Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 33 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- 1657328609906-564.png
- 1657328659945-416.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWANSoil Moisture&ECSensor User Manual1 +NDDS75 NB-IoT Distance Detect Sensor User Manual - Content
-
... ... @@ -1,244 +1,130 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 606151504-2.jpeg||height="554" width="554"]]2 +[[image:image-20220709085040-1.png||height="542" width="524"]] 3 3 4 4 5 5 6 -**Contents:** 7 7 8 -{{toc/}} 9 9 8 +**Table of Contents:** 10 10 11 11 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 18 18 19 -((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 16 += 1. Introduction = 22 22 23 -((( 24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 -))) 18 +== 1.1 What is NDDS75 Distance Detection Sensor == 26 26 27 27 ((( 28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 21 + 30 30 31 31 ((( 32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 33 33 ))) 34 34 35 -((( 36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 32 + 37 37 ))) 38 38 39 - 40 40 [[image:1654503236291-817.png]] 41 41 42 42 43 -[[image:165 4503265560-120.png]]38 +[[image:1657327959271-447.png]] 44 44 45 45 46 46 47 -== 1.2 Features == 42 +== 1.2 Features == 48 48 49 -* LoRaWAN 1.0.3 Class A 44 + 45 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 50 50 * Ultra low power consumption 51 -* MonitorSoilMoisture52 -* MonitorSoil Temperature53 -* Monitor SoilConductivity54 -* Bands:CN470/EU433/KR920/US915/EU868/AS923/AU915/IN86547 +* Distance Detection by Ultrasonic technology 48 +* Flat object range 280mm - 7500mm 49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance) 50 +* Cable Length: 25cm 55 55 * AT Commands to change parameters 56 56 * Uplink on periodically 57 57 * Downlink to change configure 58 58 * IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 55 +* Micro SIM card slot for NB-IoT SIM 56 +* 8500mAh Battery for long term use 60 60 61 -== 1.3 Specification == 62 62 63 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 64 64 65 - [[image:image-20220606162220-5.png]]60 +== 1.3 Specification == 66 66 67 67 63 +(% style="color:#037691" %)**Common DC Characteristics:** 68 68 69 -== 1.4 Applications == 65 +* Supply Voltage: 2.1v ~~ 3.6v 66 +* Operating Temperature: -40 ~~ 85°C 70 70 71 - *SmartAgriculture68 +(% style="color:#037691" %)**NB-IoT Spec:** 72 72 73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 - 70 +* - B1 @H-FDD: 2100MHz 71 +* - B3 @H-FDD: 1800MHz 72 +* - B8 @H-FDD: 900MHz 73 +* - B5 @H-FDD: 850MHz 74 +* - B20 @H-FDD: 800MHz 75 +* - B28 @H-FDD: 700MHz 75 75 76 -== 1.5 Firmware Change log == 77 77 78 +(% style="color:#037691" %)**Battery:** 78 78 79 -**LSE01 v1.0 :** Release 80 +* Li/SOCI2 un-chargeable battery 81 +* Capacity: 8500mAh 82 +* Self Discharge: <1% / Year @ 25°C 83 +* Max continuously current: 130mA 84 +* Max boost current: 2A, 1 second 80 80 81 81 87 +(% style="color:#037691" %)**Power Consumption** 82 82 83 -= 2. Configure LSE01 to connect to LoRaWAN network = 89 +* STOP Mode: 10uA @ 3.3v 90 +* Max transmit power: 350mA@3.3v 84 84 85 -== 2.1 How it works == 86 86 87 -((( 88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 -))) 90 90 91 -((( 92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 93 -))) 94 94 95 +== 1.4 Applications == 95 95 97 +* Smart Buildings & Home Automation 98 +* Logistics and Supply Chain Management 99 +* Smart Metering 100 +* Smart Agriculture 101 +* Smart Cities 102 +* Smart Factory 96 96 97 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 104 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 105 + 98 98 99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 100 100 101 101 102 - [[image:1654503992078-669.png]]109 +== 1.5 Pin Definitions == 103 103 104 104 105 - The LG308isalready set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.112 +[[image:1657328609906-564.png]] 106 106 107 107 108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 109 109 110 -Each LSE01 is shipped with a sticker with the default device EUI as below: 111 111 112 - [[image:image-20220606163732-6.jpeg]]117 += 2. Use NSE01 to communicate with IoT Server = 113 113 114 - Youcan enter this key in the LoRaWAN Server portal.Below isTTN screenshot:119 +== 2.1 How it works == 115 115 116 -**Add APP EUI in the application** 117 - 118 - 119 -[[image:1654504596150-405.png]] 120 - 121 - 122 - 123 -**Add APP KEY and DEV EUI** 124 - 125 -[[image:1654504683289-357.png]] 126 - 127 - 128 - 129 -**Step 2**: Power on LSE01 130 - 131 - 132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 - 134 -[[image:image-20220606163915-7.png]] 135 - 136 - 137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 - 139 -[[image:1654504778294-788.png]] 140 - 141 - 142 - 143 -== 2.3 Uplink Payload == 144 - 145 -=== 2.3.1 MOD~=0(Default Mode) === 146 - 147 -LSE01 will uplink payload via LoRaWAN with below payload format: 148 - 149 - 150 -Uplink payload includes in total 11 bytes. 