Last modified by Mengting Qiu on 2024/04/02 16:44

From version 31.25
edited by Xiaoling
on 2022/06/07 10:21
Change comment: There is no comment for this version
To version 60.2
edited by Xiaoling
on 2022/07/08 14:12
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,9 +3,7 @@
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
... ... @@ -12,716 +12,616 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 +**Table of Contents:**
18 18  
19 -(((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
22 22  
23 -(((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 -)))
26 26  
27 -(((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 -)))
34 34  
35 -(((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 -)))
38 38  
21 += 1.  Introduction =
39 39  
40 -[[image:1654503236291-817.png]]
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
41 41  
42 -
43 -[[image:1654503265560-120.png]]
44 -
45 -
46 -
47 -== 1.2 ​Features ==
48 -
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
51 -* Monitor Soil Moisture
52 -* Monitor Soil Temperature
53 -* Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 -* AT Commands to change parameters
56 -* Uplink on periodically
57 -* Downlink to change configure
58 -* IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
60 -
61 -== 1.3 Specification ==
62 -
63 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
64 -
65 -[[image:image-20220606162220-5.png]]
66 -
67 -
68 -
69 -== ​1.4 Applications ==
70 -
71 -* Smart Agriculture
72 -
73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
74 -​
75 -
76 -== 1.5 Firmware Change log ==
77 -
78 -
79 -**LSE01 v1.0 :**  Release
80 -
81 -
82 -
83 -= 2. Configure LSE01 to connect to LoRaWAN network =
84 -
85 -== 2.1 How it works ==
86 -
87 87  (((
88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
89 -)))
26 +
90 90  
91 -(((
92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
93 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
94 94  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
95 95  
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
96 96  
97 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
98 98  
99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
100 -
101 -
102 -[[image:1654503992078-669.png]]
103 -
104 -
105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
106 -
107 -
108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
109 -
110 -Each LSE01 is shipped with a sticker with the default device EUI as below:
111 -
112 -[[image:image-20220606163732-6.jpeg]]
113 -
114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
115 -
116 -**Add APP EUI in the application**
117 -
118 -
119 -[[image:1654504596150-405.png]]
120 -
121 -
122 -
123 -**Add APP KEY and DEV EUI**
124 -
125 -[[image:1654504683289-357.png]]
126 -
127 -
128 -
129 -**Step 2**: Power on LSE01
130 -
131 -
132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
133 -
134 -[[image:image-20220606163915-7.png]]
135 -
136 -
137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
138 -
139 -[[image:1654504778294-788.png]]
140 -
141 -
142 -
143 -== 2.3 Uplink Payload ==
144 -
145 -=== 2.3.1 MOD~=0(Default Mode) ===
146 -
147 -LSE01 will uplink payload via LoRaWAN with below payload format: 
148 -
149 -
150 -Uplink payload includes in total 11 bytes.
151 151  
152 -
153 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
154 -|=(((
155 -**Size**
156 -
157 -**(bytes)**
158 -)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1**
159 -|**Value**|(% style="width:46px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:160px" %)(((
160 -Temperature
161 -
162 -(Reserve, Ignore now)
163 -)))|(% style="width:104px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:126px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:114px" %)(((
164 -MOD & Digital Interrupt
165 -
166 -(Optional)
167 167  )))
168 168  
169 -[[image:1654504881641-514.png]]
39 +[[image:1654503236291-817.png]]
170 170  
171 171  
42 +[[image:1657245163077-232.png]]
172 172  
173 -=== 2.3.2 MOD~=1(Original value) ===
174 174  
175 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
176 176  
177 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
178 -|=(((
179 -**Size**
46 +== 1.2 ​Features ==
180 180  
181 -**(bytes)**
182 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1**
183 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
184 -Temperature
185 185  
186 -(Reserve, Ignore now)
187 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
188 -MOD & Digital Interrupt
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
53 +* AT Commands to change parameters
54 +* Uplink on periodically
55 +* Downlink to change configure
56 +* IP66 Waterproof Enclosure
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
189 189  
190 -(Optional)
191 -)))
62 +== 1.3  Specification ==
192 192  
193 -[[image:1654504907647-967.png]]
194 194  
65 +(% style="color:#037691" %)**Common DC Characteristics:**
195 195  
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
196 196  
197 -=== 2.3.3 Battery Info ===
70 +(% style="color:#037691" %)**NB-IoT Spec:**
198 198  
199 -Check the battery voltage for LSE01.
