Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 23 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,9 +3,7 @@ 3 3 4 4 5 5 6 -**Contents:** 7 7 8 -{{toc/}} 9 9 10 10 11 11 ... ... @@ -12,61 +12,81 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 - == 1.1 Whatis LoRaWANSoil Moisture& EC Sensor ==14 +**Table of Contents:** 18 18 19 -((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 22 22 23 -((( 24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 -))) 26 26 27 -((( 28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 -))) 34 34 20 + 21 += 1. Introduction = 22 + 23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 + 35 35 ((( 36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 -))) 26 + 38 38 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 39 39 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 + 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 + 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 + 36 + 37 +))) 38 + 40 40 [[image:1654503236291-817.png]] 41 41 42 42 43 -[[image:16545 03265560-120.png]]42 +[[image:1657245163077-232.png]] 44 44 45 45 46 46 47 47 == 1.2 Features == 48 48 49 - * LoRaWAN 1.0.3 Class A50 -* Ultra lowpower consumption48 + 49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 51 51 * Monitor Soil Moisture 52 52 * Monitor Soil Temperature 53 53 * Monitor Soil Conductivity 54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 55 55 * AT Commands to change parameters 56 56 * Uplink on periodically 57 57 * Downlink to change configure 58 58 * IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 59 +* Micro SIM card slot for NB-IoT SIM 60 +* 8500mAh Battery for long term use 60 60 61 -== 1.3 Specification == 62 +== 1.3 Specification == 62 62 64 + 65 +(% style="color:#037691" %)**Common DC Characteristics:** 66 + 67 +* Supply Voltage: 2.1v ~~ 3.6v 68 +* Operating Temperature: -40 ~~ 85°C 69 + 70 +(% style="color:#037691" %)**NB-IoT Spec:** 71 + 72 +* - B1 @H-FDD: 2100MHz 73 +* - B3 @H-FDD: 1800MHz 74 +* - B8 @H-FDD: 900MHz 75 +* - B5 @H-FDD: 850MHz 76 +* - B20 @H-FDD: 800MHz 77 +* - B28 @H-FDD: 700MHz 78 + 79 +(% style="color:#037691" %)**Probe Specification:** 80 + 63 63 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 64 64 65 -[[image:image-20220 606162220-5.png]]83 +[[image:image-20220708101224-1.png]] 66 66 67 67 68 68 69 -== 1.4 Applications == 87 +== 1.4 Applications == 70 70 71 71 * Smart Agriculture 72 72 ... ... @@ -73,675 +73,579 @@ 73 73 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 74 75 75 76 -== 1.5 Firmware Changelog==94 +== 1.5 Pin Definitions == 77 77 78 78 79 - **LSE01v1.0 :** Release97 +[[image:1657246476176-652.png]] 80 80 81 81 82 82 83 -= 2. ConfigureLSE01 to connect toLoRaWANnetwork=101 += 2. Use NSE01 to communicate with IoT Server = 84 84 85 -== 2.1 How it works == 103 +== 2.1 How it works == 86 86 105 + 87 87 ((( 88 -The LSE01 isconfiguredasLoRaWANOTAAClass Amodebydefault.IthasOTAAkeystojoinLoRaWANnetwork.Toconnect a localLoRaWAN network,you need toinputtheOTAAkeysin theLoRaWANserverandpoweronthe LSE0150. It willautomaticallyjointhenetworkviaOTAA and starttosendthesensor value107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 89 89 ))) 90 90 110 + 91 91 ((( 92 - In case you can’t set the OTAA keys in theLoRaWAN OTAA server,andyouhave tousethe keysfromtheserver, you can [[useAT Commands >>||anchor="H3.UsingtheATCommands"]].112 +The diagram below shows the working flow in default firmware of NSE01: 93 93 ))) 94 94 115 +[[image:image-20220708101605-2.png]] 95 95 96 - 97 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 98 - 99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 100 - 101 - 102 -[[image:1654503992078-669.png]] 103 - 104 - 105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 106 - 107 - 108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 109 - 110 -Each LSE01 is shipped with a sticker with the default device EUI as below: 111 - 112 -[[image:image-20220606163732-6.jpeg]] 113 - 