151 - 152 - 153 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 154 -|=((( 155 -**Size** 156 - 157 -**(bytes)** 158 -)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1** 159 -|**Value**|(% style="width:46px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:160px" %)((( 160 -Temperature 161 - 162 -(Reserve, Ignore now) 163 -)))|(% style="width:104px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:126px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:114px" %)((( 164 -MOD & Digital Interrupt 165 - 166 -(Optional) 167 -))) 168 - 169 -[[image:1654504881641-514.png]] 170 - 171 - 172 - 173 -=== 2.3.2 MOD~=1(Original value) === 174 - 175 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 176 - 177 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 178 -|=((( 179 -**Size** 180 - 181 -**(bytes)** 182 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1** 183 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 184 -Temperature 185 - 186 -(Reserve, Ignore now) 187 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 188 -MOD & Digital Interrupt 189 - 190 -(Optional) 191 -))) 192 - 193 -[[image:1654504907647-967.png]] 194 - 195 - 196 - 197 -=== 2.3.3 Battery Info === 198 - 199 -Check the battery voltage for LSE01. 200 - 201 -Ex1: 0x0B45 = 2885mV 202 - 203 -Ex2: 0x0B49 = 2889mV 204 - 205 - 206 - 207 -=== 2.3.4 Soil Moisture === 208 - 209 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 210 - 211 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 212 - 213 - 214 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 215 - 216 - 217 - 218 -=== 2.3.5 Soil Temperature === 219 - 220 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 221 - 222 -**Example**: 223 - 224 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 225 - 226 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 227 - 228 - 229 - 230 -=== 2.3.6 Soil Conductivity (EC) === 231 - 232 232 ((( 233 - Obtain(%style="color:#4f81bd"%)**__solublesaltconcentration__**(%%)insoilor (% style="color:#4f81bd"%)**__soluble ionconcentrationinliquidfertilizer__**(%%)or(% style="color:#4f81bd"%)**__plantingmedium__**(%%). Thevaluerangeftheregister is0 - 20000(Decimal)(Canbegreaterthan20000).122 +The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75. 234 234 ))) 235 235 236 -((( 237 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 238 -))) 239 239 240 240 ((( 241 - Generally,theEC valueof irrigationwateris lessthan800uS/ cm.127 +The diagram below shows the working flow in default firmware of NDDS75: 242 242 ))) 243 243 244 244 ((( ... ... @@ -245,483 +245,602 @@ 245 245 246 246 ))) 247 247 134 +[[image:1657328659945-416.png]] 135 + 248 248 ((( 249 249 250 250 ))) 251 251 252 -=== 2.3.7 MOD === 253 253 254 -Firmware version at least v2.1 supports changing mode. 255 255 256 - Forxample,bytes[10]=90142 +== 2.2 Configure the NSE01 == 257 257 258 -mod=(bytes[10]>>7)&0x01=1. 259 259 145 +=== 2.2.1 Test Requirement === 260 260 261 -**Downlink Command:** 262 262 263 -If payload = 0x0A00, workmode=0 148 +((( 149 +To use NSE01 in your city, make sure meet below requirements: 150 +))) 264 264 265 -If** **payload =** **0x0A01, workmode=1 152 +* Your local operator has already distributed a NB-IoT Network there. 153 +* The local NB-IoT network used the band that NSE01 supports. 154 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 266 266 156 +((( 157 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 158 +))) 267 267 268 268 269 - ===2.3.8 Decodepayload inThe Things Network ===161 +[[image:1657249419225-449.png]] 270 270 271 -While using TTN network, you can add the payload format to decode the payload. 272 272 273 273 274 - [[image:1654505570700-128.png]]165 +=== 2.2.2 Insert SIM card === 275 275 276 -The payload decoder function for TTN is here: 167 +((( 168 +Insert the NB-IoT Card get from your provider. 169 +))) 277 277 278 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 171 +((( 172 +User need to take out the NB-IoT module and insert the SIM card like below: 173 +))) 279 279 280 280 281 - ==2.4Uplink Interval ==176 +[[image:1657249468462-536.png]] 282 282 283 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>End Device AT Commands and Downlink Command||anchor="H4.1ChangeUplinkInterval"]] 284 284 285 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 286 286 180 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 287 287 182 +((( 183 +((( 184 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 185 +))) 186 +))) 288 288 289 -== 2.5 Downlink Payload == 290 290 291 - By default, LSE50 prints the downlink payloadtoconsole port.189 +**Connection:** 292 292 293 - [[image:image-20220606165544-8.png]]191 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 294 294 193 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 295 295 296 - **Examples:**195 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 297 297 298 298 299 - ***SetTDC**198 +In the PC, use below serial tool settings: 300 300 301 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 200 +* Baud: (% style="color:green" %)**9600** 201 +* Data bits:** (% style="color:green" %)8(%%)** 202 +* Stop bits: (% style="color:green" %)**1** 203 +* Parity: (% style="color:green" %)**None** 204 +* Flow Control: (% style="color:green" %)**None** 302 302 303 -Payload: 01 00 00 1E TDC=30S 206 +((( 207 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 208 +))) 304 304 305 - Payload:1000 3C TDC=60S210 +[[image:image-20220708110657-3.png]] 306 306 212 +((( 213 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 214 +))) 307 307 308 -* **Reset** 309 309 310 -If payload = 0x04FF, it will reset the LSE01 311 311 218 +=== 2.2.4 Use CoAP protocol to uplink data === 312 312 313 - ***CFM**220 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 314 314 315 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 316 316 223 +**Use below commands:** 317 317 225 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 226 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 227 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 318 318 319 - == 2.6 ShowData inDataCakeIoT Server==229 +For parameter description, please refer to AT command set 320 320 321 -[[ DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]]to connect to TTN and see the data in DATACAKE. Below are the steps:231 +[[image:1657249793983-486.png]] 322 322 323 323 324 - **Step1**: Be sure thatyour deviceis programmed andproperlyconnectedtothenetworkat this time.234 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 325 325 326 - **Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add theDATACAKE integration,perform the followingsteps:236 +[[image:1657249831934-534.png]] 327 327 328 328 329 -[[image:1654505857935-743.png]] 330 330 240 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 331 331 332 - [[image:1654505874829-548.png]]242 +This feature is supported since firmware version v1.0.1 333 333 334 -Step 3: Create an account or log in Datacake. 335 335 336 -Step 4: Search the LSE01 and add DevEUI. 245 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 246 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 247 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 337 337 249 +[[image:1657249864775-321.png]] 338 338 339 -[[image:1654505905236-553.png]] 340 340 252 +[[image:1657249930215-289.png]] 341 341 342 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 343 343 344 -[[image:1654505925508-181.png]] 345 345 256 +=== 2.2.6 Use MQTT protocol to uplink data === 346 346 258 +This feature is supported since firmware version v110 347 347 348 -== 2.7 Frequency Plans == 349 349 350 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 261 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 262 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 263 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 264 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 265 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 266 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 267 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 351 351 269 +[[image:1657249978444-674.png]] 352 352 353 -=== 2.7.1 EU863-870 (EU868) === 354 354 355 - (% style="color:#037691" %)** Uplink:**272 +[[image:1657249990869-686.png]] 356 356 357 -868.1 - SF7BW125 to SF12BW125 358 358 359 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 275 +((( 276 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 277 +))) 360 360 361 -868.5 - SF7BW125 to SF12BW125 362 362 363 -867.1 - SF7BW125 to SF12BW125 364 364 365 - 867.3-SF7BW125toSF12BW125281 +=== 2.2.7 Use TCP protocol to uplink data === 366 366 367 - 867.5-SF7BW125toSF12BW125283 +This feature is supported since firmware version v110 368 368 369 -867.7 - SF7BW125 to SF12BW125 370 370 371 -867.9 - SF7BW125 to SF12BW125 286 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 287 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 372 372 373 - 868.8-FSK289 +[[image:1657250217799-140.png]] 374 374 375 375 376 - (% style="color:#037691" %)** Downlink:**292 +[[image:1657250255956-604.png]] 377 377 378 -Uplink channels 1-9 (RX1) 379 379 380 -869.525 - SF9BW125 (RX2 downlink only) 381 381 296 +=== 2.2.8 Change Update Interval === 382 382 298 +User can use below command to change the (% style="color:green" %)**uplink interval**. 383 383 384 -== =2.7.2US902-928(US915)===300 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 385 385 386 -Used in USA, Canada and South America. Default use CHE=2 302 +((( 303 +(% style="color:red" %)**NOTE:** 304 +))) 387 387 388 -(% style="color:#037691" %)**Uplink:** 306 +((( 307 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 308 +))) 389 389 390 -903.9 - SF7BW125 to SF10BW125 391 391 392 -904.1 - SF7BW125 to SF10BW125 393 393 394 - 904.3-SF7BW125 toSF10BW125312 +== 2.3 Uplink Payload == 395 395 396 - 904.5-SF7BW125toSF10BW125314 +In this mode, uplink payload includes in total 18 bytes 397 397 398 -904.7 - SF7BW125 to SF10BW125 316 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 317 +|=(% style="width: 60px;" %)((( 318 +**Size(bytes)** 