Last modified by Mengting Qiu on 2024/04/02 16:44

From version 31.25
edited by Xiaoling
on 2022/06/07 10:21
Change comment: There is no comment for this version
To version 77.2
edited by Xiaoling
on 2022/07/09 09:05
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NDDS75 NB-IoT Distance Detect Sensor User Manual
Content
... ... @@ -1,244 +1,130 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
2 +[[image:image-20220709085040-1.png||height="542" width="524"]]
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
8 -{{toc/}}
9 9  
8 +**Table of Contents:**
10 10  
11 11  
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
18 18  
19 -(((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
16 += 1.  Introduction =
22 22  
23 -(((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 -)))
18 +== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
26 26  
27 27  (((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
21 +
30 30  
31 31  (((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
33 33  )))
34 34  
35 -(((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
32 +
37 37  )))
38 38  
39 -
40 40  [[image:1654503236291-817.png]]
41 41  
42 42  
43 -[[image:1654503265560-120.png]]
38 +[[image:1657327959271-447.png]]
44 44  
45 45  
46 46  
47 -== 1.2 ​Features ==
42 +== 1.2 ​ Features ==
48 48  
49 -* LoRaWAN 1.0.3 Class A
44 +
45 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
50 50  * Ultra low power consumption
51 -* Monitor Soil Moisture
52 -* Monitor Soil Temperature
53 -* Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
47 +* Distance Detection by Ultrasonic technology
48 +* Flat object range 280mm - 7500mm
49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
50 +* Cable Length: 25cm
55 55  * AT Commands to change parameters
56 56  * Uplink on periodically
57 57  * Downlink to change configure
58 58  * IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
55 +* Micro SIM card slot for NB-IoT SIM
56 +* 8500mAh Battery for long term use
60 60  
61 -== 1.3 Specification ==
62 62  
63 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
64 64  
65 -[[image:image-20220606162220-5.png]]
60 +== 1.3  Specification ==
66 66  
67 67  
63 +(% style="color:#037691" %)**Common DC Characteristics:**
68 68  
69 -== ​1.4 Applications ==
65 +* Supply Voltage: 2.1v ~~ 3.6v
66 +* Operating Temperature: -40 ~~ 85°C
70 70  
71 -* Smart Agriculture
68 +(% style="color:#037691" %)**NB-IoT Spec:**
72 72  
73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
74 -​
70 +* - B1 @H-FDD: 2100MHz
71 +* - B3 @H-FDD: 1800MHz
72 +* - B8 @H-FDD: 900MHz
73 +* - B5 @H-FDD: 850MHz
74 +* - B20 @H-FDD: 800MHz
75 +* - B28 @H-FDD: 700MHz
75 75  
76 -== 1.5 Firmware Change log ==
77 77  
78 +(% style="color:#037691" %)**Battery:**
78 78  
79 -**LSE01 v1.0 :**  Release
80 +* Li/SOCI2 un-chargeable battery
81 +* Capacity: 8500mAh
82 +* Self Discharge: <1% / Year @ 25°C
83 +* Max continuously current: 130mA
84 +* Max boost current: 2A, 1 second
80 80  
81 81  
87 +(% style="color:#037691" %)**Power Consumption**
82 82  
83 -= 2. Configure LSE01 to connect to LoRaWAN network =
89 +* STOP Mode: 10uA @ 3.3v
90 +* Max transmit power: 350mA@3.3v
84 84  
85 -== 2.1 How it works ==
86 86  
87 -(((
88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
89 -)))
90 90  
91 -(((
92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
93 -)))
94 94  
95 +== ​1.4  Applications ==
95 95  
97 +* Smart Buildings & Home Automation
98 +* Logistics and Supply Chain Management
99 +* Smart Metering
100 +* Smart Agriculture
101 +* Smart Cities
102 +* Smart Factory
96 96  
97 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
104 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
105 +​
98 98  
99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
100 100  
101 101  
102 -[[image:1654503992078-669.png]]
109 +== 1.5  Pin Definitions ==
103 103  
104 104  
105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
112 +[[image:1657328609906-564.png]]
106 106  
107 107  
108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
109 109  
110 -Each LSE01 is shipped with a sticker with the default device EUI as below:
111 111  
112 -[[image:image-20220606163732-6.jpeg]]
117 += 2.  Use NSE01 to communicate with IoT Server =
113 113  
114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
119 +== 2. How it works ==
115 115  
116 -**Add APP EUI in the application**
117 -
118 -
119 -[[image:1654504596150-405.png]]
120 -
121 -
122 -
123 -**Add APP KEY and DEV EUI**
124 -
125 -[[image:1654504683289-357.png]]
126 -
127 -
128 -
129 -**Step 2**: Power on LSE01
130 -
131 -
132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
133 -
134 -[[image:image-20220606163915-7.png]]
135 -
136 -
137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
138 -
139 -[[image:1654504778294-788.png]]
140 -
141 -
142 -
143 -== 2.3 Uplink Payload ==
144 -
145 -=== 2.3.1 MOD~=0(Default Mode) ===
146 -
147 -LSE01 will uplink payload via LoRaWAN with below payload format: 
148 -
149 -
150 -Uplink payload includes in total 11 bytes.
