (% style="color:blue" %)**INTMOD** 535 535 536 - 922.6-SF7BW125toSF10BW125524 +Downlink Payload: 06000003, Set AT+INTMOD=3 537 537 538 -922.8 - SF7BW125 to SF10BW125 539 539 540 -923.0 - SF7BW125 to SF10BW125 541 541 542 - 922.0-SF7BW125toSF10BW125528 +== 2.6 LED Indicator == 543 543 530 +((( 531 +The NSE01 has an internal LED which is to show the status of different state. 544 544 545 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 546 546 547 -923.6 - SF7BW125 to SF10BW125 534 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 535 +* Then the LED will be on for 1 second means device is boot normally. 536 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 537 +* For each uplink probe, LED will be on for 500ms. 538 +))) 548 548 549 -923.8 - SF7BW125 to SF10BW125 550 550 551 -924.0 - SF7BW125 to SF10BW125 552 552 553 -924.2 - SF7BW125 to SF10BW125 554 554 555 - 924.4 - SF7BW125to SF10BW125543 +== 2.7 Installation in Soil == 556 556 557 - 924.6- SF7BW125toSF10BW125545 +__**Measurement the soil surface**__ 558 558 547 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 559 559 560 - (% style="color:#037691" %)** Downlink:**549 +[[image:1657259653666-883.png]] 561 561 562 -Uplink channels 1-8 (RX1) 563 563 564 -923.2 - SF10BW125 (RX2) 552 +((( 553 + 565 565 555 +((( 556 +Dig a hole with diameter > 20CM. 557 +))) 566 566 559 +((( 560 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 561 +))) 562 +))) 567 567 568 - === 2.7.6KR920-923 (KR920) ===564 +[[image:1654506665940-119.png]] 569 569 570 -Default channel: 566 +((( 567 + 568 +))) 571 571 572 -922.1 - SF7BW125 to SF12BW125 573 573 574 - 922.3- SF7BW125toSF12BW125571 +== 2.8 Firmware Change Log == 575 575 576 -922.5 - SF7BW125 to SF12BW125 577 577 574 +Download URL & Firmware Change log 578 578 579 - (% style="color:#037691" %)**Uplink: (OTAAmode, channelby JoinAcceptmessage)**576 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 580 580 581 -922.1 - SF7BW125 to SF12BW125 582 582 583 - 922.3- SF7BW125toSF12BW125579 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 584 584 585 -922.5 - SF7BW125 to SF12BW125 586 586 587 -922.7 - SF7BW125 to SF12BW125 588 588 589 - 922.9- SF7BW125toSF12BW125583 +== 2.9 Battery Analysis == 590 590 591 - 923.1- SF7BW125toSF12BW125585 +=== 2.9.1 Battery Type === 592 592 593 -923.3 - SF7BW125 to SF12BW125 594 594 588 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 595 595 596 -(% style="color:#037691" %)**Downlink:** 597 597 598 - Uplinkchannels1-7(RX1)591 +The battery is designed to last for several years depends on the actually use environment and update interval. 599 599 600 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 601 601 594 +The battery related documents as below: 602 602 596 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 597 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 598 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 603 603 604 -=== 2.7.7 IN865-867 (IN865) === 605 - 606 -(% style="color:#037691" %)** Uplink:** 607 - 608 -865.0625 - SF7BW125 to SF12BW125 609 - 610 -865.4025 - SF7BW125 to SF12BW125 611 - 612 -865.9850 - SF7BW125 to SF12BW125 613 - 614 - 615 -(% style="color:#037691" %) **Downlink:** 616 - 617 -Uplink channels 1-3 (RX1) 618 - 619 -866.550 - SF10BW125 (RX2) 620 - 621 - 622 - 623 - 624 -== 2.8 LED Indicator == 625 - 626 -The LSE01 has an internal LED which is to show the status of different state. 627 - 628 -* Blink once when device power on. 629 -* Solid ON for 5 seconds once device successful Join the network. 630 -* Blink once when device transmit a packet. 631 - 632 -== 2.9 Installation in Soil == 633 - 634 -**Measurement the soil surface** 635 - 636 - 637 -[[image:1654506634463-199.png]] 638 - 639 639 ((( 640 -((( 641 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 601 +[[image:image-20220708140453-6.png]] 642 642 ))) 643 -))) 644 644 645 645 646 -[[image:1654506665940-119.png]] 647 647 648 -((( 649 -Dig a hole with diameter > 20CM. 650 -))) 606 +=== 2.9.2 Power consumption Analyze === 651 651 652 652 ((( 653 - Horizontalinsertthe probeto the soil andfill the holefor longtermmeasurement.609 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 654 654 ))) 655 655 656 656 657 -== 2.10 Firmware Change Log == 658 - 659 659 ((( 660 - **Firmware downloadlink:**614 +Instruction to use as below: 661 661 ))) 662 662 663 663 ((( 664 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/ LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]618 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 665 665 ))) 666 666 667 -((( 668 - 669 -))) 670 670 671 671 ((( 672 - **FirmwareUpgradeMethod: **[[FirmwareUpgradeInstruction>>doc:Main.FirmwareUpgradeInstruction for STM32 baseproducts.WebHome]]623 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 673 673 ))) 674 674 675 -((( 676 - 626 +* ((( 627 +Product Model 677 677 ))) 678 - 679 -((( 680 -**V1.0.