114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 115 - 116 -**Add APP EUI in the application** 117 - 118 - 119 -[[image:1654504596150-405.png]] 120 - 121 - 122 - 123 -**Add APP KEY and DEV EUI** 124 - 125 -[[image:1654504683289-357.png]] 126 - 127 - 128 - 129 -**Step 2**: Power on LSE01 130 - 131 - 132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 - 134 -[[image:image-20220606163915-7.png]] 135 - 136 - 137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 - 139 -[[image:1654504778294-788.png]] 140 - 141 - 142 - 143 -== 2.3 Uplink Payload == 144 - 145 -=== 2.3.1 MOD~=0(Default Mode) === 146 - 147 -LSE01 will uplink payload via LoRaWAN with below payload format: 148 - 149 - 150 -Uplink payload includes in total 11 bytes. 117 +((( 151 151 152 - 153 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 154 -|=((( 155 -**Size** 156 - 157 -**(bytes)** 158 -)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1** 159 -|**Value**|(% style="width:46px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:160px" %)((( 160 -Temperature 161 - 162 -(Reserve, Ignore now) 163 -)))|(% style="width:104px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:126px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:114px" %)((( 164 -MOD & Digital Interrupt 165 - 166 -(Optional) 167 167 ))) 168 168 169 -[[image:1654504881641-514.png]] 170 170 171 171 123 +== 2.2 Configure the NSE01 == 172 172 173 -=== 2.3.2 MOD~=1(Original value) === 174 174 175 - Thismodecangettheoriginal AD value of moistureand original conductivity (with temperature drift compensation).126 +=== 2.2.1 Test Requirement === 176 176 177 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 178 -|=((( 179 -**Size** 180 180 181 -**(bytes)** 182 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1** 183 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 184 -Temperature 129 +To use NSE01 in your city, make sure meet below requirements: 185 185 186 - (Reserve,Ignorenow)187 - )))|[[SoilMoisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[SoilConductivity(EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((188 - MOD&DigitalInterrupt131 +* Your local operator has already distributed a NB-IoT Network there. 132 +* The local NB-IoT network used the band that NSE01 supports. 133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 189 189 190 -(Optional) 135 +((( 136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 191 191 ))) 192 192 193 -[[image:1654504907647-967.png]] 194 194 140 +[[image:1657249419225-449.png]] 195 195 196 196 197 -=== 2.3.3 Battery Info === 198 198 199 - Checkthebattery voltageforLSE01.144 +=== 2.2.2 Insert SIM card === 200 200 201 - Ex1:0x0B45=2885mV146 +Insert the NB-IoT Card get from your provider. 202 202 203 - Ex2:0x0B49=2889mV148 +User need to take out the NB-IoT module and insert the SIM card like below: 204 204 205 205 151 +[[image:1657249468462-536.png]] 206 206 207 -=== 2.3.4 Soil Moisture === 208 208 209 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 210 210 211 - Forexample,ifthedatayougetfromtheregister is __0x050xDC__,themoisturecontentinthesoil is155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 212 212 213 - 214 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 215 - 216 - 217 - 218 -=== 2.3.5 Soil Temperature === 219 - 220 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 221 - 222 -**Example**: 223 - 224 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 225 - 226 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 227 - 228 - 229 - 230 -=== 2.3.6 Soil Conductivity (EC) === 231 - 232 232 ((( 233 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 234 -))) 235 - 236 236 ((( 237 - For example,ifthedatayougetfromtheregister is 0x000xC8,the soilconductivityis00C8(H)=200(D)=200uS/cm.159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 238 238 ))) 239 - 240 -((( 241 -Generally, the EC value of irrigation water is less than 800uS / cm. 242 242 ))) 243 243 244 -((( 245 - 246 -))) 247 247 248 -((( 249 - 250 -))) 164 +**Connection:** 251 251 252 -= ==2.3.7MOD===166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 253 253 254 - Firmwareversionatst v2.1 supportschanging mode.168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 255 255 256 - Forexample,bytes[10]=90170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 257 257 258 -mod=(bytes[10]>>7)&0x01=1. 