151 -
152 -
153 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
154 -|=(((
155 -**Size**
156 -
157 -**(bytes)**
158 -)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1**
159 -|**Value**|(% style="width:46px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:160px" %)(((
160 -Temperature
161 -
162 -(Reserve, Ignore now)
163 -)))|(% style="width:104px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:126px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:114px" %)(((
164 -MOD & Digital Interrupt
165 -
166 -(Optional)
167 -)))
168 -
169 -[[image:1654504881641-514.png]]
170 -
171 -
172 -
173 -=== 2.3.2 MOD~=1(Original value) ===
174 -
175 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
176 -
177 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
178 -|=(((
179 -**Size**
180 -
181 -**(bytes)**
182 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1**
183 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
184 -Temperature
185 -
186 -(Reserve, Ignore now)
187 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
188 -MOD & Digital Interrupt
189 -
190 -(Optional)
191 -)))
192 -
193 -[[image:1654504907647-967.png]]
194 -
195 -
196 -
197 -=== 2.3.3 Battery Info ===
198 -
199 -Check the battery voltage for LSE01.
200 -
201 -Ex1: 0x0B45 = 2885mV
202 -
203 -Ex2: 0x0B49 = 2889mV
204 -
205 -
206 -
207 -=== 2.3.4 Soil Moisture ===
208 -
209 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
210 -
211 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
212 -
213 -
214 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
215 -
216 -
217 -
218 -=== 2.3.5 Soil Temperature ===
219 -
220 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
221 -
222 -**Example**:
223 -
224 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
225 -
226 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
227 -
228 -
229 -
230 -=== 2.3.6 Soil Conductivity (EC) ===
231 -
232 232  (((
233 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
122 +The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
234 234  )))
235 235  
236 -(((
237 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
238 -)))
239 239  
240 240  (((
241 -Generally, the EC value of irrigation water is less than 800uS / cm.
127 +The diagram below shows the working flow in default firmware of NDDS75:
242 242  )))
243 243  
244 244  (((
... ... @@ -245,483 +245,602 @@
245 245  
246 246  )))
247 247  
134 +[[image:1657328659945-416.png]]
135 +
248 248  (((
249 249  
250 250  )))
251 251  
252 -=== 2.3.7 MOD ===
253 253  
254 -Firmware version at least v2.1 supports changing mode.
255 255  
256 -For example, bytes[10]=90
142 +== 2.2 ​ Configure the NSE01 ==
257 257  
258 -mod=(bytes[10]>>7)&0x01=1.
259 259  
145 +=== 2.2.1 Test Requirement ===
260 260  
261 -**Downlink Command:**
262 262  
263 -If payload = 0x0A00, workmode=0
148 +(((
149 +To use NSE01 in your city, make sure meet below requirements:
150 +)))
264 264  
265 -If** **payload =** **0x0A01, workmode=1
152 +* Your local operator has already distributed a NB-IoT Network there.
153 +* The local NB-IoT network used the band that NSE01 supports.
154 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
266 266  
156 +(((
157 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
158 +)))
267 267  
268 268  
269 -=== 2.3.8 ​Decode payload in The Things Network ===
161 +[[image:1657249419225-449.png]]
270 270  
271 -While using TTN network, you can add the payload format to decode the payload.
272 272  
273 273  
274 -[[image:1654505570700-128.png]]
165 +=== 2.2.2 Insert SIM card ===
275 275  
276 -The payload decoder function for TTN is here:
167 +(((
168 +Insert the NB-IoT Card get from your provider.
169 +)))
277 277  
278 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
171 +(((
172 +User need to take out the NB-IoT module and insert the SIM card like below:
173 +)))
279 279  
280 280  
281 -== 2.4 Uplink Interval ==
176 +[[image:1657249468462-536.png]]
282 282  
283 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>End Device AT Commands and Downlink Command||anchor="H4.1ChangeUplinkInterval"]]
284 284  
285 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
286 286  
180 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
287 287  
182 +(((
183 +(((
184 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
185 +)))
186 +)))
288 288  
289 -== 2.5 Downlink Payload ==
290 290  
291 -By default, LSE50 prints the downlink payload to console port.
