Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 20 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,9 +3,7 @@ 3 3 4 4 5 5 6 -**Contents:** 7 7 8 -{{toc/}} 9 9 10 10 11 11 ... ... @@ -12,716 +12,616 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 - == 1.1 Whatis LoRaWANSoil Moisture& EC Sensor ==14 +**Table of Contents:** 18 18 19 -((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 22 22 23 -((( 24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 -))) 26 26 27 -((( 28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 -))) 34 34 35 -((( 36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 -))) 38 38 21 += 1. Introduction = 39 39 40 - [[image:1654503236291-817.png]]23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 41 41 42 - 43 -[[image:1654503265560-120.png]] 44 - 45 - 46 - 47 -== 1.2 Features == 48 - 49 -* LoRaWAN 1.0.3 Class A 50 -* Ultra low power consumption 51 -* Monitor Soil Moisture 52 -* Monitor Soil Temperature 53 -* Monitor Soil Conductivity 54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 55 -* AT Commands to change parameters 56 -* Uplink on periodically 57 -* Downlink to change configure 58 -* IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 60 - 61 -== 1.3 Specification == 62 - 63 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 64 - 65 -[[image:image-20220606162220-5.png]] 66 - 67 - 68 - 69 -== 1.4 Applications == 70 - 71 -* Smart Agriculture 72 - 73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 - 75 - 76 -== 1.5 Firmware Change log == 77 - 78 - 79 -**LSE01 v1.0 :** Release 80 - 81 - 82 - 83 -= 2. Configure LSE01 to connect to LoRaWAN network = 84 - 85 -== 2.1 How it works == 86 - 87 87 ((( 88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 -))) 26 + 90 90 91 -((( 92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 93 -))) 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 94 94 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 95 95 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 96 96 97 - ==2.2QuickguidetoconnecttoLoRaWANserver(OTAA) ==34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 98 98 99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 100 - 101 - 102 -[[image:1654503992078-669.png]] 103 - 104 - 105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 106 - 107 - 108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 109 - 110 -Each LSE01 is shipped with a sticker with the default device EUI as below: 111 - 112 -[[image:image-20220606163732-6.jpeg]] 113 - 114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 115 - 116 -**Add APP EUI in the application** 117 - 118 - 119 -[[image:1654504596150-405.png]] 120 - 121 - 122 - 123 -**Add APP KEY and DEV EUI** 124 - 125 -[[image:1654504683289-357.png]] 126 - 127 - 128 - 129 -**Step 2**: Power on LSE01 130 - 131 - 132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 - 134 -[[image:image-20220606163915-7.png]] 135 - 136 - 137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 - 139 -[[image:1654504778294-788.png]] 140 - 141 - 142 - 143 -== 2.3 Uplink Payload == 144 - 145 -=== 2.3.1 MOD~=0(Default Mode) === 146 - 147 -LSE01 will uplink payload via LoRaWAN with below payload format: 148 - 149 - 150 -Uplink payload includes in total 11 bytes. 151 151 152 - 153 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 154 -|=((( 155 -**Size** 156 - 157 -**(bytes)** 158 -)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1** 159 -|**Value**|(% style="width:46px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:160px" %)((( 160 -Temperature 161 - 162 -(Reserve, Ignore now) 163 -)))|(% style="width:104px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:126px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:114px" %)((( 164 -MOD & Digital Interrupt 165 - 166 -(Optional) 167 167 ))) 168 168 169 -[[image:165450 4881641-514.png]]39 +[[image:1654503236291-817.png]] 170 170 171 171 42 +[[image:1657245163077-232.png]] 172 172 173 -=== 2.3.2 MOD~=1(Original value) === 174 174 175 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 176 176 177 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 