259 259 173 +In the PC, use below serial tool settings: 260 260 261 -**Downlink Command:** 175 +* Baud: (% style="color:green" %)**9600** 176 +* Data bits:** (% style="color:green" %)8(%%)** 177 +* Stop bits: (% style="color:green" %)**1** 178 +* Parity: (% style="color:green" %)**None** 179 +* Flow Control: (% style="color:green" %)**None** 262 262 263 -If payload = 0x0A00, workmode=0 181 +((( 182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 183 +))) 264 264 265 - If** **payload =** **0x0A01, workmode=1185 +[[image:image-20220708110657-3.png]] 266 266 187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 267 267 268 268 269 -=== 2.3.8 Decode payload in The Things Network === 270 270 271 - WhileusingTTNnetwork,youcan add thepayload formattodecodethepayload.191 +=== 2.2.4 Use CoAP protocol to uplink data === 272 272 193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 273 273 274 -[[image:1654505570700-128.png]] 275 275 276 - Thepayloaddecoder function for TTN ishere:196 +**Use below commands:** 277 277 278 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 198 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 279 279 202 +For parameter description, please refer to AT command set 280 280 281 - ==2.4Uplink Interval ==204 +[[image:1657249793983-486.png]] 282 282 283 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 284 284 207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 285 285 209 +[[image:1657249831934-534.png]] 286 286 287 -== 2.5 Downlink Payload == 288 288 289 -By default, LSE50 prints the downlink payload to console port. 290 290 291 - [[image:image-20220606165544-8.png]]213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 292 292 215 +This feature is supported since firmware version v1.0.1 293 293 294 -**Examples:** 295 295 218 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 296 296 297 - * **Set TDC**222 +[[image:1657249864775-321.png]] 298 298 299 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 300 300 301 - Payload:0100 00 1E TDC=30S225 +[[image:1657249930215-289.png]] 302 302 303 -Payload: 01 00 00 3C TDC=60S 304 304 305 305 306 - ***Reset**229 +=== 2.2.6 Use MQTT protocol to uplink data === 307 307 308 - If payload= 0x04FF,itwillresettheLSE01231 +This feature is supported since firmware version v110 309 309 310 310 311 -* **CFM** 234 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 237 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 238 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 312 312 313 - Downlink Payload:05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0242 +[[image:1657249978444-674.png]] 314 314 315 315 245 +[[image:1657249990869-686.png]] 316 316 317 -== 2.6 Show Data in DataCake IoT Server == 318 318 319 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 248 +((( 249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 250 +))) 320 320 321 321 322 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 323 323 324 - **Step2**:ToconfiguretheApplicationtoforwarddata toDATACAKE youwillneedto add integration. Toaddthe DATACAKE integration, perform the following steps:254 +=== 2.2.7 Use TCP protocol to uplink data === 325 325 256 +This feature is supported since firmware version v110 326 326 327 -[[image:1654505857935-743.png]] 328 328 259 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 329 329 330 -[[image:165 4505874829-548.png]]262 +[[image:1657250217799-140.png]] 331 331 332 -Step 3: Create an account or log in Datacake. 333 333 334 - Step 4: Search theLSE01and add DevEUI.265 +[[image:1657250255956-604.png]] 335 335 336 336 337 -[[image:1654505905236-553.png]] 338 338 269 +=== 2.2.8 Change Update Interval === 339 339 340 - After added,thesensordataarriveTTN, itwillalsoarriveandshowinMydevices.271 +User can use below command to change the (% style="color:green" %)**uplink interval**. 