189 +**Connection:**
292 292  
293 -[[image:image-20220606165544-8.png]]
191 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
294 294  
193 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
295 295  
296 -**Examples:**
195 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
297 297  
298 298  
299 -* **Set TDC**
198 +In the PC, use below serial tool settings:
300 300  
301 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
200 +* Baud:  (% style="color:green" %)**9600**
201 +* Data bits:** (% style="color:green" %)8(%%)**
202 +* Stop bits: (% style="color:green" %)**1**
203 +* Parity:  (% style="color:green" %)**None**
204 +* Flow Control: (% style="color:green" %)**None**
302 302  
303 -Payload:    01 00 00 1E    TDC=30S
206 +(((
207 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
208 +)))
304 304  
305 -Payload:    01 00 00 3C    TDC=60S
210 +[[image:image-20220708110657-3.png]]
306 306  
212 +(((
213 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
214 +)))
307 307  
308 -* **Reset**
309 309  
310 -If payload = 0x04FF, it will reset the LSE01
311 311  
218 +=== 2.2.4 Use CoAP protocol to uplink data ===
312 312  
313 -* **CFM**
220 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
314 314  
315 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
316 316  
223 +**Use below commands:**
317 317  
225 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
226 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
227 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
318 318  
319 -== 2.6 ​Show Data in DataCake IoT Server ==
229 +For parameter description, please refer to AT command set
320 320  
321 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
231 +[[image:1657249793983-486.png]]
322 322  
323 323  
324 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
234 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
325 325  
326 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
236 +[[image:1657249831934-534.png]]
327 327  
328 328  
329 -[[image:1654505857935-743.png]]
330 330  
240 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
331 331  
332 -[[image:1654505874829-548.png]]
242 +This feature is supported since firmware version v1.0.1
333 333  
334 -Step 3: Create an account or log in Datacake.
335 335  
336 -Step 4: Search the LSE01 and add DevEUI.
245 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
246 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
247 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
337 337  
249 +[[image:1657249864775-321.png]]
338 338  
339 -[[image:1654505905236-553.png]]
340 340  
252 +[[image:1657249930215-289.png]]
341 341  
342 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
343 343  
344 -[[image:1654505925508-181.png]]
345 345  
256 +=== 2.2.6 Use MQTT protocol to uplink data ===
346 346  
258 +This feature is supported since firmware version v110
347 347  
348 -== 2.7 Frequency Plans ==
349 349  
350 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
261 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
262 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
263 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
264 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
265 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
266 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
267 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
351 351  
269 +[[image:1657249978444-674.png]]
352 352  
353 -=== 2.7.1 EU863-870 (EU868) ===
354 354  
355 -(% style="color:#037691" %)** Uplink:**
272 +[[image:1657249990869-686.png]]
356 356  
357 -868.1 - SF7BW125 to SF12BW125
358 358  
359 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
275 +(((
276 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
277 +)))
360 360  
361 -868.5 - SF7BW125 to SF12BW125
362 362  
363 -867.1 - SF7BW125 to SF12BW125
364 364  
365 -867.3 - SF7BW125 to SF12BW125
281 +=== 2.2.7 Use TCP protocol to uplink data ===
366 366  
367 -867.5 - SF7BW125 to SF12BW125
283 +This feature is supported since firmware version v110
368 368  
369 -867.7 - SF7BW125 to SF12BW125
370 370  
371 -867.9 - SF7BW125 to SF12BW125
286 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
287 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
372 372  
373 -868.8 - FSK
289 +[[image:1657250217799-140.png]]
374 374  
375 375  
376 -(% style="color:#037691" %)** Downlink:**
292 +[[image:1657250255956-604.png]]
377 377  
378 -Uplink channels 1-9 (RX1)
379 379  
380 -869.525 - SF9BW125 (RX2 downlink only)
381 381  
296 +=== 2.2.8 Change Update Interval ===
382 382  
298 +User can use below command to change the (% style="color:green" %)**uplink interval**.