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
200 200  
201 -Ex1: 0x0B45 = 2885mV
79 +(% style="color:#037691" %)**Probe Specification:**
202 202  
203 -Ex2: 0x0B49 = 2889mV
81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
204 204  
83 +[[image:image-20220708101224-1.png]]
205 205  
206 206  
207 -=== 2.3.4 Soil Moisture ===
208 208  
209 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
87 +== ​1. Applications ==
210 210  
211 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
89 +* Smart Agriculture
212 212  
91 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92 +​
213 213  
214 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
94 +== 1.5  Pin Definitions ==
215 215  
216 216  
97 +[[image:1657246476176-652.png]]
217 217  
218 -=== 2.3.5 Soil Temperature ===
219 219  
220 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
221 221  
222 -**Example**:
101 += 2.  Use NSE01 to communicate with IoT Server =
223 223  
224 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
103 +== 2.1  How it works ==
225 225  
226 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
227 227  
228 -
229 -
230 -=== 2.3.6 Soil Conductivity (EC) ===
231 -
232 232  (((
233 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
234 234  )))
235 235  
236 -(((
237 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
238 -)))
239 239  
240 240  (((
241 -Generally, the EC value of irrigation water is less than 800uS / cm.
112 +The diagram below shows the working flow in default firmware of NSE01:
242 242  )))
243 243  
244 -(((
245 -
246 -)))
115 +[[image:image-20220708101605-2.png]]
247 247  
248 248  (((
249 249  
250 250  )))
251 251  
252 -=== 2.3.7 MOD ===
253 253  
254 -Firmware version at least v2.1 supports changing mode.
255 255  
256 -For example, bytes[10]=90
123 +== 2.2 ​ Configure the NSE01 ==
257 257  
258 -mod=(bytes[10]>>7)&0x01=1.
259 259  
126 +=== 2.2.1 Test Requirement ===
260 260  
261 -**Downlink Command:**
262 262  
263 -If payload = 0x0A00, workmode=0
129 +To use NSE01 in your city, make sure meet below requirements:
264 264  
265 -If** **payload =** **0x0A01, workmode=1
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
266 266  
135 +(((
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 +)))
267 267  
268 268  
269 -=== 2.3.8 ​Decode payload in The Things Network ===
140 +[[image:1657249419225-449.png]]
270 270  
271 -While using TTN network, you can add the payload format to decode the payload.
272 272  
273 273  
274 -[[image:1654505570700-128.png]]
144 +=== 2.2.2 Insert SIM card ===
275 275  
276 -The payload decoder function for TTN is here:
146 +Insert the NB-IoT Card get from your provider.
277 277  
278 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
148 +User need to take out the NB-IoT module and insert the SIM card like below:
279 279  
280 280  
281 -== 2.4 Uplink Interval ==
151 +[[image:1657249468462-536.png]]
282 282  
283 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>End Device AT Commands and Downlink Command||anchor="H4.1ChangeUplinkInterval"]]
284 284  
285 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
286 286  
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
287 287  
157 +(((
158 +(((
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
160 +)))
161 +)))
288 288  
289 -== 2.5 Downlink Payload ==
290 290  
291 -By default, LSE50 prints the downlink payload to console port.
164 +**Connection:**
292 292  
293 -[[image:image-20220606165544-8.png]]
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
294 294  
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
295 295  
296 -**Examples:**
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
297 297  
298 298  
299 -* **Set TDC**
173 +In the PC, use below serial tool settings:
300 300  
301 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
302 302  
303 -Payload:    01 00 00 1E    TDC=30S
181 +(((
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 +)))
304 304  
305 -Payload:    01 00 00 3C    TDC=60S
185 +[[image:image-20220708110657-3.png]]
306 306  
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
307 307  
308 -* **Reset**
309 309  
310 -If payload = 0x04FF, it will reset the LSE01
311 311  
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
312 312  
313 -* **CFM**
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
314 314  
315 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
316 316  
196 +**Use below commands:**
317 317  
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
318 318  
319 -== 2.6 ​Show Data in DataCake IoT Server ==
202 +For parameter description, please refer to AT command set
320 320  
321 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
204 +[[image:1657249793983-486.png]]
322 322  
323 323  
324 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
325 325  
326 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
209 +[[image:1657249831934-534.png]]
327 327  
328 328  
329 -[[image:1654505857935-743.png]]
330 330  
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
331 331  
332 -[[image:1654505874829-548.png]]
215 +This feature is supported since firmware version v1.0.1
333 333  
334 -Step 3: Create an account or log in Datacake.