341 341 342 - [[image:1654505925508-181.png]]273 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 343 343 275 +((( 276 +(% style="color:red" %)**NOTE:** 277 +))) 344 344 279 +((( 280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 281 +))) 345 345 346 -== 2.7 Frequency Plans == 347 347 348 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 349 349 285 +== 2.3 Uplink Payload == 350 350 351 - ===2.7.1EU863-870(EU868)===287 +In this mode, uplink payload includes in total 18 bytes 352 352 353 -(% style="color:#037691" %)** Uplink:** 289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 290 +|=(% style="width: 50px;" %)((( 291 +**Size(bytes)** 292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 354 354 355 - 868.1-SF7BW125to SF12BW125295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 356 356 357 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 358 358 359 - 868.5-SF7BW125 to SF12BW125298 +[[image:image-20220708111918-4.png]] 360 360 361 -867.1 - SF7BW125 to SF12BW125 362 362 363 - 867.3-SF7BW125toSF12BW125301 +The payload is ASCII string, representative same HEX: 364 364 365 - 867.5- SF7BW125to SF12BW125303 +0x72403155615900640c7817075e0a8c02f900 where: 366 366 367 -867.7 - SF7BW125 to SF12BW125 305 +* Device ID: 0x 724031556159 = 724031556159 306 +* Version: 0x0064=100=1.0.0 368 368 369 -867.9 - SF7BW125 to SF12BW125 308 +* BAT: 0x0c78 = 3192 mV = 3.192V 309 +* Singal: 0x17 = 23 310 +* Soil Moisture: 0x075e= 1886 = 18.86 % 311 +* Soil Temperature:0x0a8c =2700=27 °C 312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 313 +* Interrupt: 0x00 = 0 370 370 371 - 868.8-FSK315 +== 2.4 Payload Explanation and Sensor Interface == 372 372 373 373 374 - (%style="color:#037691"%)**Downlink:**318 +=== 2.4.1 Device ID === 375 375 376 - Uplinkchannels1-9(RX1)320 +By default, the Device ID equal to the last 6 bytes of IMEI. 377 377 378 - 869.525-SF9BW125(RX2downlinkonly)322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 379 379 324 +**Example:** 380 380 326 +AT+DEUI=A84041F15612 381 381 382 - ===2.7.2US902-928(US915)===328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 383 383 384 -Used in USA, Canada and South America. Default use CHE=2 385 385 386 -(% style="color:#037691" %)**Uplink:** 387 387 388 - 903.9- SF7BW125toSF10BW125332 +=== 2.4.2 Version Info === 389 389 390 - 904.1-SF7BW125toSF10BW125334 +Specify the software version: 0x64=100, means firmware version 1.00. 391 391 392 - 904.3-SF7BW125toSF10BW125336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 393 393 394 -904.5 - SF7BW125 to SF10BW125 395 395 396 -904.7 - SF7BW125 to SF10BW125 397 397 398 - 904.9- SF7BW125toSF10BW125340 +=== 2.4.3 Battery Info === 399 399 400 -905.1 - SF7BW125 to SF10BW125 342 +((( 343 +Check the battery voltage for LSE01. 344 +))) 401 401 402 -905.3 - SF7BW125 to SF10BW125 346 +((( 347 +Ex1: 0x0B45 = 2885mV 348 +))) 403 403 350 +((( 351 +Ex2: 0x0B49 = 2889mV 352 +))) 404 404 405 -(% style="color:#037691" %)**Downlink:** 406 406 407 -923.3 - SF7BW500 to SF12BW500 408 408 409 - 923.9-SF7BW500toSF12BW500356 +=== 2.4.4 Signal Strength === 410 410 411 - 924.5-SF7BW500to SF12BW500358 +NB-IoT Network signal Strength. 412 412 413 - 925.1- SF7BW500toSF12BW500360 +**Ex1: 0x1d = 29** 414 414 415 - 925.7-SF7BW500toSF12BW500362 +(% style="color:blue" %)**0**(%%) -113dBm or less 416 416 417 - 926.3- SF7BW500toSF12BW500364 +(% style="color:blue" %)**1**(%%) -111dBm 418 418 419 - 926.9- SF7BW500toSF12BW500366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 420 420 421 - 927.5- SF7BW500toSF12BW500368 +(% style="color:blue" %)**31** (%%) -51dBm or greater 422 422 423 - 923.3-SF12BW500(RX2downlinkonly)370 +(% style="color:blue" %)**99** (%%) Not known or not detectable 424 424 425 425 426 426 427 -=== 2. 