383 383  
384 -=== 2.7.2 US902-928(US915) ===
300 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
385 385  
386 -Used in USA, Canada and South America. Default use CHE=2
302 +(((
303 +(% style="color:red" %)**NOTE:**
304 +)))
387 387  
388 -(% style="color:#037691" %)**Uplink:**
306 +(((
307 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
308 +)))
389 389  
390 -903.9 - SF7BW125 to SF10BW125
391 391  
392 -904.1 - SF7BW125 to SF10BW125
393 393  
394 -904.3 - SF7BW125 to SF10BW125
312 +== 2.3  Uplink Payload ==
395 395  
396 -904.5 - SF7BW125 to SF10BW125
314 +In this mode, uplink payload includes in total 18 bytes
397 397  
398 -904.7 - SF7BW125 to SF10BW125
316 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
317 +|=(% style="width: 60px;" %)(((
318 +**Size(bytes)**
319 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
320 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
399 399  
400 -904.9 - SF7BW125 to SF10BW125
322 +(((
323 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
324 +)))
401 401  
402 -905.1 - SF7BW125 to SF10BW125
403 403  
404 -905.3 - SF7BW125 to SF10BW125
327 +[[image:image-20220708111918-4.png]]
405 405  
406 406  
407 -(% style="color:#037691" %)**Downlink:**
330 +The payload is ASCII string, representative same HEX:
408 408  
409 -923.3 - SF7BW500 to SF12BW500
332 +0x72403155615900640c7817075e0a8c02f900 where:
410 410  
411 -923.9 - SF7BW500 to SF12BW500
334 +* Device ID: 0x 724031556159 = 724031556159
335 +* Version: 0x0064=100=1.0.0
412 412  
413 -924.5 - SF7BW500 to SF12BW500
337 +* BAT: 0x0c78 = 3192 mV = 3.192V
338 +* Singal: 0x17 = 23
339 +* Soil Moisture: 0x075e= 1886 = 18.86  %
340 +* Soil Temperature:0x0a8c =2700=27 °C
341 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
342 +* Interrupt: 0x00 = 0
414 414  
415 -925.1 - SF7BW500 to SF12BW500
344 +== 2. Payload Explanation and Sensor Interface ==
416 416  
417 -925.7 - SF7BW500 to SF12BW500
418 418  
419 -926.3 - SF7BW500 to SF12BW500
347 +=== 2.4.1  Device ID ===
420 420  
421 -926.9 - SF7BW500 to SF12BW500
349 +(((
350 +By default, the Device ID equal to the last 6 bytes of IMEI.
351 +)))
422 422  
423 -927.5 - SF7BW500 to SF12BW500
353 +(((
354 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
355 +)))
424 424  
425 -923.3 - SF12BW500(RX2 downlink only)
357 +(((
358 +**Example:**
359 +)))
426 426  
361 +(((
362 +AT+DEUI=A84041F15612
363 +)))
427 427  
365 +(((
366 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
367 +)))
428 428  
429 -=== 2.7.3 CN470-510 (CN470) ===
430 430  
431 -Used in China, Default use CHE=1
432 432  
433 -(% style="color:#037691" %)**Uplink:**
371 +=== 2.4.2  Version Info ===
434 434  
435 -486.3 - SF7BW125 to SF12BW125
373 +(((
374 +Specify the software version: 0x64=100, means firmware version 1.00.
375 +)))
436 436  
437 -486.5 - SF7BW125 to SF12BW125
377 +(((
378 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
379 +)))
438 438  
439 -486.7 - SF7BW125 to SF12BW125
440 440  
441 -486.9 - SF7BW125 to SF12BW125
442 442  
443 -487.1 - SF7BW125 to SF12BW125
383 +=== 2.4. Battery Info ===
444 444  
445 -487.3 - SF7BW125 to SF12BW125
385 +(((
386 +Check the battery voltage for LSE01.
387 +)))
446 446  
447 -487.5 - SF7BW125 to SF12BW125
389 +(((
390 +Ex1: 0x0B45 = 2885mV
391 +)))
448 448  
449 -487.7 - SF7BW125 to SF12BW125
393 +(((
394 +Ex2: 0x0B49 = 2889mV
395 +)))
450 450  
451 451  
452 -(% style="color:#037691" %)**Downlink:**
453 453  
454 -506.7 - SF7BW125 to SF12BW125
399 +=== 2.4.4  Signal Strength ===
455 455  
456 -506.9 - SF7BW125 to SF12BW125
401 +(((
402 +NB-IoT Network signal Strength.