178 -|=((( 179 -**Size** 46 +== 1.2 Features == 180 180 181 -**(bytes)** 182 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1** 183 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 184 -Temperature 185 185 186 -(Reserve, Ignore now) 187 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 188 -MOD & Digital Interrupt 49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 50 +* Monitor Soil Moisture 51 +* Monitor Soil Temperature 52 +* Monitor Soil Conductivity 53 +* AT Commands to change parameters 54 +* Uplink on periodically 55 +* Downlink to change configure 56 +* IP66 Waterproof Enclosure 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 59 +* Micro SIM card slot for NB-IoT SIM 60 +* 8500mAh Battery for long term use 189 189 190 -(Optional) 191 -))) 62 +== 1.3 Specification == 192 192 193 -[[image:1654504907647-967.png]] 194 194 65 +(% style="color:#037691" %)**Common DC Characteristics:** 195 195 67 +* Supply Voltage: 2.1v ~~ 3.6v 68 +* Operating Temperature: -40 ~~ 85°C 196 196 197 - ===2.3.3 BatteryInfo===70 +(% style="color:#037691" %)**NB-IoT Spec:** 198 198 199 -Check the battery voltage for LSE01. 72 +* - B1 @H-FDD: 2100MHz 73 +* - B3 @H-FDD: 1800MHz 74 +* - B8 @H-FDD: 900MHz 75 +* - B5 @H-FDD: 850MHz 76 +* - B20 @H-FDD: 800MHz 77 +* - B28 @H-FDD: 700MHz 200 200 201 - Ex1:0x0B45=2885mV79 +(% style="color:#037691" %)**Probe Specification:** 202 202 203 - Ex2:0x0B49=2889mV81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 204 204 83 +[[image:image-20220708101224-1.png]] 205 205 206 206 207 -=== 2.3.4 Soil Moisture === 208 208 209 - Getthe moisture content of the soil.The value range of the register is 0-10000(Decimal), dividethis value by 100 toget the percentage of moisturein the soil.87 +== 1.4 Applications == 210 210 211 - Forexample, if the data you get fromtheregisters __0x05 0xDC__,the moisturecontent in the soil is89 +* Smart Agriculture 212 212 91 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 92 + 213 213 214 - (% style="color:#4f81bd" %)**05DC(H)= 1500(D)/100=15%.**94 +== 1.5 Pin Definitions == 215 215 216 216 97 +[[image:1657246476176-652.png]] 217 217 218 -=== 2.3.5 Soil Temperature === 219 219 220 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 221 221 222 - **Example**:101 += 2. Use NSE01 to communicate with IoT Server = 223 223 224 - If payload is 0105H: ((0x0105 & 0x8000)>>15===0),temp = 0105(H)/100=2.61°C103 +== 2.1 How it works == 225 225 226 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 227 227 228 - 229 - 230 -=== 2.3.6 Soil Conductivity (EC) === 231 - 232 232 ((( 233 - Obtain(%style="color:#4f81bd"%)**__solublesaltconcentration__**(%%)insoil or (% style="color:#4f81bd"%)**__soluble ionconcentrationinliquidfertilizer__**(%%)or(% style="color:#4f81bd"%)**__plantingmedium__**(%%). Thevaluerangeftheregister is0 - 20000(Decimal)(Canbegreaterthan20000).107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 234 234 ))) 235 235 236 -((( 237 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 238 -))) 239 239 240 240 ((( 241 - Generally,theEC valueof irrigationwateris lessthan800uS/ cm.112 +The diagram below shows the working flow in default firmware of NSE01: 242 242 ))) 243 243 244 -((( 245 - 246 -))) 115 +[[image:image-20220708101605-2.png]] 247 247 248 248 ((( 249 249 250 250 ))) 251 251 252 -=== 2.3.7 MOD === 253 253 254 -Firmware version at least v2.1 supports changing mode. 255 255 256 - Forxample,bytes[10]=90123 +== 2.2 Configure the NSE01 == 257 257 258 -mod=(bytes[10]>>7)&0x01=1. 259 259 126 +=== 2.2.1 Test Requirement === 260 260 261 -**Downlink Command:** 262 262 263 - If payload=0x0A00,workmode=0129 +To use NSE01 in your city, make sure meet below requirements: 264 264 265 -If** **payload =** **0x0A01, workmode=1 131 +* Your local operator has already distributed a NB-IoT Network there. 132 +* The local NB-IoT network used the band that NSE01 supports. 133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 266 266 135 +((( 136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 137 +))) 267 267 268 268 269 - ===2.3.8 Decodepayload inThe Things Network ===140 +[[image:1657249419225-449.png]] 270 270 271 -While using TTN network, you can add the payload format to decode the payload. 