319 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 320 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 399 399 400 -904.9 - SF7BW125 to SF10BW125 322 +((( 323 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 324 +))) 401 401 402 -905.1 - SF7BW125 to SF10BW125 403 403 404 - 905.3-SF7BW125 to SF10BW125327 +[[image:image-20220708111918-4.png]] 405 405 406 406 407 - (%style="color:#037691"%)**Downlink:**330 +The payload is ASCII string, representative same HEX: 408 408 409 - 923.3 - SF7BW500to SF12BW500332 +0x72403155615900640c7817075e0a8c02f900 where: 410 410 411 -923.9 - SF7BW500 to SF12BW500 334 +* Device ID: 0x 724031556159 = 724031556159 335 +* Version: 0x0064=100=1.0.0 412 412 413 -924.5 - SF7BW500 to SF12BW500 337 +* BAT: 0x0c78 = 3192 mV = 3.192V 338 +* Singal: 0x17 = 23 339 +* Soil Moisture: 0x075e= 1886 = 18.86 % 340 +* Soil Temperature:0x0a8c =2700=27 °C 341 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 342 +* Interrupt: 0x00 = 0 414 414 415 - 925.1-SF7BW500to SF12BW500344 +== 2.4 Payload Explanation and Sensor Interface == 416 416 417 -925.7 - SF7BW500 to SF12BW500 418 418 419 - 926.3-SF7BW500 to SF12BW500347 +=== 2.4.1 Device ID === 420 420 421 -926.9 - SF7BW500 to SF12BW500 349 +((( 350 +By default, the Device ID equal to the last 6 bytes of IMEI. 351 +))) 422 422 423 -927.5 - SF7BW500 to SF12BW500 353 +((( 354 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 355 +))) 424 424 425 -923.3 - SF12BW500(RX2 downlink only) 357 +((( 358 +**Example:** 359 +))) 426 426 361 +((( 362 +AT+DEUI=A84041F15612 363 +))) 427 427 365 +((( 366 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 367 +))) 428 428 429 -=== 2.7.3 CN470-510 (CN470) === 430 430 431 -Used in China, Default use CHE=1 432 432 433 - (%style="color:#037691" %)**Uplink:**371 +=== 2.4.2 Version Info === 434 434 435 -486.3 - SF7BW125 to SF12BW125 373 +((( 374 +Specify the software version: 0x64=100, means firmware version 1.00. 375 +))) 436 436 437 -486.5 - SF7BW125 to SF12BW125 377 +((( 378 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 379 +))) 438 438 439 -486.7 - SF7BW125 to SF12BW125 440 440 441 -486.9 - SF7BW125 to SF12BW125 442 442 443 -4 87.1- SF7BW125toSF12BW125383 +=== 2.4.3 Battery Info === 444 444 445 -487.3 - SF7BW125 to SF12BW125 385 +((( 386 +Check the battery voltage for LSE01. 387 +))) 446 446 447 -487.5 - SF7BW125 to SF12BW125 389 +((( 390 +Ex1: 0x0B45 = 2885mV 391 +))) 448 448 449 -487.7 - SF7BW125 to SF12BW125 393 +((( 394 +Ex2: 0x0B49 = 2889mV 395 +))) 450 450 451 451 452 -(% style="color:#037691" %)**Downlink:** 453 453 454 - 506.7-SF7BW125toSF12BW125399 +=== 2.4.4 Signal Strength === 455 455 456 -506.9 - SF7BW125 to SF12BW125 401 +((( 402 +NB-IoT Network signal Strength. 403 +))) 457 457 458 -507.1 - SF7BW125 to SF12BW125 405 +((( 406 +**Ex1: 0x1d = 29** 407 +))) 459 459 460 -507.3 - SF7BW125 to SF12BW125 409 +((( 410 +(% style="color:blue" %)**0**(%%) -113dBm or less 411 +))) 461 461 462 -507.5 - SF7BW125 to SF12BW125 413 +((( 414 +(% style="color:blue" %)**1**(%%) -111dBm 415 +))) 463 463 464 -507.7 - SF7BW125 to SF12BW125 417 +((( 418 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 419 +))) 465 465 466 -507.9 - SF7BW125 to SF12BW125 421 +((( 422 +(% style="color:blue" %)**31** (%%) -51dBm or greater 423 +))) 467 467 468 -508.1 - SF7BW125 to SF12BW125 425 +((( 426 +(% style="color:blue" %)**99** (%%) Not known or not detectable 427 +))) 469 469 470 -505.3 - SF12BW125 (RX2 downlink only) 471 471 472 472 431 +=== 2.4.5 Soil Moisture === 473 473 474 -=== 2.7.4 AU915-928(AU915) === 433 +((( 434 +((( 435 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 436 +))) 437 +))) 475 475 476 -Default use CHE=2 439 +((( 440 +((( 441 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 442 +))) 443 +))) 477 477 478 -(% style="color:#037691" %)**Uplink:** 445 +((( 446 + 447 +))) 479 479 480 -916.8 - SF7BW125 to SF12BW125 449 +((( 450 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 451 +))) 481 481 482 -917.0 - SF7BW125 to SF12BW125 483 483 484 -917.2 - SF7BW125 to SF12BW125 485 485 486 - 917.4-SF7BW125toSF12BW125455 +=== 2.4.6 Soil Temperature === 487 487 488 -917.6 - SF7BW125 to SF12BW125 457 +((( 458 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 459 +))) 489 489 490 -917.8 - SF7BW125 to SF12BW125 461 +((( 462 +**Example**: 463 +))) 491 491 492 -918.0 - SF7BW125 to SF12BW125 465 +((( 466 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 467 +))) 493 493 494 -918.2 - SF7BW125 to SF12BW125 469 +((( 470 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 471 +))) 495 495 496 496 497 -(% style="color:#037691" %)**Downlink:** 498 498 499 - 923.3-SF7BW500toSF12BW500475 +=== 2.4.7 Soil Conductivity (EC) === 500 500 501 -923.9 - SF7BW500 to SF12BW500 477 +((( 478 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 479 +))) 502 502 503 -924.5 - SF7BW500 to SF12BW500 481 +((( 482 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 483 +))) 504 504 505 -925.1 - SF7BW500 to SF12BW500 485 +((( 486 +Generally, the EC