403 +)))
457 457  
458 -507.1 - SF7BW125 to SF12BW125
405 +(((
406 +**Ex1: 0x1d = 29**
407 +)))
459 459  
460 -507.3 - SF7BW125 to SF12BW125
409 +(((
410 +(% style="color:blue" %)**0**(%%)  -113dBm or less
411 +)))
461 461  
462 -507.5 - SF7BW125 to SF12BW125
413 +(((
414 +(% style="color:blue" %)**1**(%%)  -111dBm
415 +)))
463 463  
464 -507.7 - SF7BW125 to SF12BW125
417 +(((
418 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
419 +)))
465 465  
466 -507.9 - SF7BW125 to SF12BW125
421 +(((
422 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
423 +)))
467 467  
468 -508.1 - SF7BW125 to SF12BW125
425 +(((
426 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
427 +)))
469 469  
470 -505.3 - SF12BW125 (RX2 downlink only)
471 471  
472 472  
431 +=== 2.4.5  Soil Moisture ===
473 473  
474 -=== 2.7.4 AU915-928(AU915) ===
433 +(((
434 +(((
435 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
436 +)))
437 +)))
475 475  
476 -Default use CHE=2
439 +(((
440 +(((
441 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
442 +)))
443 +)))
477 477  
478 -(% style="color:#037691" %)**Uplink:**
445 +(((
446 +
447 +)))
479 479  
480 -916.8 - SF7BW125 to SF12BW125
449 +(((
450 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
451 +)))
481 481  
482 -917.0 - SF7BW125 to SF12BW125
483 483  
484 -917.2 - SF7BW125 to SF12BW125
485 485  
486 -917.4 - SF7BW125 to SF12BW125
455 +=== 2.4.6  Soil Temperature ===
487 487  
488 -917.6 - SF7BW125 to SF12BW125
457 +(((
458 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
459 +)))
489 489  
490 -917.8 - SF7BW125 to SF12BW125
461 +(((
462 +**Example**:
463 +)))
491 491  
492 -918.0 - SF7BW125 to SF12BW125
465 +(((
466 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
467 +)))
493 493  
494 -918.2 - SF7BW125 to SF12BW125
469 +(((
470 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
471 +)))
495 495  
496 496  
497 -(% style="color:#037691" %)**Downlink:**
498 498  
499 -923.3 - SF7BW500 to SF12BW500
475 +=== 2.4.7  Soil Conductivity (EC) ===
500 500  
501 -923.9 - SF7BW500 to SF12BW500
477 +(((
478 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
479 +)))
502 502  
503 -924.5 - SF7BW500 to SF12BW500
481 +(((
482 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
483 +)))
504 504  
505 -925.1 - SF7BW500 to SF12BW500
485 +(((
486 +Generally, the EC value of irrigation water is less than 800uS / cm.
487 +)))
506 506  
507 -925.7 - SF7BW500 to SF12BW500
489 +(((
490 +
491 +)))
508 508  
509 -926.3 - SF7BW500 to SF12BW500
493 +(((
494 +
495 +)))
510 510  
511 -926.9 - SF7BW500 to SF12BW500
497 +=== 2.4.8  Digital Interrupt ===
512 512  
513 -927.5 - SF7BW500 to SF12BW500
499 +(((
500 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
501 +)))
514 514  
515 -923.3 - SF12BW500(RX2 downlink only)
503 +(((
504 +The command is:
505 +)))
516 516  
507 +(((
508 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
509 +)))
517 517  
518 518  
519 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
512 +(((
513 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
514 +)))
520 520  
521 -(% style="color:#037691" %)**Default Uplink channel:**
522 522  
523 -923.2 - SF7BW125 to SF10BW125
517 +(((
518 +Example:
519 +)))
524 524  
525 -923.4 - SF7BW125 to SF10BW125
521 +(((
522 +0x(00): Normal uplink packet.
523 +)))
526 526  
525 +(((
526 +0x(01): Interrupt Uplink Packet.
527 +)))
527 527  
528 -(% style="color:#037691" %)**Additional Uplink Channel**:
529 529  
530 -(OTAA mode, channel added by JoinAccept message)
531 531  
532 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
531 +=== 2.4.9  ​+5V Output ===
533 533  
534 -922.2 - SF7BW125 to SF10BW125
533 +(((
534 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
535 +)))
535 535  
536 -922.4 - SF7BW125 to SF10BW125
537 537  
538 -922.6 - SF7BW125 to SF10BW125
538 +(((
539 +The 5V output time can be controlled by AT Command.
540 +)))
539 539  
540 -922.8 - SF7BW125 to SF10BW125
542 +(((
543 +(% style="color:blue" %)**AT+5VT=1000**
544 +)))
541 541  
542 -923.0 - SF7BW125 to SF10BW125
546 +(((
547 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
548 +)))
543 543  
544 -922.0 - SF7BW125 to SF10BW125
545 545  
546 546  
547 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
552 +== 2.5  Downlink Payload ==
548 548  
549 -923.6 - SF7BW125 to SF10BW125
554 +By default, NSE01 prints the downlink payload to console port.
550 550  
551 -923.8 - SF7BW125 to SF10BW125
556 +[[image:image-20220708133731-5.png]]
552 552  
553 -924.0 - SF7BW125 to SF10BW125
554 554  
555 -924.2 - SF7BW125 to SF10BW125
559 +(((
560 +(% style="color:blue" %)**Examples:**
561 +)))
556 556  
557 -924.4 - SF7BW125 to SF10BW125
563 +(((
564 +
565 +)))
558 558  
559 -924.6 - SF7BW125 to SF10BW125
567 +* (((
568 +(% style="color:blue" %)**Set TDC**
569 +)))
560 560  
571 +(((
572 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
573 +)))
561 561  
562 -(% style="color:#037691" %)** Downlink:**
575 +(((
576 +Payload:    01 00 00 1E    TDC=30S
577 +)))
563 563  
564 -Uplink channels 1-8 (RX1)
579 +(((
580 +Payload:    01 00 00 3C    TDC=60S
581 +)))
565 565  
566 -923.2 - SF10BW125 (RX2)
583 +(((
584 +
585 +)))
567 567  
587 +* (((
588 +(% style="color:blue" %)**Reset**
589 +)))
568 568  
591 +(((
592 +If payload = 0x04FF, it will reset the NSE01
593 +)))
569 569  
570 -=== 2.7.6 KR920-923 (KR920) ===
571 571  
572 -Default channel:
596 +* (% style="color:blue" %)**INTMOD**
573 573  
574 -922.1 - SF7BW125 to SF12BW125
598 +(((
599 +Downlink Payload: 06000003, Set AT+INTMOD=3
600 +)))
575 575  
576 -922.3 - SF7BW125 to SF12BW125
577 577  
578 -922.5 - SF7BW125 to SF12BW125
579 579  
604 +== 2.6  ​LED Indicator ==
580 580  
581 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
606 +(((
607 +The NSE01 has an internal LED which is to show the status of different state.