** 629 +* ((( 630 +Uplink Interval 681 681 ))) 632 +* ((( 633 +Working Mode 634 +))) 682 682 683 683 ((( 684 - Release637 +And the Life expectation in difference case will be shown on the right. 685 685 ))) 686 686 640 +[[image:image-20220708141352-7.jpeg]] 687 687 688 -== 2.11 Battery Analysis == 689 689 690 -=== 2.11.1 Battery Type === 691 691 692 -((( 693 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 694 -))) 644 +=== 2.9.3 Battery Note === 695 695 696 696 ((( 697 -The battery is designed to last for more than5 yearsfor theLSN50.647 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 698 698 ))) 699 699 700 -((( 701 -((( 702 -The battery-related documents are as below: 703 -))) 704 -))) 705 705 706 -* ((( 707 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 708 -))) 709 -* ((( 710 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 711 -))) 712 -* ((( 713 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 714 -))) 715 715 716 - [[image:image-20220606171726-9.png]]652 +=== 2.9.4 Replace the battery === 717 717 718 - 719 - 720 -=== 2.11.2 Battery Note === 721 - 722 722 ((( 723 -The Li-SICObatteryisdesigned forsmallcurrent/longperiodapplication. Itis notgood to use ahigh current,shortperiodtransmitmethod. Therecommendedminimum periodfor use ofthisbatteryis5minutes.If you useahorterperiodtimeto transmitLoRa, then the battery lifemaybe decreased.655 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 724 724 ))) 725 725 726 726 727 727 728 -= ==2.11.3Replacethebattery===660 += 3. Access NB-IoT Module = 729 729 730 730 ((( 731 - If Battery islower than2.7v, user shouldplace thebatteryofLSE01.663 +Users can directly access the AT command set of the NB-IoT module. 732 732 ))) 733 733 734 734 ((( 735 - Youcan changethebatteryintheLSE01.Thetypeofbattery is notlimitedaslongas the outputisbetween3v to3.6v. On themainboard, there isa diode(D1) between the battery andthe main circuit. If you needo usea battery with lessthan 3.3v, pleaseremovethe D1 andshortcut thetwopadsofit sothere won’t be voltageop between battery andmain board.667 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 736 736 ))) 737 737 738 -((( 739 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 740 -))) 670 +[[image:1657261278785-153.png]] 741 741 742 742 743 743 744 -= 3.Using the AT Commands =674 += 4. Using the AT Commands = 745 745 746 -== 3.1 Access AT Commands ==676 +== 4.1 Access AT Commands == 747 747 678 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 748 748 749 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 750 750 751 - [[image:1654501986557-872.png]]681 +AT+<CMD>? : Help on <CMD> 752 752 683 +AT+<CMD> : Run <CMD> 753 753 754 - Orifyouhavebelowboard,usebelowconnection:685 +AT+<CMD>=<value> : Set the value 755 755 687 +AT+<CMD>=? : Get the value 756 756 757 -[[image:1654502005655-729.png]] 758 758 759 - 760 - 761 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 762 - 763 - 764 - [[image:1654502050864-459.png]] 765 - 766 - 767 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 768 - 769 - 770 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 771 - 772 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 773 - 774 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 775 - 776 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 777 - 778 - 779 779 (% style="color:#037691" %)**General Commands**(%%) 780 780 781 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention692 +AT : Attention 782 782 783 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help694 +AT? : Short Help 784 784 785 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset696 +ATZ : MCU Reset 786 786 787 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval698 +AT+TDC : Application Data Transmission