7.3 CN470-510(CN470)===374 +=== 2.4.5 Soil Moisture === 428 428 429 -Used in China, Default use CHE=1 376 +((( 377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 378 +))) 430 430 431 -(% style="color:#037691" %)**Uplink:** 380 +((( 381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 382 +))) 432 432 433 -486.3 - SF7BW125 to SF12BW125 384 +((( 385 + 386 +))) 434 434 435 -486.5 - SF7BW125 to SF12BW125 388 +((( 389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 390 +))) 436 436 437 -486.7 - SF7BW125 to SF12BW125 438 438 439 -486.9 - SF7BW125 to SF12BW125 440 440 441 -4 87.1-SF7BW125toSF12BW125394 +=== 2.4.6 Soil Temperature === 442 442 443 -487.3 - SF7BW125 to SF12BW125 396 +((( 397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 398 +))) 444 444 445 -487.5 - SF7BW125 to SF12BW125 400 +((( 401 +**Example**: 402 +))) 446 446 447 -487.7 - SF7BW125 to SF12BW125 404 +((( 405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 406 +))) 448 448 408 +((( 409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 410 +))) 449 449 450 -(% style="color:#037691" %)**Downlink:** 451 451 452 -506.7 - SF7BW125 to SF12BW125 453 453 454 - 506.9-SF7BW125toSF12BW125414 +=== 2.4.7 Soil Conductivity (EC) === 455 455 456 -507.1 - SF7BW125 to SF12BW125 416 +((( 417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 418 +))) 457 457 458 -507.3 - SF7BW125 to SF12BW125 420 +((( 421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 422 +))) 459 459 460 -507.5 - SF7BW125 to SF12BW125 424 +((( 425 +Generally, the EC value of irrigation water is less than 800uS / cm. 426 +))) 461 461 462 -507.7 - SF7BW125 to SF12BW125 428 +((( 429 + 430 +))) 463 463 464 -507.9 - SF7BW125 to SF12BW125 432 +((( 433 + 434 +))) 465 465 466 - 508.1- SF7BW125toSF12BW125436 +=== 2.4.8 Digital Interrupt === 467 467 468 - 505.3-SF12BW125(RX2downlink only)438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 469 469 440 +The command is: 470 470 442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 471 471 472 -=== 2.7.4 AU915-928(AU915) === 473 473 474 - Defaultuse CHE=2445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 475 475 476 -(% style="color:#037691" %)**Uplink:** 477 477 478 - 916.8 - SF7BW125 to SF12BW125448 +Example: 479 479 480 - 917.0-SF7BW125to SF12BW125450 +0x(00): Normal uplink packet. 481 481 482 - 917.2-SF7BW125to SF12BW125452 +0x(01): Interrupt Uplink Packet. 483 483 484 -917.4 - SF7BW125 to SF12BW125 485 485 486 -917.6 - SF7BW125 to SF12BW125 487 487 488 - 917.8- SF7BW125 toSF12BW125456 +=== 2.4.9 +5V Output === 489 489 490 - 918.0-SF7BW125 toSF12BW125458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 491 491 492 -918.2 - SF7BW125 to SF12BW125 493 493 461 +The 5V output time can be controlled by AT Command. 494 494 495 -(% style="color: #037691" %)**Downlink:**463 +(% style="color:blue" %)**AT+5VT=1000** 496 496 497 - 923.3-SF7BW500 toSF12BW500465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 498 498 499 -923.9 - SF7BW500 to SF12BW500 500 500 501 -924.5 - SF7BW500 to SF12BW500 502 502 503 - 925.1 - SF7BW500toSF12BW500469 +== 2.5 Downlink Payload == 504 504 505 - 925.7-SF7BW500toSF12BW500471 +By default, NSE01 prints the downlink payload to console port. 506 506 507 - 926.3-SF7BW500 to SF12BW500473 +[[image:image-20220708133731-5.png]] 508 508 509 -926.9 - SF7BW500 to SF12BW500 510 510 511 -927.5 - SF7BW500 to SF12BW500 512 512 513 -923.3 - SF12BW500(RX2 downlink only) 477 +((( 478 +(% style="color:blue" %)**Examples:** 479 +))) 514 514 481 +((( 482 + 483 +))) 515 515 485 +* ((( 486 +(% style="color:blue" %)**Set TDC** 487 +))) 516 516 517 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 489 +((( 490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 491 +))) 518 518 519 -(% style="color:#037691" %)**Default Uplink channel:** 493 +((( 494 +Payload: 01 00 00 1E TDC=30S 495 +))) 520 520 521 -923.2 - SF7BW125 to SF10BW125 497 +((( 498 +Payload: 01 00 00 3C TDC=60S 499 +))) 522 522 523 -923.4 - SF7BW125 to SF10BW125 501 +((( 502 + 503 +))) 524 524 505 +* ((( 506 +(% style="color:blue" %)**Reset** 507 +))) 525 525 