582 582  
583 -922.1 - SF7BW125 to SF12BW125
584 584  
585 -922.3 - SF7BW125 to SF12BW125
610 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
611 +* Then the LED will be on for 1 second means device is boot normally.
612 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
613 +* For each uplink probe, LED will be on for 500ms.
614 +)))
586 586  
587 -922.5 - SF7BW125 to SF12BW125
588 588  
589 -922.7 - SF7BW125 to SF12BW125
590 590  
591 -922.9 - SF7BW125 to SF12BW125
592 592  
593 -923.1 - SF7BW125 to SF12BW125
619 +== 2.7  Installation in Soil ==
594 594  
595 -923.3 - SF7BW125 to SF12BW125
621 +__**Measurement the soil surface**__
596 596  
623 +(((
624 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
625 +)))
597 597  
598 -(% style="color:#037691" %)**Downlink:**
627 +[[image:1657259653666-883.png]] ​
599 599  
600 -Uplink channels 1-7(RX1)
601 601  
602 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
630 +(((
631 +
603 603  
633 +(((
634 +Dig a hole with diameter > 20CM.
635 +)))
604 604  
637 +(((
638 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
639 +)))
640 +)))
605 605  
606 -=== 2.7.7 IN865-867 (IN865) ===
642 +[[image:1654506665940-119.png]]
607 607  
608 -(% style="color:#037691" %)** Uplink:**
644 +(((
645 +
646 +)))
609 609  
610 -865.0625 - SF7BW125 to SF12BW125
611 611  
612 -865.4025 - SF7BW125 to SF12BW125
649 +== 2.8  Firmware Change Log ==
613 613  
614 -865.9850 - SF7BW125 to SF12BW125
615 615  
652 +Download URL & Firmware Change log
616 616  
617 -(% style="color:#037691" %) **Downlink:**
654 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
618 618  
619 -Uplink channels 1-3 (RX1)
620 620  
621 -866.550 - SF10BW125 (RX2)
657 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
622 622  
623 623  
624 624  
661 +== 2.9  ​Battery Analysis ==
625 625  
626 -== 2.8 LED Indicator ==
663 +=== 2.9.1  ​Battery Type ===
627 627  
628 -The LSE01 has an internal LED which is to show the status of different state.
629 629  
630 -* Blink once when device power on.
631 -* Solid ON for 5 seconds once device successful Join the network.
632 -* Blink once when device transmit a packet.
633 -
634 -
635 -== 2.9 Installation in Soil ==
636 -
637 -**Measurement the soil surface**
638 -
639 -
640 -[[image:1654506634463-199.png]] ​
641 -
642 642  (((
643 -(((
644 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
667 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
645 645  )))
646 -)))
647 647  
648 648  
649 -[[image:1654506665940-119.png]]
650 -
651 651  (((
652 -Dig a hole with diameter > 20CM.
672 +The battery is designed to last for several years depends on the actually use environment and update interval. 
653 653  )))
654 654  
655 -(((
656 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
657 -)))
658 658  
659 -
660 -== 2.10 ​Firmware Change Log ==
661 -
662 662  (((
663 -**Firmware download link:**
677 +The battery related documents as below:
664 664  )))
665 665  
666 -(((
667 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
668 -)))
680 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
681 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
682 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
669 669  
670 670  (((
671 -
685 +[[image:image-20220708140453-6.png]]
672 672  )))
673 673  
674 -(((
675 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
676 -)))
677 677  
678 -(((
679 -
680 -)))
681 681  
682 -(((
683 -**V1.0.**
684 -)))
690 +=== 2.9.2  Power consumption Analyze ===
685 685  
686 686  (((
687 -Release
693 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
688 688  )))
689 689  
690 690  
691 -== 2.11 ​Battery Analysis ==
692 -
693 -=== 2.11.1 ​Battery Type ===
694 -
695 695  (((
696 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
698 +Instruction to use as below:
697 697  )))
698 698  
699 699  (((
700 -The battery is designed to last for more than 5 years for the LSN50.