value of irrigation water is less than 800uS / cm. 487 +))) 506 506 507 -925.7 - SF7BW500 to SF12BW500 489 +((( 490 + 491 +))) 508 508 509 -926.3 - SF7BW500 to SF12BW500 493 +((( 494 + 495 +))) 510 510 511 - 926.9-SF7BW500toSF12BW500497 +=== 2.4.8 Digital Interrupt === 512 512 513 -927.5 - SF7BW500 to SF12BW500 499 +((( 500 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 501 +))) 514 514 515 -923.3 - SF12BW500(RX2 downlink only) 503 +((( 504 +The command is: 505 +))) 516 516 507 +((( 508 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 509 +))) 517 517 518 518 519 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 512 +((( 513 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 514 +))) 520 520 521 -(% style="color:#037691" %)**Default Uplink channel:** 522 522 523 -923.2 - SF7BW125 to SF10BW125 517 +((( 518 +Example: 519 +))) 524 524 525 -923.4 - SF7BW125 to SF10BW125 521 +((( 522 +0x(00): Normal uplink packet. 523 +))) 526 526 525 +((( 526 +0x(01): Interrupt Uplink Packet. 527 +))) 527 527 528 -(% style="color:#037691" %)**Additional Uplink Channel**: 529 529 530 -(OTAA mode, channel added by JoinAccept message) 531 531 532 - (% style="color:#037691"%)**AS920~~AS923forJapan,Malaysia, Singapore**:531 +=== 2.4.9 +5V Output === 533 533 534 -922.2 - SF7BW125 to SF10BW125 533 +((( 534 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 535 +))) 535 535 536 -922.4 - SF7BW125 to SF10BW125 537 537 538 -922.6 - SF7BW125 to SF10BW125 538 +((( 539 +The 5V output time can be controlled by AT Command. 540 +))) 539 539 540 -922.8 - SF7BW125 to SF10BW125 542 +((( 543 +(% style="color:blue" %)**AT+5VT=1000** 544 +))) 541 541 542 -923.0 - SF7BW125 to SF10BW125 546 +((( 547 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 548 +))) 543 543 544 -922.0 - SF7BW125 to SF10BW125 545 545 546 546 547 - (% style="color:#037691"%)**AS923 ~~ AS925for Brunei, Cambodia, HongKong, Indonesia, Laos, Taiwan, Thailand,Vietnam**:552 +== 2.5 Downlink Payload == 548 548 549 - 923.6-SF7BW125toSF10BW125554 +By default, NSE01 prints the downlink payload to console port. 550 550 551 - 923.8- SF7BW125to SF10BW125556 +[[image:image-20220708133731-5.png]] 552 552 553 -924.0 - SF7BW125 to SF10BW125 554 554 555 -924.2 - SF7BW125 to SF10BW125 559 +((( 560 +(% style="color:blue" %)**Examples:** 561 +))) 556 556 557 -924.4 - SF7BW125 to SF10BW125 563 +((( 564 + 565 +))) 558 558 559 -924.6 - SF7BW125 to SF10BW125 567 +* ((( 568 +(% style="color:blue" %)**Set TDC** 569 +))) 560 560 571 +((( 572 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 573 +))) 561 561 562 -(% style="color:#037691" %)** Downlink:** 575 +((( 576 +Payload: 01 00 00 1E TDC=30S 577 +))) 563 563 564 -Uplink channels 1-8 (RX1) 579 +((( 580 +Payload: 01 00 00 3C TDC=60S 581 +))) 565 565 566 -923.2 - SF10BW125 (RX2) 583 +((( 584 + 585 +))) 567 567 587 +* ((( 588 +(% style="color:blue" %)**Reset** 589 +))) 568 568 591 +((( 592 +If payload = 0x04FF, it will reset the NSE01 593 +))) 569 569 570 -=== 2.7.6 KR920-923 (KR920) === 571 571 572 - Defaultchannel:596 +* (% style="color:blue" %)**INTMOD** 573 573 574 -922.1 - SF7BW125 to SF12BW125 598 +((( 599 +Downlink Payload: 06000003, Set AT+INTMOD=3 600 +))) 575 575 576 -922.3 - SF7BW125 to SF12BW125 577 577 578 -922.5 - SF7BW125 to SF12BW125 579 579 604 +== 2.6 LED Indicator == 580 580 581 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 606 +((( 607 +The NSE01 has an internal LED which is to show the status of different state. 582 582 583 -922.1 - SF7BW125 to SF12BW125 584 584 585 -922.3 - SF7BW125 to SF12BW125 610 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 611 +* Then the LED will be on for 1 second means device is boot normally. 612 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 613 +* For each uplink probe, LED will be on for 500ms. 614 +))) 586 586 587 -922.5 - SF7BW125 to SF12BW125 588 588 589 -922.7 - SF7BW125 to SF12BW125 590 590 591 -922.9 - SF7BW125 to SF12BW125 592 592 593 - 923.1 - SF7BW125to SF12BW125619 +== 2.7 Installation in Soil == 594 594 595 - 923.3- SF7BW125toSF12BW125621 +__**Measurement the soil surface**__ 596 596 623 +((( 624 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 625 +))) 597 597 598 - (% style="color:#037691" %)**Downlink:**627 +[[image:1657259653666-883.png]] 599 599 600 -Uplink channels 1-7(RX1) 601 601 602 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 630 +((( 631 + 603 603 633 +((( 634 +Dig a hole with diameter > 20CM. 635 +))) 604 604 637 +((( 638 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 639 +))) 640 +))) 605 605 606 - === 2.7.7 IN865-867 (IN865) ===642 +[[image:1654506665940-119.png]] 607 607 608 -(% style="color:#037691" %)** Uplink:** 644 +((( 645 + 646 +))) 609 609 610 -865.0625 - SF7BW125 to SF12BW125 611 611 612 - 865.4025- SF7BW125toSF12BW125649 +== 2.8 Firmware Change Log == 613 613 614 -865.9850 - SF7BW125 to SF12BW125 615 615 652 +Download URL & Firmware Change log 616 616 617 - (% style="color:#037691" %) **Downlink:**654 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 618 618 619 -Uplink channels 1-3 (RX1) 620 620 621 - 866.550-SF10BW125 (RX2)657 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 622 622 623 623 624 624 661 +== 2.9 Battery Analysis == 625 625 626 -== 2. 