526 -(% style="color:#037691" %)**Additional Uplink Channel**: 509 +((( 510 +If payload = 0x04FF, it will reset the NSE01 511 +))) 527 527 528 -(OTAA mode, channel added by JoinAccept message) 529 529 530 -(% style="color: #037691" %)**AS920~~AS923 for Japan,Malaysia, Singapore**:514 +* (% style="color:blue" %)**INTMOD** 531 531 532 - 922.2-SF7BW125toSF10BW125516 +Downlink Payload: 06000003, Set AT+INTMOD=3 533 533 534 -922.4 - SF7BW125 to SF10BW125 535 535 536 -922.6 - SF7BW125 to SF10BW125 537 537 538 - 922.8-SF7BW125toSF10BW125520 +== 2.6 LED Indicator == 539 539 540 -923.0 - SF7BW125 to SF10BW125 522 +((( 523 +The NSE01 has an internal LED which is to show the status of different state. 541 541 542 -922.0 - SF7BW125 to SF10BW125 543 543 526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 527 +* Then the LED will be on for 1 second means device is boot normally. 528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 529 +* For each uplink probe, LED will be on for 500ms. 530 +))) 544 544 545 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 546 546 547 -923.6 - SF7BW125 to SF10BW125 548 548 549 -923.8 - SF7BW125 to SF10BW125 550 550 551 - 924.0 - SF7BW125to SF10BW125535 +== 2.7 Installation in Soil == 552 552 553 - 924.2- SF7BW125toSF10BW125537 +__**Measurement the soil surface**__ 554 554 555 - 924.4-SF7BW125SF10BW125539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 556 556 557 - 924.6- SF7BW125to SF10BW125541 +[[image:1657259653666-883.png]] 558 558 559 559 560 -(% style="color:#037691" %)** Downlink:** 544 +((( 545 + 561 561 562 -Uplink channels 1-8 (RX1) 547 +((( 548 +Dig a hole with diameter > 20CM. 549 +))) 563 563 564 -923.2 - SF10BW125 (RX2) 551 +((( 552 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 553 +))) 554 +))) 565 565 556 +[[image:1654506665940-119.png]] 566 566 558 +((( 559 + 560 +))) 567 567 568 -=== 2.7.6 KR920-923 (KR920) === 569 569 570 - Defaultchannel:563 +== 2.8 Firmware Change Log == 571 571 572 -922.1 - SF7BW125 to SF12BW125 573 573 574 - 922.3-SF7BW125toSF12BW125566 +Download URL & Firmware Change log 575 575 576 - 922.5-F7BW125toSF12BW125568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 577 577 578 578 579 - (%style="color:#037691"%)**Uplink: (OTAA mode, channel added by JoinAcceptmessage)**571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 580 580 581 -922.1 - SF7BW125 to SF12BW125 582 582 583 -922.3 - SF7BW125 to SF12BW125 584 584 585 - 922.5- SF7BW125toSF12BW125575 +== 2.9 Battery Analysis == 586 586 587 - 922.7 - SF7BW125toSF12BW125577 +=== 2.9.1 Battery Type === 588 588 589 -922.9 - SF7BW125 to SF12BW125 590 590 591 - 923.1-SF7BW125to SF12BW125580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 592 592 593 -923.3 - SF7BW125 to SF12BW125 594 594 583 +The battery is designed to last for several years depends on the actually use environment and update interval. 595 595 596 -(% style="color:#037691" %)**Downlink:** 597 597 598 - Uplink channels1-7(RX1)586 +The battery related documents as below: 599 599 600 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 601 601 602 - 603 - 604 -=== 2.7.7 IN865-867 (IN865) === 605 - 606 -(% style="color:#037691" %)** Uplink:** 607 - 608 -865.0625 - SF7BW125 to SF12BW125 609 - 610 -865.4025 - SF7BW125 to SF12BW125 611 - 612 -865.9850 - SF7BW125 to SF12BW125 613 - 614 - 615 -(% style="color:#037691" %) **Downlink:** 616 - 617 -Uplink channels 1-3 (RX1) 618 - 619 -866.550 - SF10BW125 (RX2) 620 - 621 - 622 - 623 - 624 -== 2.8 LED Indicator == 625 - 626 -The LSE01 has an internal LED which is to show the status of different state. 627 - 628 -* Blink once when device power on. 629 -* Solid ON for 5 seconds once device successful Join the network. 630 -* Blink once when device transmit a packet. 