335 335  
336 -Step 4: Search the LSE01 and add DevEUI.
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
337 337  
222 +[[image:1657249864775-321.png]]
338 338  
339 -[[image:1654505905236-553.png]]
340 340  
225 +[[image:1657249930215-289.png]]
341 341  
342 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
343 343  
344 -[[image:1654505925508-181.png]]
345 345  
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
346 346  
231 +This feature is supported since firmware version v110
347 347  
348 -== 2.7 Frequency Plans ==
349 349  
350 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
351 351  
242 +[[image:1657249978444-674.png]]
352 352  
353 -=== 2.7.1 EU863-870 (EU868) ===
354 354  
355 -(% style="color:#037691" %)** Uplink:**
245 +[[image:1657249990869-686.png]]
356 356  
357 -868.1 - SF7BW125 to SF12BW125
358 358  
359 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
248 +(((
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
250 +)))
360 360  
361 -868.5 - SF7BW125 to SF12BW125
362 362  
363 -867.1 - SF7BW125 to SF12BW125
364 364  
365 -867.3 - SF7BW125 to SF12BW125
254 +=== 2.2.7 Use TCP protocol to uplink data ===
366 366  
367 -867.5 - SF7BW125 to SF12BW125
256 +This feature is supported since firmware version v110
368 368  
369 -867.7 - SF7BW125 to SF12BW125
370 370  
371 -867.9 - SF7BW125 to SF12BW125
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
372 372  
373 -868.8 - FSK
262 +[[image:1657250217799-140.png]]
374 374  
375 375  
376 -(% style="color:#037691" %)** Downlink:**
265 +[[image:1657250255956-604.png]]
377 377  
378 -Uplink channels 1-9 (RX1)
379 379  
380 -869.525 - SF9BW125 (RX2 downlink only)
381 381  
269 +=== 2.2.8 Change Update Interval ===
382 382  
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
383 383  
384 -=== 2.7.2 US902-928(US915) ===
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
385 385  
386 -Used in USA, Canada and South America. Default use CHE=2
275 +(((
276 +(% style="color:red" %)**NOTE:**
277 +)))
387 387  
388 -(% style="color:#037691" %)**Uplink:**
279 +(((
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
281 +)))
389 389  
390 -903.9 - SF7BW125 to SF10BW125
391 391  
392 -904.1 - SF7BW125 to SF10BW125
393 393  
394 -904.3 - SF7BW125 to SF10BW125
285 +== 2.3  Uplink Payload ==
395 395  
396 -904.5 - SF7BW125 to SF10BW125
287 +In this mode, uplink payload includes in total 18 bytes
397 397  
398 -904.7 - SF7BW125 to SF10BW125
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
399 399  
400 -904.9 - SF7BW125 to SF10BW125
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
401 401  
402 -905.1 - SF7BW125 to SF10BW125
403 403  
404 -905.3 - SF7BW125 to SF10BW125
298 +[[image:image-20220708111918-4.png]]
405 405  
406 406  
407 -(% style="color:#037691" %)**Downlink:**
301 +The payload is ASCII string, representative same HEX:
408 408  
409 -923.3 - SF7BW500 to SF12BW500
303 +0x72403155615900640c7817075e0a8c02f900 where:
410 410  
411 -923.9 - SF7BW500 to SF12BW500
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
412 412  
413 -924.5 - SF7BW500 to SF12BW500
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
414 414  
415 -925.1 - SF7BW500 to SF12BW500
315 +== 2. Payload Explanation and Sensor Interface ==
416 416  
417 -925.7 - SF7BW500 to SF12BW500
418 418  
419 -926.3 - SF7BW500 to SF12BW500
318 +=== 2.4.1  Device ID ===
420 420  
421 -926.9 - SF7BW500 to SF12BW500
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
422 422  
423 -927.5 - SF7BW500 to SF12BW500
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
424 424  
425 -923.3 - SF12BW500(RX2 downlink only)
324 +**Example:**
426 426  
326 +AT+DEUI=A84041F15612
427 427  
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
428 428  
429 -=== 2.7.3 CN470-510 (CN470) ===
430 430  
431 -Used in China, Default use CHE=1
432 432  
433 -(% style="color:#037691" %)**Uplink:**
332 +=== 2.4.2  Version Info ===
434 434  
435 -486.3 - SF7BW125 to SF12BW125
334 +Specify the software version: 0x64=100, means firmware version 1.00.