272 272 273 273 274 - [[image:1654505570700-128.png]]144 +=== 2.2.2 Insert SIM card === 275 275 276 - ThepayloaddecoderfunctionforTTNis here:146 +Insert the NB-IoT Card get from your provider. 277 277 278 - LSE01 TTN Payload Decoder:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]148 +User need to take out the NB-IoT module and insert the SIM card like below: 279 279 280 280 281 - ==2.4Uplink Interval ==151 +[[image:1657249468462-536.png]] 282 282 283 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>End Device AT Commands and Downlink Command||anchor="H4.1ChangeUplinkInterval"]] 284 284 285 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 286 286 155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 287 287 157 +((( 158 +((( 159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 160 +))) 161 +))) 288 288 289 -== 2.5 Downlink Payload == 290 290 291 - By default, LSE50 prints the downlink payloadtoconsole port.164 +**Connection:** 292 292 293 - [[image:image-20220606165544-8.png]]166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 294 294 168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 295 295 296 - **Examples:**170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 297 297 298 298 299 - ***SetTDC**173 +In the PC, use below serial tool settings: 300 300 301 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 175 +* Baud: (% style="color:green" %)**9600** 176 +* Data bits:** (% style="color:green" %)8(%%)** 177 +* Stop bits: (% style="color:green" %)**1** 178 +* Parity: (% style="color:green" %)**None** 179 +* Flow Control: (% style="color:green" %)**None** 302 302 303 -Payload: 01 00 00 1E TDC=30S 181 +((( 182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 183 +))) 304 304 305 - Payload:1000 3C TDC=60S185 +[[image:image-20220708110657-3.png]] 306 306 187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 307 307 308 -* **Reset** 309 309 310 -If payload = 0x04FF, it will reset the LSE01 311 311 191 +=== 2.2.4 Use CoAP protocol to uplink data === 312 312 313 - ***CFM**193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 314 314 315 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 316 316 196 +**Use below commands:** 317 317 198 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 318 318 319 - == 2.6 ShowData inDataCakeIoT Server==202 +For parameter description, please refer to AT command set 320 320 321 -[[ DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]]to connect to TTN and see the data in DATACAKE. Below are the steps:204 +[[image:1657249793983-486.png]] 322 322 323 323 324 - **Step1**: Be sure thatyour deviceis programmed andproperlyconnectedtothenetworkat this time.207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 325 325 326 - **Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add theDATACAKE integration,perform the followingsteps:209 +[[image:1657249831934-534.png]] 327 327 328 328 329 -[[image:1654505857935-743.png]] 330 330 213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 331 331 332 - [[image:1654505874829-548.png]]215 +This feature is supported since firmware version v1.0.1 333 333 334 -Step 3: Create an account or log in Datacake. 335 335 336 -Step 4: Search the LSE01 and add DevEUI. 218 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 337 337 222 +[[image:1657249864775-321.png]] 338 338 339 -[[image:1654505905236-553.png]] 340 340 225 +[[image:1657249930215-289.png]] 341 341 342 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 343 343 344 -[[image:1654505925508-181.png]] 345 345 229 +=== 2.2.6 Use MQTT protocol to uplink data === 346 346 231 +This feature is supported since firmware version v110 347 347 348 -== 2.7 Frequency Plans == 349 349 350 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 234 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 237 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 238 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 351 351 242 +[[image:1657249978444-674.png]] 