Interval 788 788 700 +AT+CFG : Print all configurations 789 789 790 - (%style="color:#037691"%)**Keys,IDsand EUIs management**702 +AT+CFGMOD : Working mode selection 791 791 792 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI704 +AT+INTMOD : Set the trigger interrupt mode 793 793 794 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey706 +AT+5VT : Set extend the time of 5V power 795 795 796 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key708 +AT+PRO : Choose agreement 797 797 798 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress710 +AT+WEIGRE : Get weight or set weight to 0 799 799 800 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI712 +AT+WEIGAP : Get or Set the GapValue of weight 801 801 802 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)714 +AT+RXDL : Extend the sending and receiving time 803 803 804 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network716 +AT+CNTFAC : Get or set counting parameters 805 805 806 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode718 +AT+SERVADDR : Server Address 807 807 808 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 809 809 810 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network721 +(% style="color:#037691" %)**COAP Management** 811 811 812 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode723 +AT+URI : Resource parameters 813 813 814 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 815 815 816 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format726 +(% style="color:#037691" %)**UDP Management** 817 817 818 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat728 +AT+CFM : Upload confirmation mode (only valid for UDP) 819 819 820 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 821 821 822 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data731 +(% style="color:#037691" %)**MQTT Management** 823 823 733 +AT+CLIENT : Get or Set MQTT client 824 824 825 - (%style="color:#037691"%)**LoRaNetworkManagement**735 +AT+UNAME : Get or Set MQTT Username 826 826 827 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate737 +AT+PWD : Get or Set MQTT password 828 828 829 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA739 +AT+PUBTOPIC : Get or Set MQTT publish topic 830 830 831 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting741 +AT+SUBTOPIC : Get or Set MQTT subscription topic 832 832 833 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 834 834 835 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink744 +(% style="color:#037691" %)**Information** 836 836 837 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink746 +AT+FDR : Factory Data Reset 838 838 839 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1748 +AT+PWORD : Serial Access Password 840 840 841 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 842 842 843 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 844 844 845 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1752 += 5. FAQ = 846 846 847 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2754 +== 5.1 How to Upgrade Firmware == 848 848 849 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 850 850 851 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 757 +((( 758 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 759 +))) 852 852 853 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 854 - 855 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 856 - 857 - 858 -(% style="color:#037691" %)**Information** 859 - 860 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 861 - 862 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 863 - 864 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 865 - 866 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 867 - 868 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 869 - 870 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 871 - 872 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 873 - 874 - 875 -= 4. FAQ = 876 - 877 -== 4.1 How to change the LoRa Frequency Bands/Region? == 878 - 879 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 880 -When downloading the images, choose the required image file for download. 