8LED Indicator ==663 +=== 2.9.1 Battery Type === 627 627 628 -The LSE01 has an internal LED which is to show the status of different state. 629 629 630 -* Blink once when device power on. 631 -* Solid ON for 5 seconds once device successful Join the network. 632 -* Blink once when device transmit a packet. 633 - 634 - 635 -== 2.9 Installation in Soil == 636 - 637 -**Measurement the soil surface** 638 - 639 - 640 -[[image:1654506634463-199.png]] 641 - 642 642 ((( 643 -((( 644 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 667 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 645 645 ))) 646 -))) 647 647 648 648 649 -[[image:1654506665940-119.png]] 650 - 651 651 ((( 652 - Dig aholewithdiameter>20CM.672 +The battery is designed to last for several years depends on the actually use environment and update interval. 653 653 ))) 654 654 655 -((( 656 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 657 -))) 658 658 659 - 660 -== 2.10 Firmware Change Log == 661 - 662 662 ((( 663 - **Firmware downloadlink:**677 +The battery related documents as below: 664 664 ))) 665 665 666 - (((667 -[[ http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]668 - )))680 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 681 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 682 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 669 669 670 670 ((( 671 - 685 +[[image:image-20220708140453-6.png]] 672 672 ))) 673 673 674 -((( 675 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 676 -))) 677 677 678 -((( 679 - 680 -))) 681 681 682 -((( 683 -**V1.0.** 684 -))) 690 +=== 2.9.2 Power consumption Analyze === 685 685 686 686 ((( 687 - Release693 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 688 688 ))) 689 689 690 690 691 -== 2.11 Battery Analysis == 692 - 693 -=== 2.11.1 Battery Type === 694 - 695 695 ((( 696 - The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The batteryis non-rechargeablebattery type with a lowdischargerate (<2% per year). Thistype ofbattery is commonly used in IoT devices such aswater meter.698 +Instruction to use as below: 697 697 ))) 698 698 699 699 ((( 700 - Thebatterys designedlastforrethan5 years fortheSN50.702 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 701 701 ))) 702 702 705 + 703 703 ((( 704 -((( 705 -The battery-related documents are as below: 707 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 706 706 ))) 707 -))) 708 708 709 709 * ((( 710 - [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],711 +Product Model 711 711 ))) 712 712 * ((( 713 - [[Lithium-ThionylChloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],714 +Uplink Interval 714 714 ))) 715 715 * ((( 716 - [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]],[[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]717 +Working Mode 717 717 ))) 718 718 719 - [[image:image-20220606171726-9.png]] 720 +((( 721 +And the Life expectation in difference case will be shown on the right. 722 +))) 720 720 724 +[[image:image-20220708141352-7.jpeg]] 721 721 722 722 723 -=== 2.11.2 Battery Note === 724 724 728 +=== 2.9.3 Battery Note === 729 + 725 725 ((( 726 726 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 727 727 ))) ... ... @@ -728,299 +728,195 @@ 728 728 729 729 730 730 731 -=== 2. 11.3Replace the battery ===736 +=== 2.9.4 Replace the battery === 732 732 733 733 ((( 734 - IfBattery is lower than 2.7v,usershouldreplace the battery ofLSE01.739 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 735 735 ))) 736 736 742 + 743 + 744 += 3. Access NB-IoT Module = 745 + 737 737 ((( 738 - You can changethe battery in the LSE01.The type of battery isnot limitedas longas the outputis between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the maincircuit. If you need to use a battery with lessthan 3.3v, pleaseremovethe D1and shortcut thewopadsofitso therewon’tbe voltage drop between battery andmain board.747 +Users can directly access the AT command set of the NB-IoT module. 739 739 ))) 740 740 741 741 ((( 742 -The defaultbattery packof LSE01 includesa ER18505 plussupercapacitor.Ifusercan’tfind this pack locally, theycan find ER18505orequivalence,whichwillalsoworkinmostcase.The SPC can enlargethebattery lifeforigh frequency use(updateperiod below5minutes)751 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 743 743 ))) 744 744 754 +[[image:1657261278785-153.png]] 745 745 746 746 747 -= 3. Using the AT Commands = 748 748 749 -= =3.1AccessAT Commands ==758 += 4. Using the AT Commands = 750 750 760 +== 4.1 Access AT Commands == 751 751 752 - LSE01supportsATCommandsetn the stock firmware.Youcanuse a USB toTTLadaptertoconnect to LSE01forusing ATcommand,asbelow.762 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 753 753 754 -[[image:1654501986557-872.png]] 755 755 765 +AT+<CMD>? : Help on <CMD> 756 756 757 - Orifyouhavebelowboard,usebelowconnection:767 +AT+<CMD> : Run <CMD> 758 758 769 +AT+<CMD>=<value> : Set the value 759 759 760 - [[image:1654502005655-729.png]]771 +AT+<CMD>=? : Get the value 761 761 762 762 763 - 764 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 765 - 766 - 767 - [[image:1654502050864-459.png]] 768 - 769 - 770 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 771 - 772 - 773 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 774 - 775 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 776 - 777 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 778 - 779 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 780 - 781 - 782 782 (% style="color:#037691" %)**General Commands**(%%) 783 783 784 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention776 +AT : Attention 785 785 786 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help778 +AT? : Short Help 787 787 788 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset780 +ATZ : MCU Reset 789 789 790 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval782 +AT+TDC : Application Data Transmission Interval 791 791 784 +AT+CFG : Print all configurations 792 792 793 - (%style="color:#037691"%)**Keys,IDsand EUIs management**786 +AT+CFGMOD : Working mode selection 794 794 795 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI788 +AT+INTMOD : Set the trigger interrupt mode 796 796 797 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey790 +AT+5VT : Set extend the time of 5V power 798 798 799 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key792 +AT+PRO : Choose agreement 800 800 801 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress794 +AT+WEIGRE : Get weight or set weight to 0 802 802 803 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI796 +AT+WEIGAP : Get or Set the GapValue of weight 804 804 805 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)798 +AT+RXDL : Extend the sending and receiving time 806 806 807 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network800 +AT+CNTFAC : Get or set counting parameters 808 808 809 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode802 +AT+SERVADDR : Server Address 810 810 811 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 812 812 813 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network805 +(% style="color:#037691" %)**COAP Management** 814 814 815 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode807 +AT+URI : Resource parameters 816 816 817 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 818 818 819 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format810 +(% style="color:#037691" %)**UDP Management** 820 820 821 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat812 +AT+CFM : Upload confirmation mode (only valid for UDP) 822 822 823 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 824 824 825 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data815 +(% style="color:#037691" %)**MQTT Management** 826 826 817 +AT+CLIENT : Get or Set MQTT client 827 827 828 - (%style="color:#037691"%)**LoRaNetworkManagement**819 +AT+UNAME : Get or Set MQTT Username 829 829 830 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate821 +AT+PWD : Get or Set MQTT password 831 831 832 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA823 +AT+PUBTOPIC : Get or Set MQTT publish topic 833 833 834 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting825 +AT+SUBTOPIC : Get or Set MQTT subscription topic 835 835 836 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 837 837 838 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink828 +(% style="color:#037691" %)**Information** 839 839 840 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink830 +AT+FDR : Factory Data Reset 841 841 842 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1832 +AT+PWORD : Serial Access Password 843 843 844 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 845 845 846 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 847 847 848 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1836 += 5. FAQ = 849 849 850 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2838 +== 5.1 How to Upgrade Firmware == 851 851 852 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 853 853 854 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 841 +((( 842 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 843 +))) 855 855 856 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 845 +((( 846 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 847 +))) 857 857 858 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 849 +((( 850 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 851 +))) 859 859 860 860 861 -(% style="color:#037691" %)**Information** 862 862 863 - (% style="background-color:#dcdcdc"%)**AT+RSSI**(%%):RSSIoftheLastReceivedPacket855 +== 5.2 Can I calibrate NSE01 to different soil types? == 864 864 865 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 857 +((( 858 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. 