436 436  
437 -486.5 - SF7BW125 to SF12BW125
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
438 438  
439 -486.7 - SF7BW125 to SF12BW125
440 440  
441 -486.9 - SF7BW125 to SF12BW125
442 442  
443 -487.1 - SF7BW125 to SF12BW125
340 +=== 2.4. Battery Info ===
444 444  
445 -487.3 - SF7BW125 to SF12BW125
342 +(((
343 +Check the battery voltage for LSE01.
344 +)))
446 446  
447 -487.5 - SF7BW125 to SF12BW125
346 +(((
347 +Ex1: 0x0B45 = 2885mV
348 +)))
448 448  
449 -487.7 - SF7BW125 to SF12BW125
350 +(((
351 +Ex2: 0x0B49 = 2889mV
352 +)))
450 450  
451 451  
452 -(% style="color:#037691" %)**Downlink:**
453 453  
454 -506.7 - SF7BW125 to SF12BW125
356 +=== 2.4.4  Signal Strength ===
455 455  
456 -506.9 - SF7BW125 to SF12BW125
358 +NB-IoT Network signal Strength.
457 457  
458 -507.1 - SF7BW125 to SF12BW125
360 +**Ex1: 0x1d = 29**
459 459  
460 -507.3 - SF7BW125 to SF12BW125
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
461 461  
462 -507.5 - SF7BW125 to SF12BW125
364 +(% style="color:blue" %)**1**(%%)  -111dBm
463 463  
464 -507.7 - SF7BW125 to SF12BW125
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
465 465  
466 -507.9 - SF7BW125 to SF12BW125
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
467 467  
468 -508.1 - SF7BW125 to SF12BW125
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
469 469  
470 -505.3 - SF12BW125 (RX2 downlink only)
471 471  
472 472  
374 +=== 2.4.5  Soil Moisture ===
473 473  
474 -=== 2.7.4 AU915-928(AU915) ===
376 +(((
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 +)))
475 475  
476 -Default use CHE=2
380 +(((
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 +)))
477 477  
478 -(% style="color:#037691" %)**Uplink:**
384 +(((
385 +
386 +)))
479 479  
480 -916.8 - SF7BW125 to SF12BW125
388 +(((
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 +)))
481 481  
482 -917.0 - SF7BW125 to SF12BW125
483 483  
484 -917.2 - SF7BW125 to SF12BW125
485 485  
486 -917.4 - SF7BW125 to SF12BW125
394 +=== 2.4.6  Soil Temperature ===
487 487  
488 -917.6 - SF7BW125 to SF12BW125
396 +(((
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 +)))
489 489  
490 -917.8 - SF7BW125 to SF12BW125
400 +(((
401 +**Example**:
402 +)))
491 491  
492 -918.0 - SF7BW125 to SF12BW125
404 +(((
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 +)))
493 493  
494 -918.2 - SF7BW125 to SF12BW125
408 +(((
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 +)))
495 495  
496 496  
497 -(% style="color:#037691" %)**Downlink:**
498 498  
499 -923.3 - SF7BW500 to SF12BW500
414 +=== 2.4.7  Soil Conductivity (EC) ===
500 500  
501 -923.9 - SF7BW500 to SF12BW500
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
502 502  
503 -924.5 - SF7BW500 to SF12BW500
420 +(((
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +)))
504 504  
505 -925.1 - SF7BW500 to SF12BW500
424 +(((
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
426 +)))
506 506  
507 -925.7 - SF7BW500 to SF12BW500
428 +(((
429 +
430 +)))
508 508  
509 -926.3 - SF7BW500 to SF12BW500
432 +(((
433 +
434 +)))
510 510  
511 -926.9 - SF7BW500 to SF12BW500
436 +=== 2.4.8  Digital Interrupt ===
512 512  
513 -927.5 - SF7BW500 to SF12BW500
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
514 514  
515 -923.3 - SF12BW500(RX2 downlink only)
440 +The command is:
516 516  
442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
517 517  
518 518  
519 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
520 520  
521 -(% style="color:#037691" %)**Default Uplink channel:**
522 522  
523 -923.2 - SF7BW125 to SF10BW125
448 +Example:
524 524  
525 -923.4 - SF7BW125 to SF10BW125
450 +0x(00): Normal uplink packet.