352 352 353 -=== 2.7.1 EU863-870 (EU868) === 354 354 355 - (% style="color:#037691" %)** Uplink:**245 +[[image:1657249990869-686.png]] 356 356 357 -868.1 - SF7BW125 to SF12BW125 358 358 359 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 248 +((( 249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 250 +))) 360 360 361 -868.5 - SF7BW125 to SF12BW125 362 362 363 -867.1 - SF7BW125 to SF12BW125 364 364 365 - 867.3-SF7BW125toSF12BW125254 +=== 2.2.7 Use TCP protocol to uplink data === 366 366 367 - 867.5-SF7BW125toSF12BW125256 +This feature is supported since firmware version v110 368 368 369 -867.7 - SF7BW125 to SF12BW125 370 370 371 -867.9 - SF7BW125 to SF12BW125 259 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 372 372 373 - 868.8-FSK262 +[[image:1657250217799-140.png]] 374 374 375 375 376 - (% style="color:#037691" %)** Downlink:**265 +[[image:1657250255956-604.png]] 377 377 378 -Uplink channels 1-9 (RX1) 379 379 380 -869.525 - SF9BW125 (RX2 downlink only) 381 381 269 +=== 2.2.8 Change Update Interval === 382 382 271 +User can use below command to change the (% style="color:green" %)**uplink interval**. 383 383 384 -== =2.7.2US902-928(US915)===273 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 385 385 386 -Used in USA, Canada and South America. Default use CHE=2 275 +((( 276 +(% style="color:red" %)**NOTE:** 277 +))) 387 387 388 -(% style="color:#037691" %)**Uplink:** 279 +((( 280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 281 +))) 389 389 390 -903.9 - SF7BW125 to SF10BW125 391 391 392 -904.1 - SF7BW125 to SF10BW125 393 393 394 - 904.3-SF7BW125 toSF10BW125285 +== 2.3 Uplink Payload == 395 395 396 - 904.5-SF7BW125toSF10BW125287 +In this mode, uplink payload includes in total 18 bytes 397 397 398 -904.7 - SF7BW125 to SF10BW125 289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 290 +|=(% style="width: 50px;" %)((( 291 +**Size(bytes)** 292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 399 399 400 - 904.9-SF7BW125to SF10BW125295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 401 401 402 -905.1 - SF7BW125 to SF10BW125 403 403 404 - 905.3-SF7BW125 to SF10BW125298 +[[image:image-20220708111918-4.png]] 405 405 406 406 407 - (%style="color:#037691"%)**Downlink:**301 +The payload is ASCII string, representative same HEX: 408 408 409 - 923.3 - SF7BW500to SF12BW500303 +0x72403155615900640c7817075e0a8c02f900 where: 410 410 411 -923.9 - SF7BW500 to SF12BW500 305 +* Device ID: 0x 724031556159 = 724031556159 306 +* Version: 0x0064=100=1.0.0 412 412 413 -924.5 - SF7BW500 to SF12BW500 308 +* BAT: 0x0c78 = 3192 mV = 3.192V 309 +* Singal: 0x17 = 23 310 +* Soil Moisture: 0x075e= 1886 = 18.86 % 311 +* Soil Temperature:0x0a8c =2700=27 °C 312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 313 +* Interrupt: 0x00 = 0 414 414 415 - 925.1-SF7BW500to SF12BW500315 +== 2.4 Payload Explanation and Sensor Interface == 416 416 417 -925.7 - SF7BW500 to SF12BW500 418 418 419 - 926.3-SF7BW500 to SF12BW500318 +=== 2.4.1 Device ID === 420 420 421 - 926.9-SF7BW500toSF12BW500320 +By default, the Device ID equal to the last 6 bytes of IMEI. 422 422 423 - 927.5-SF7BW500toSF12BW500322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 424 424 425 - 923.3 - SF12BW500(RX2 downlink only)324 +**Example:** 426 426 326 +AT+DEUI=A84041F15612 427 427 328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 428 428 429 -=== 2.7.3 CN470-510 (CN470) === 430 430 431 -Used in China, Default use CHE=1 432 432 433 - (%style="color:#037691" %)**Uplink:**332 +=== 2.4.2 Version Info === 434 434 435 - 486.3-SF7BW125toSF12BW125334 +Specify the software version: 0x64=100, means firmware version 1.00. 436 436 437 - 486.5-SF7BW125toSF12BW125336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 438 438 439 -486.7 - SF7BW125 to SF12BW125 440 440 441 -486.9 - SF7BW125 to SF12BW125 442 442 443 -4 87.1- SF7BW125toSF12BW125340 +=== 2.4.3 Battery Info === 444 444 445 -487.3 - SF7BW125 to SF12BW125 342 +((( 343 +Check the battery voltage for LSE01. 