702 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
701 701  )))
702 702  
705 +
703 703  (((
704 -(((
705 -The battery-related documents are as below:
707 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
706 706  )))
707 -)))
708 708  
709 709  * (((
710 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
711 +Product Model
711 711  )))
712 712  * (((
713 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
714 +Uplink Interval
714 714  )))
715 715  * (((
716 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
717 +Working Mode
717 717  )))
718 718  
719 - [[image:image-20220606171726-9.png]]
720 +(((
721 +And the Life expectation in difference case will be shown on the right.
722 +)))
720 720  
724 +[[image:image-20220708141352-7.jpeg]]
721 721  
722 722  
723 -=== 2.11.2 ​Battery Note ===
724 724  
728 +=== 2.9.3  ​Battery Note ===
729 +
725 725  (((
726 726  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
727 727  )))
... ... @@ -728,299 +728,195 @@
728 728  
729 729  
730 730  
731 -=== 2.11.3 Replace the battery ===
736 +=== 2.9. Replace the battery ===
732 732  
733 733  (((
734 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
739 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
735 735  )))
736 736  
742 +
743 +
744 += 3. ​ Access NB-IoT Module =
745 +
737 737  (((
738 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
747 +Users can directly access the AT command set of the NB-IoT module.
739 739  )))
740 740  
741 741  (((
742 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
751 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
743 743  )))
744 744  
754 +[[image:1657261278785-153.png]]
745 745  
746 746  
747 -= 3. ​Using the AT Commands =
748 748  
749 -== 3.1 Access AT Commands ==
758 += 4.  Using the AT Commands =
750 750  
760 +== 4.1  Access AT Commands ==
751 751  
752 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
762 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
753 753  
754 -[[image:1654501986557-872.png]]
755 755  
765 +AT+<CMD>?  : Help on <CMD>
756 756  
757 -Or if you have below board, use below connection:
767 +AT+<CMD>         : Run <CMD>
758 758  
769 +AT+<CMD>=<value> : Set the value
759 759  
760 -[[image:1654502005655-729.png]]
771 +AT+<CMD>=?  : Get the value
761 761  
762 762  
763 -
764 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
765 -
766 -
767 - [[image:1654502050864-459.png]]
768 -
769 -
770 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
771 -
772 -
773 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
774 -
775 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
776 -
777 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
778 -
779 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
780 -
781 -
782 782  (% style="color:#037691" %)**General Commands**(%%)      
783 783  
784 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
776 +AT  : Attention       
785 785  
786 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
778 +AT?  : Short Help     
787 787  
788 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
780 +ATZ  : MCU Reset    
789 789  
790 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
782 +AT+TDC  : Application Data Transmission Interval
791 791  
784 +AT+CFG  : Print all configurations
792 792  
793 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
786 +AT+CFGMOD           : Working mode selection
794 794  
795 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
788 +AT+INTMOD            : Set the trigger interrupt mode
796 796  
797 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
790 +AT+5VT  : Set extend the time of 5V power  
798 798  
799 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
792 +AT+PRO  : Choose agreement
800 800  
801 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
794 +AT+WEIGRE  : Get weight or set weight to 0
802 802  
803 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
796 +AT+WEIGAP  : Get or Set the GapValue of weight
804 804  
805 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
798 +AT+RXDL  : Extend the sending and receiving time
806 806  
807 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
800 +AT+CNTFAC  : Get or set counting parameters
808 808  
809 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
802 +AT+SERVADDR  : Server Address
810 810  
811 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
812 812  
813 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
805 +(% style="color:#037691" %)**COAP Management**      
814 814  
815 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
807 +AT+URI            : Resource parameters
816 816  
817 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
818 818  
819 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
810 +(% style="color:#037691" %)**UDP Management**
820 820  
821 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
812 +AT+CFM          : Upload confirmation mode (only valid for UDP)
822 822  
823 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
824 824  
825 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
815 +(% style="color:#037691" %)**MQTT Management**
826 826  
817 +AT+CLIENT               : Get or Set MQTT client
827 827  
828 -(% style="color:#037691" %)**LoRa Network Management**
819 +AT+UNAME  : Get or Set MQTT Username
829 829  
830 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
821 +AT+PWD                  : Get or Set MQTT password
831 831  
832 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
823 +AT+PUBTOPI : Get or Set MQTT publish topic
833 833  
834 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
825 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
835 835  
836 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
837 837  
838 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
828 +(% style="color:#037691" %)**Information**          
839 839  
840 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
830 +AT+FDR  : Factory Data Reset
841 841  
842 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
832 +AT+PWOR : Serial Access Password
843 843  