526 526  
452 +0x(01): Interrupt Uplink Packet.
527 527  
528 -(% style="color:#037691" %)**Additional Uplink Channel**:
529 529  
530 -(OTAA mode, channel added by JoinAccept message)
531 531  
532 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
456 +=== 2.4.9  ​+5V Output ===
533 533  
534 -922.2 - SF7BW125 to SF10BW125
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
535 535  
536 -922.4 - SF7BW125 to SF10BW125
537 537  
538 -922.6 - SF7BW125 to SF10BW125
461 +The 5V output time can be controlled by AT Command.
539 539  
540 -922.8 - SF7BW125 to SF10BW125
463 +(% style="color:blue" %)**AT+5VT=1000**
541 541  
542 -923.0 - SF7BW125 to SF10BW125
465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
543 543  
544 -922.0 - SF7BW125 to SF10BW125
545 545  
546 546  
547 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
469 +== 2.5  Downlink Payload ==
548 548  
549 -923.6 - SF7BW125 to SF10BW125
471 +By default, NSE01 prints the downlink payload to console port.
550 550  
551 -923.8 - SF7BW125 to SF10BW125
473 +[[image:image-20220708133731-5.png]]
552 552  
553 -924.0 - SF7BW125 to SF10BW125
554 554  
555 -924.2 - SF7BW125 to SF10BW125
556 556  
557 -924.4 - SF7BW125 to SF10BW125
477 +(((
478 +(% style="color:blue" %)**Examples:**
479 +)))
558 558  
559 -924.6 - SF7BW125 to SF10BW125
481 +(((
482 +
483 +)))
560 560  
485 +* (((
486 +(% style="color:blue" %)**Set TDC**
487 +)))
561 561  
562 -(% style="color:#037691" %)** Downlink:**
489 +(((
490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
491 +)))
563 563  
564 -Uplink channels 1-8 (RX1)
493 +(((
494 +Payload:    01 00 00 1E    TDC=30S
495 +)))
565 565  
566 -923.2 - SF10BW125 (RX2)
497 +(((
498 +Payload:    01 00 00 3C    TDC=60S
499 +)))
567 567  
501 +(((
502 +
503 +)))
568 568  
505 +* (((
506 +(% style="color:blue" %)**Reset**
507 +)))
569 569  
570 -=== 2.7.6 KR920-923 (KR920) ===
509 +(((
510 +If payload = 0x04FF, it will reset the NSE01
511 +)))
571 571  
572 -Default channel:
573 573  
574 -922.1 - SF7BW125 to SF12BW125
514 +* (% style="color:blue" %)**INTMOD**
575 575  
576 -922.3 - SF7BW125 to SF12BW125
516 +Downlink Payload: 06000003, Set AT+INTMOD=3
577 577  
578 -922.5 - SF7BW125 to SF12BW125
579 579  
580 580  
581 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
520 +== 2.6  ​LED Indicator ==
582 582  
583 -922.1 - SF7BW125 to SF12BW125
522 +(((
523 +The NSE01 has an internal LED which is to show the status of different state.
584 584  
585 -922.3 - SF7BW125 to SF12BW125
586 586  
587 -922.5 - SF7BW125 to SF12BW125
526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
527 +* Then the LED will be on for 1 second means device is boot normally.
528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
529 +* For each uplink probe, LED will be on for 500ms.
530 +)))
588 588  
589 -922.7 - SF7BW125 to SF12BW125
590 590  
591 -922.9 - SF7BW125 to SF12BW125
592 592  
593 -923.1 - SF7BW125 to SF12BW125
594 594  
595 -923.3 - SF7BW125 to SF12BW125
535 +== 2.7  Installation in Soil ==
596 596  
537 +__**Measurement the soil surface**__
597 597  
598 -(% style="color:#037691" %)**Downlink:**
539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
599 599  
600 -Uplink channels 1-7(RX1)
541 +[[image:1657259653666-883.png]] ​
601 601  
602 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
603 603  
544 +(((
545 +
604 604  
547 +(((
548 +Dig a hole with diameter > 20CM.