631 - 632 -== 2.9 Installation in Soil == 633 - 634 -**Measurement the soil surface** 635 - 636 - 637 -[[image:1654506634463-199.png]] 638 - 639 639 ((( 640 -((( 641 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 593 +[[image:image-20220708140453-6.png]] 642 642 ))) 643 -))) 644 644 645 645 646 -[[image:1654506665940-119.png]] 647 647 648 -((( 649 -Dig a hole with diameter > 20CM. 650 -))) 598 +=== 2.9.2 Power consumption Analyze === 651 651 652 652 ((( 653 - Horizontalinsertthe probeto the soil andfill the holefor longtermmeasurement.601 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 654 654 ))) 655 655 656 656 657 -== 2.10 Firmware Change Log == 658 - 659 659 ((( 660 - **Firmware downloadlink:**606 +Instruction to use as below: 661 661 ))) 662 662 663 663 ((( 664 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/ LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]610 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 665 665 ))) 666 666 667 -((( 668 - 669 -))) 670 670 671 671 ((( 672 - **FirmwareUpgradeMethod: **[[FirmwareUpgradeInstruction>>doc:Main.FirmwareUpgradeInstruction for STM32 baseproducts.WebHome]]615 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 673 673 ))) 674 674 675 -((( 676 - 618 +* ((( 619 +Product Model 677 677 ))) 678 - 679 -((( 680 -**V1.0.** 621 +* ((( 622 +Uplink Interval 681 681 ))) 624 +* ((( 625 +Working Mode 626 +))) 682 682 683 683 ((( 684 - Release629 +And the Life expectation in difference case will be shown on the right. 685 685 ))) 686 686 632 +[[image:image-20220708141352-7.jpeg]] 687 687 688 -== 2.11 Battery Analysis == 689 689 690 -=== 2.11.1 Battery Type === 691 691 692 -((( 693 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 694 -))) 636 +=== 2.9.3 Battery Note === 695 695 696 696 ((( 697 -The battery is designed to last for more than5 yearsfor theLSN50.639 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 698 698 ))) 699 699 700 -((( 701 -((( 702 -The battery-related documents are as below: 703 -))) 704 -))) 705 705 706 -* ((( 707 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 708 -))) 709 -* ((( 710 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 711 -))) 712 -* ((( 713 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 714 -))) 715 715 716 - [[image:image-20220606171726-9.png]]644 +=== 2.9.4 Replace the battery === 717 717 718 - 719 - 720 -=== 2.11.2 Battery Note === 721 - 722 722 ((( 723 -The Li-SICObatteryisdesigned forsmallcurrent/longperiodapplication. Itis notgood to use ahigh current,shortperiodtransmitmethod. Therecommendedminimum periodfor use ofthisbatteryis5minutes.If you useahorterperiodtimeto transmitLoRa, then the battery lifemaybe decreased.647 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 724 724 ))) 725 725 726 726 727 727 728 -= ==2.11.3Replacethebattery===652 += 3. Access NB-IoT Module = 729 729 730 730 ((( 731 - If Battery islower than2.7v, user shouldplace thebatteryofLSE01.655 +Users can directly access the AT command set of the NB-IoT module. 732 732 ))) 733 733 734 734 ((( 735 - Youcan changethebatteryintheLSE01.Thetypeofbattery is notlimitedaslongas the outputisbetween3v to3.6v. On themainboard, there isa diode(D1) between the battery andthe main circuit. If you needo usea battery with lessthan 3.3v, pleaseremovethe D1 andshortcut thetwopadsofit sothere won’t be voltageop between battery andmain board.659 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 736 736 ))) 737 737 738 -((( 739 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 740 -))) 662 +[[image:1657261119050-993.png]] 741 741 664 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.jpg]] 742 742 743 743 744 -= 3. Using the AT Commands = 745 745 746 746 == 3.1 Access AT Commands == 747 747 ... ... @@ -748,13 +748,13 @@ 748 748 749 749 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 750 750 751 -[[image:1654501986557-872.png]] 673 +[[image:1654501986557-872.png||height="391" width="800"]] 752 752 753 753 754 754 Or if you have below board, use below connection: 755 755 756 756 757 -[[image:1654502005655-729.png]] 679 +[[image:1654502005655-729.png||height="503" width="801"]] 758 758 759 759 760 760 ... ... @@ -761,10 +761,10 @@ 761 761 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 