859 +))) 866 866 867 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 868 868 869 - (% style="background-color:#dcdcdc"%)**AT+FDR**(%%) : Factory DataReset862 += 6. Trouble Shooting = 870 870 871 - (%style="background-color:#dcdcdc"%)**AT+PORT**(%%): ApplicationPort864 +== 6.1 Connection problem when uploading firmware == 872 872 873 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 874 874 875 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 876 - 877 - 878 -= 4. FAQ = 879 - 880 -== 4.1 How to change the LoRa Frequency Bands/Region? == 881 - 882 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 883 -When downloading the images, choose the required image file for download. 884 - 885 - 886 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 887 - 888 - 889 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 890 - 891 - 892 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 893 - 894 -[[image:image-20220606154726-3.png]] 895 - 896 -When you use the TTN network, the US915 frequency bands use are: 897 - 898 -* 903.9 - SF7BW125 to SF10BW125 899 -* 904.1 - SF7BW125 to SF10BW125 900 -* 904.3 - SF7BW125 to SF10BW125 901 -* 904.5 - SF7BW125 to SF10BW125 902 -* 904.7 - SF7BW125 to SF10BW125 903 -* 904.9 - SF7BW125 to SF10BW125 904 -* 905.1 - SF7BW125 to SF10BW125 905 -* 905.3 - SF7BW125 to SF10BW125 906 -* 904.6 - SF8BW500 907 - 908 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 909 - 910 -(% class="box infomessage" %) 911 911 ((( 912 -** AT+CHE=2**868 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 913 913 ))) 914 914 915 -(% class=" boxinfomessage" %)871 +(% class="wikigeneratedid" %) 916 916 ((( 917 - **ATZ**873 + 918 918 ))) 919 919 920 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 921 921 877 +== 6.2 AT Command input doesn't work == 922 922 923 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 879 +((( 880 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 924 924 925 -[[image:image-20220606154825-4.png]] 882 + 883 +))) 926 926 927 927 886 += 7. Order Info = 928 928 929 -= 5. Trouble Shooting = 930 930 931 - == 5.1 Why I can’tjoin TTNin US915 / AU915bands?==889 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 932 932 933 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 934 934 935 - 936 -== 5.2 AT Command input doesn’t work == 937 - 938 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 939 - 940 - 941 -== 5.3 Device rejoin in at the second uplink packet == 942 - 943 -(% style="color:#4f81bd" %)**Issue describe as below:** 944 - 945 -[[image:1654500909990-784.png]] 946 - 947 - 948 -(% style="color:#4f81bd" %)**Cause for this issue:** 949 - 950 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 951 - 952 - 953 -(% style="color:#4f81bd" %)**Solution: ** 954 - 955 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 956 - 957 -[[image:1654500929571-736.png]] 958 - 959 - 960 -= 6. Order Info = 961 - 962 - 963 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 964 - 965 - 966 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 967 - 968 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 969 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 970 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 971 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 972 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 973 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 974 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 975 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 976 - 977 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 978 - 979 -* (% style="color:red" %)**4**(%%): 4000mAh battery 980 -* (% style="color:red" %)**8**(%%): 8500mAh battery 981 - 982 982 (% class="wikigeneratedid" %) 983 983 ((( 984 984 985 985 ))) 986 986 987 -= 7. Packing Info =897 += 8. Packing Info = 988 988 989 989 ((( 990 -**Package Includes**: 991 -))) 900 + 992 992 993 -* ((( 994 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 902 +(% style="color:#037691" %)**Package Includes**: 903 + 904 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 905 +* External antenna x 1 995 995 ))) 996 996 997 997 ((( 998 998 999 -))) 1000 1000 1001 -((( 1002 -**Dimension and weight**: 1003 -))) 911 +(% style="color:#037691" %)**Dimension and weight**: 1004 1004 1005 -* (((1006 - DeviceSize:cm913 +* Size: 195 x 125 x 55 mm 914 +* Weight: 420g 1007 1007 ))) 1008 -* ((( 1009 -Device Weight: g 1010 -))) 1011 -* ((( 1012 -Package Size / pcs : cm 1013 -))) 1014 -* ((( 1015 -Weight / pcs : g 1016 1016 917 +((( 918 + 1017 1017 920 + 1018 1018 1019 1019 ))) 1020 1020 1021 -= 8. Support =924 += 9. Support = 1022 1022 1023 1023 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1024 1024 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1025 - 1026 -
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.3 KB - Content
- 1657328609906-564.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657328659945-416.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.8 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +200.4 KB - Content