549 +)))
605 605  
606 -=== 2.7.7 IN865-867 (IN865) ===
551 +(((
552 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
553 +)))
554 +)))
607 607  
608 -(% style="color:#037691" %)** Uplink:**
556 +[[image:1654506665940-119.png]]
609 609  
610 -865.0625 - SF7BW125 to SF12BW125
558 +(((
559 +
560 +)))
611 611  
612 -865.4025 - SF7BW125 to SF12BW125
613 613  
614 -865.9850 - SF7BW125 to SF12BW125
563 +== 2.8  Firmware Change Log ==
615 615  
616 616  
617 -(% style="color:#037691" %) **Downlink:**
566 +Download URL & Firmware Change log
618 618  
619 -Uplink channels 1-3 (RX1)
568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
620 620  
621 -866.550 - SF10BW125 (RX2)
622 622  
571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
623 623  
624 624  
625 625  
626 -== 2.8 LED Indicator ==
575 +== 2. ​Battery Analysis ==
627 627  
628 -The LSE01 has an internal LED which is to show the status of different state.
577 +=== 2.9.1  ​Battery Type ===
629 629  
630 -* Blink once when device power on.
631 -* Solid ON for 5 seconds once device successful Join the network.
632 -* Blink once when device transmit a packet.
633 633  
580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
634 634  
635 -== 2.9 Installation in Soil ==
636 636  
637 -**Measurement the soil surface**
583 +The battery is designed to last for several years depends on the actually use environment and update interval.
638 638  
639 639  
640 -[[image:1654506634463-199.png]]
586 +The battery related documents as below:
641 641  
642 -(((
643 -(((
644 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
645 -)))
646 -)))
588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
647 647  
648 -
649 -[[image:1654506665940-119.png]]
650 -
651 651  (((
652 -Dig a hole with diameter > 20CM.
593 +[[image:image-20220708140453-6.png]]
653 653  )))
654 654  
655 -(((
656 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
657 -)))
658 658  
659 659  
660 -== 2.10 ​Firmware Change Log ==
598 +2.9.2 
661 661  
662 -(((
663 -**Firmware download link:**
664 -)))
600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
665 665  
666 -(((
667 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
668 -)))
669 669  
670 -(((
671 -
672 -)))
603 +Instruction to use as below:
673 673  
674 -(((
675 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
676 -)))
677 677  
678 -(((
679 -
680 -)))
606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
681 681  
682 -(((
683 -**V1.0.**
684 -)))
608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
685 685  
686 -(((
687 -Release
688 -)))
689 689  
611 +Step 2: Open it and choose
690 690  
691 -== 2.11 ​Battery Analysis ==
613 +* Product Model
614 +* Uplink Interval
615 +* Working Mode
692 692  
693 -=== 2.11.1 ​Battery Type ===
617 +And the Life expectation in difference case will be shown on the right.
694 694  
695 -(((
696 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
697 -)))
698 698  
699 -(((
700 -The battery is designed to last for more than 5 years for the LSN50.