762 762 763 763 764 - [[image:1654502050864-459.png]] 686 + [[image:1654502050864-459.png||height="564" width="806"]] 765 765 766 766 767 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>> url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]689 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 768 768 769 769 770 770 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> ... ... @@ -876,20 +876,38 @@ 876 876 877 877 == 4.1 How to change the LoRa Frequency Bands/Region? == 878 878 801 +((( 879 879 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 880 880 When downloading the images, choose the required image file for download. 804 +))) 881 881 806 +((( 807 + 808 +))) 882 882 810 +((( 883 883 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 812 +))) 884 884 814 +((( 815 + 816 +))) 885 885 818 +((( 886 886 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 820 +))) 887 887 822 +((( 823 + 824 +))) 888 888 826 +((( 889 889 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 828 +))) 890 890 891 891 [[image:image-20220606154726-3.png]] 892 892 832 + 893 893 When you use the TTN network, the US915 frequency bands use are: 894 894 895 895 * 903.9 - SF7BW125 to SF10BW125 ... ... @@ -902,37 +902,47 @@ 902 902 * 905.3 - SF7BW125 to SF10BW125 903 903 * 904.6 - SF8BW500 904 904 845 +((( 905 905 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 906 906 907 -(% class="box infomessage" %) 908 -((( 909 -**AT+CHE=2** 848 +* (% style="color:#037691" %)**AT+CHE=2** 849 +* (% style="color:#037691" %)**ATZ** 910 910 ))) 911 911 912 -(% class="box infomessage" %) 913 913 ((( 914 -**ATZ** 915 -))) 853 + 916 916 917 917 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 856 +))) 918 918 858 +((( 859 + 860 +))) 919 919 862 +((( 920 920 The **AU915** band is similar. Below are the AU915 Uplink Channels. 864 +))) 921 921 922 922 [[image:image-20220606154825-4.png]] 923 923 924 924 869 +== 4.2 Can I calibrate LSE01 to different soil types? == 925 925 871 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 872 + 873 + 926 926 = 5. Trouble Shooting = 927 927 928 -== 5.1 Why I can ’t join TTN in US915 / AU915 bands? ==876 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 929 929 930 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. LoRaWANCommunication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.878 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 931 931 932 932 933 -== 5.2 AT Command input doesn ’t work ==881 +== 5.2 AT Command input doesn't work == 934 934 935 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 883 +((( 884 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 885 +))) 936 936 937 937 938 938 == 5.3 Device rejoin in at the second uplink packet == ... ... @@ -944,7 +944,9 @@ 944 944 945 945 (% style="color:#4f81bd" %)**Cause for this issue:** 946 946 897 +((( 947 947 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 899 +))) 948 948 949 949 950 950 (% style="color:#4f81bd" %)**Solution: ** ... ... @@ -951,7 +951,7 @@ 951 951 952 952 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 953 953 954 -[[image:1654500929571-736.png]] 906 +[[image:1654500929571-736.png||height="458" width="832"]] 955 955 956 956 957 957 = 6. Order Info = ... ... @@ -984,7 +984,9 @@ 984 984 = 7. Packing Info = 985 985 986 986 ((( 987 -**Package Includes**: 939 + 940 + 941 +(% style="color:#037691" %)**Package Includes**: 988 988 ))) 989 989 990 990 * ((( ... ... @@ -993,10 +993,8 @@ 993 993 994 994 ((( 995 995 996 -))) 997 997 998 -((( 999 -**Dimension and weight**: 951 +(% style="color:#037691" %)**Dimension and weight**: 1000 1000 ))) 1001 1001 1002 1002 * ((( ... ... @@ -1011,7 +1011,6 @@ 1011 1011 * ((( 1012 1012 Weight / pcs : g 1013 1013 1014 - 1015 1015 1016 1016 ))) 1017 1017 ... ... @@ -1019,5 +1019,3 @@ 1019 1019 1020 1020 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1021 1021 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1022 - 1023 -
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content