881 - 882 - 883 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 884 - 885 - 886 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 887 - 888 - 889 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 890 - 891 -[[image:image-20220606154726-3.png]] 892 - 893 -When you use the TTN network, the US915 frequency bands use are: 894 - 895 -* 903.9 - SF7BW125 to SF10BW125 896 -* 904.1 - SF7BW125 to SF10BW125 897 -* 904.3 - SF7BW125 to SF10BW125 898 -* 904.5 - SF7BW125 to SF10BW125 899 -* 904.7 - SF7BW125 to SF10BW125 900 -* 904.9 - SF7BW125 to SF10BW125 901 -* 905.1 - SF7BW125 to SF10BW125 902 -* 905.3 - SF7BW125 to SF10BW125 903 -* 904.6 - SF8BW500 904 - 905 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 906 - 907 -(% class="box infomessage" %) 908 908 ((( 909 - **AT+CHE=2**762 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 910 910 ))) 911 911 912 -(% class="box infomessage" %) 913 913 ((( 914 - **ATZ**766 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 915 915 ))) 916 916 917 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 918 918 919 919 920 - The**AU915**band is similar. Beloware the AU915 UplinkChannels.771 += 6. Trouble Shooting = 921 921 922 - [[image:image-20220606154825-4.png]]773 +== 6.1 Connection problem when uploading firmware == 923 923 924 924 776 +(% class="wikigeneratedid" %) 777 +((( 778 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]] 779 +))) 925 925 926 -= 5. Trouble Shooting = 927 927 928 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 929 929 930 - Itis due to channel mapping.Please see the [[Eight Channel Mode>>doc:Main.LoRaWANCommunicationDebug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]sectionabove fordetails.783 +== 6.2 AT Command input doesn't work == 931 931 785 +((( 786 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 787 +))) 932 932 933 -== 5.2 AT Command input doesn’t work == 934 934 935 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 936 936 791 += 7. Order Info = 937 937 938 -== 5.3 Device rejoin in at the second uplink packet == 939 939 940 -(% style="color:#4f81bd" %)** Issue describe as below:**794 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 941 941 942 -[[image:1654500909990-784.png]] 943 943 944 - 945 -(% style="color:#4f81bd" %)**Cause for this issue:** 946 - 947 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 948 - 949 - 950 -(% style="color:#4f81bd" %)**Solution: ** 951 - 952 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 953 - 954 -[[image:1654500929571-736.png]] 955 - 956 - 957 -= 6. Order Info = 958 - 959 - 960 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 961 - 962 - 963 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 964 - 965 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 966 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 967 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 968 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 969 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 970 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 971 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 972 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 973 - 974 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 975 - 976 -* (% style="color:red" %)**4**(%%): 4000mAh battery 977 -* (% style="color:red" %)**8**(%%): 8500mAh battery 978 - 979 979 (% class="wikigeneratedid" %) 980 980 ((( 981 981 982 982 ))) 983 983 984 -= 7. Packing Info =802 += 8. Packing Info = 985 985 986 986 ((( 987 -**Package Includes**: 988 -))) 805 + 989 989 990 -* ((( 991 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 807 +(% style="color:#037691" %)**Package Includes**: 808 + 809 + 810 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 811 +* External antenna x 1 992 992 ))) 993 993 994 994 ((( 995 995 996 -))) 997 997 998 -((( 999 -**Dimension and weight**: 1000 -))) 817 +(% style="color:#037691" %)**Dimension and weight**: 1001 1001 1002 -* ((( 1003 -Device Size: cm 819 + 820 +* Size: 195 x 125 x 55 mm 821 +* Weight: 420g 1004 1004 ))) 1005 -* ((( 1006 -Device Weight: g 1007 -))) 1008 -* ((( 1009 -Package Size / pcs : cm 1010 -))) 1011 -* ((( 1012 -Weight / pcs : g 1013 1013 824 +((( 825 + 1014 1014 827 + 1015 1015 1016 1016 ))) 1017 1017 1018 -= 8. Support =831 += 9. Support = 1019 1019 1020 1020 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1021 1021 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1022 - 1023 -
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content