701 -)))
702 702  
703 -(((
704 -(((
705 -The battery-related documents are as below:
706 -)))
707 -)))
621 +=== 2.9.3  ​Battery Note ===
708 708  
709 -* (((
710 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
711 -)))
712 -* (((
713 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
714 -)))
715 -* (((
716 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
717 -)))
718 -
719 - [[image:image-20220606171726-9.png]]
720 -
721 -
722 -
723 -=== 2.11.2 ​Battery Note ===
724 -
725 725  (((
726 726  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
727 727  )))
... ... @@ -728,22 +728,12 @@
728 728  
729 729  
730 730  
731 -=== 2.11.3 Replace the battery ===
629 +=== 2.9. Replace the battery ===
732 732  
733 -(((
734 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
735 -)))
631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
736 736  
737 -(((
738 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
739 -)))
740 740  
741 -(((
742 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
743 -)))
744 744  
745 -
746 -
747 747  = 3. ​Using the AT Commands =
748 748  
749 749  == 3.1 Access AT Commands ==
... ... @@ -751,13 +751,13 @@
751 751  
752 752  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
753 753  
754 -[[image:1654501986557-872.png]]
642 +[[image:1654501986557-872.png||height="391" width="800"]]
755 755  
756 756  
757 757  Or if you have below board, use below connection:
758 758  
759 759  
760 -[[image:1654502005655-729.png]]
648 +[[image:1654502005655-729.png||height="503" width="801"]]
761 761  
762 762  
763 763  
... ... @@ -764,10 +764,10 @@
764 764  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
765 765  
766 766  
767 - [[image:1654502050864-459.png]]
655 + [[image:1654502050864-459.png||height="564" width="806"]]
768 768  
769 769  
770 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
771 771  
772 772  
773 773  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -879,20 +879,38 @@
879 879  
880 880  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
881 881  
770 +(((
882 882  You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
883 883  When downloading the images, choose the required image file for download. ​
773 +)))
884 884  
775 +(((
776 +
777 +)))
885 885  
779 +(((
886 886  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
781 +)))
887 887  
783 +(((
784 +
785 +)))
888 888  
787 +(((
889 889  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
789 +)))
890 890  
791 +(((
792 +
793 +)))
891 891  
795 +(((
892 892  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
797 +)))
893 893  
894 894  [[image:image-20220606154726-3.png]]
895 895  
801 +
896 896  When you use the TTN network, the US915 frequency bands use are:
897 897  
898 898  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -905,37 +905,47 @@
905 905  * 905.3 - SF7BW125 to SF10BW125
906 906  * 904.6 - SF8BW500
907 907  
814 +(((
908 908  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
909 909  
910 -(% class="box infomessage" %)
911 -(((
912 -**AT+CHE=2**
817 +* (% style="color:#037691" %)**AT+CHE=2**
818 +* (% style="color:#037691" %)**ATZ**
913 913  )))
914 914  
915 -(% class="box infomessage" %)
916 916  (((
917 -**ATZ**
918 -)))
822 +
919 919  
920 920  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
825 +)))
921 921  
827 +(((
828 +
829 +)))
922 922  
831 +(((
923 923  The **AU915** band is similar. Below are the AU915 Uplink Channels.
833 +)))
924 924  
925 925  [[image:image-20220606154825-4.png]]
926 926  
927 927  
838 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
928 928  
840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
841 +
842 +
929 929  = 5. Trouble Shooting =
930 930  
931 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
845 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
932 932  
933 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
934 934  
935 935  
936 -== 5.2 AT Command input doesnt work ==
850 +== 5.2 AT Command input doesn't work ==
937 937  
938 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
852 +(((
853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
854 +)))
939 939  
940 940  
941 941  == 5.3 Device rejoin in at the second uplink packet ==
... ... @@ -947,7 +947,9 @@
947 947  
948 948  (% style="color:#4f81bd" %)**Cause for this issue:**
949 949  
866 +(((
950 950  The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
868 +)))
951 951  
952 952  
953 953  (% style="color:#4f81bd" %)**Solution: **
... ... @@ -954,7 +954,7 @@
954 954  
955 955  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
956 956  
957 -[[image:1654500929571-736.png]]
875 +[[image:1654500929571-736.png||height="458" width="832"]]
958 958  
959 959  
960 960  = 6. ​Order Info =
... ... @@ -987,7 +987,9 @@
987 987  = 7. Packing Info =
988 988  
989 989  (((
990 -**Package Includes**:
908 +
909 +
910 +(% style="color:#037691" %)**Package Includes**:
991 991  )))
992 992  
993 993  * (((
... ... @@ -996,10 +996,8 @@
996 996  
997 997  (((
998 998  
999 -)))
1000 1000  
1001 -(((
1002 -**Dimension and weight**:
920 +(% style="color:#037691" %)**Dimension and weight**:
1003 1003  )))
1004 1004  
1005 1005  * (((
... ... @@ -1014,7 +1014,6 @@
1014 1014  * (((
1015 1015  Weight / pcs : g
1016 1016  
1017 -
1018 1018  
1019 1019  )))
1020 1020  
... ... @@ -1022,5 +1022,3 @@
1022 1022  
1023 1023  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1024 1024  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1025 -
1026 -
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content