844 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
845 845  
846 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
847 847  
848 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
836 += ​5.  FAQ =
849 849  
850 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
838 +== 5.1 How to Upgrade Firmware ==
851 851  
852 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
853 853  
854 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
841 +(((
842 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
843 +)))
855 855  
856 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
845 +(((
846 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
847 +)))
857 857  
858 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
849 +(((
850 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
851 +)))
859 859  
860 860  
861 -(% style="color:#037691" %)**Information** 
862 862  
863 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
855 +== 5.2  Can I calibrate NSE01 to different soil types? ==
864 864  
865 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
857 +(((
858 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
859 +)))
866 866  
867 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
868 868  
869 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
862 += 6.  Trouble Shooting =
870 870  
871 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
864 +== 6.1  ​Connection problem when uploading firmware ==
872 872  
873 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
874 874  
875 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
876 -
877 -
878 -= ​4. FAQ =
879 -
880 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
881 -
882 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
883 -When downloading the images, choose the required image file for download. ​
884 -
885 -
886 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
887 -
888 -
889 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
890 -
891 -
892 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
893 -
894 -[[image:image-20220606154726-3.png]]
895 -
896 -When you use the TTN network, the US915 frequency bands use are:
897 -
898 -* 903.9 - SF7BW125 to SF10BW125
899 -* 904.1 - SF7BW125 to SF10BW125
900 -* 904.3 - SF7BW125 to SF10BW125
901 -* 904.5 - SF7BW125 to SF10BW125
902 -* 904.7 - SF7BW125 to SF10BW125
903 -* 904.9 - SF7BW125 to SF10BW125
904 -* 905.1 - SF7BW125 to SF10BW125
905 -* 905.3 - SF7BW125 to SF10BW125
906 -* 904.6 - SF8BW500
907 -
908 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
909 -
910 -(% class="box infomessage" %)
911 911  (((
912 -**AT+CHE=2**
868 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
913 913  )))
914 914  
915 -(% class="box infomessage" %)
871 +(% class="wikigeneratedid" %)
916 916  (((
917 -**ATZ**
873 +
918 918  )))
919 919  
920 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
921 921  
877 +== 6.2  AT Command input doesn't work ==
922 922  
923 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
879 +(((
880 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
924 924  
925 -[[image:image-20220606154825-4.png]]
882 +
883 +)))
926 926  
927 927  
886 += 7. ​ Order Info =
928 928  
929 -= 5. Trouble Shooting =
930 930  
931 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
889 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
932 932  
933 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
934 934  
935 -
936 -== 5.2 AT Command input doesn’t work ==
937 -
938 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
939 -
940 -
941 -== 5.3 Device rejoin in at the second uplink packet ==
942 -
943 -(% style="color:#4f81bd" %)**Issue describe as below:**
944 -
945 -[[image:1654500909990-784.png]]
946 -
947 -
948 -(% style="color:#4f81bd" %)**Cause for this issue:**
949 -
950 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
951 -
952 -
953 -(% style="color:#4f81bd" %)**Solution: **
954 -
955 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
956 -
957 -[[image:1654500929571-736.png]]
958 -
959 -
960 -= 6. ​Order Info =
961 -
962 -
963 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
964 -
965 -
966 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
967 -
968 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
969 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
970 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
971 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
972 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
973 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
974 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
975 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
976 -
977 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
978 -
979 -* (% style="color:red" %)**4**(%%): 4000mAh battery
980 -* (% style="color:red" %)**8**(%%): 8500mAh battery
981 -
982 982  (% class="wikigeneratedid" %)
983 983  (((
984 984  
985 985  )))
986 986  
987 -= 7. Packing Info =
897 += 8.  Packing Info =
988 988  
989 989  (((
990 -**Package Includes**:
991 -)))
900 +
992 992  
993 -* (((
994 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
902 +(% style="color:#037691" %)**Package Includes**:
903 +
904 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
905 +* External antenna x 1
995 995  )))
996 996  
997 997  (((
998 998  
999 -)))
1000 1000  
1001 -(((
1002 -**Dimension and weight**:
1003 -)))
911 +(% style="color:#037691" %)**Dimension and weight**:
1004 1004  
1005 -* (((
1006 -Device Size: cm
913 +* Size: 195 x 125 x 55 mm
914 +* Weight:   420g
1007 1007  )))
1008 -* (((
1009 -Device Weight: g
1010 -)))
1011 -* (((
1012 -Package Size / pcs : cm
1013 -)))
1014 -* (((
1015 -Weight / pcs : g
1016 1016  
917 +(((
918 +
1017 1017  
920 +
1018 1018  
1019 1019  )))
1020 1020  
1021 -= 8. Support =
924 += 9.  Support =
1022 1022  
1023 1023  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1024 1024  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1025 -
1026 -
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.8 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +200.4 KB
Content