344 +))) 446 446 447 -487.5 - SF7BW125 to SF12BW125 346 +((( 347 +Ex1: 0x0B45 = 2885mV 348 +))) 448 448 449 -487.7 - SF7BW125 to SF12BW125 350 +((( 351 +Ex2: 0x0B49 = 2889mV 352 +))) 450 450 451 451 452 -(% style="color:#037691" %)**Downlink:** 453 453 454 - 506.7-SF7BW125toSF12BW125356 +=== 2.4.4 Signal Strength === 455 455 456 - 506.9-SF7BW125to SF12BW125358 +NB-IoT Network signal Strength. 457 457 458 - 507.1- SF7BW125toSF12BW125360 +**Ex1: 0x1d = 29** 459 459 460 - 507.3-SF7BW125toSF12BW125362 +(% style="color:blue" %)**0**(%%) -113dBm or less 461 461 462 - 507.5-SF7BW125toSF12BW125364 +(% style="color:blue" %)**1**(%%) -111dBm 463 463 464 - 507.7- SF7BW125toSF12BW125366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 465 465 466 - 507.9-SF7BW125toSF12BW125368 +(% style="color:blue" %)**31** (%%) -51dBm or greater 467 467 468 - 508.1-SF7BW125toSF12BW125370 +(% style="color:blue" %)**99** (%%) Not known or not detectable 469 469 470 -505.3 - SF12BW125 (RX2 downlink only) 471 471 472 472 374 +=== 2.4.5 Soil Moisture === 473 473 474 -=== 2.7.4 AU915-928(AU915) === 376 +((( 377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 378 +))) 475 475 476 -Default use CHE=2 380 +((( 381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 382 +))) 477 477 478 -(% style="color:#037691" %)**Uplink:** 384 +((( 385 + 386 +))) 479 479 480 -916.8 - SF7BW125 to SF12BW125 388 +((( 389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 390 +))) 481 481 482 -917.0 - SF7BW125 to SF12BW125 483 483 484 -917.2 - SF7BW125 to SF12BW125 485 485 486 - 917.4-SF7BW125toSF12BW125394 +=== 2.4.6 Soil Temperature === 487 487 488 -917.6 - SF7BW125 to SF12BW125 396 +((( 397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 398 +))) 489 489 490 -917.8 - SF7BW125 to SF12BW125 400 +((( 401 +**Example**: 402 +))) 491 491 492 -918.0 - SF7BW125 to SF12BW125 404 +((( 405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 406 +))) 493 493 494 -918.2 - SF7BW125 to SF12BW125 408 +((( 409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 410 +))) 495 495 496 496 497 -(% style="color:#037691" %)**Downlink:** 498 498 499 - 923.3-SF7BW500toSF12BW500414 +=== 2.4.7 Soil Conductivity (EC) === 500 500 501 -923.9 - SF7BW500 to SF12BW500 416 +((( 417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 418 +))) 502 502 503 -924.5 - SF7BW500 to SF12BW500 420 +((( 421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 422 +))) 504 504 505 -925.1 - SF7BW500 to SF12BW500 424 +((( 425 +Generally, the EC value of irrigation water is less than 800uS / cm. 426 +))) 506 506 507 -925.7 - SF7BW500 to SF12BW500 428 +((( 429 + 430 +))) 508 508 509 -926.3 - SF7BW500 to SF12BW500 432 +((( 433 + 434 +))) 510 510 511 - 926.9-SF7BW500toSF12BW500436 +=== 2.4.8 Digital Interrupt === 512 512 513 - 927.5-SF7BW500toSF12BW500438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 514 514 515 - 923.3- SF12BW500(RX2 downlinkonly)440 +The command is: 516 516 442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 517 517 518 518 519 - ===2.7.5AS920-923&AS923-925(AS923)===445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 520 520 521 -(% style="color:#037691" %)**Default Uplink channel:** 522 522 523 - 923.2 - SF7BW125 to SF10BW125448 +Example: 524 524 525 - 923.4-SF7BW125to SF10BW125450 +0x(00): Normal uplink packet. 526 526 452 +0x(01): Interrupt Uplink Packet. 527 527 528 -(% style="color:#037691" %)**Additional Uplink Channel**: 529 529 530 -(OTAA mode, channel added by JoinAccept message) 531 531 532 - (% style="color:#037691"%)**AS920~~AS923forJapan,Malaysia, Singapore**:456 +=== 2.4.9 +5V Output === 533 533 534 - 922.2 -SF7BW125 toSF10BW125458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 535 535 536 -922.4 - SF7BW125 to SF10BW125 537 537 538 - 922.6- SF7BW125 toSF10BW125461 +The 5V output time can be controlled by AT Command. 539 539 540 - 922.8- SF7BW125toSF10BW125463 +(% style="color:blue" %)**AT+5VT=1000** 541 541 542 - 923.0-SF7BW125 toSF10BW125465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 543 543 544 -922.0 - SF7BW125 to SF10BW125 545 545 546 546 547 - (% style="color:#037691"%)**AS923 ~~ AS925for Brunei, Cambodia, HongKong, Indonesia, Laos, Taiwan, Thailand,Vietnam**:469 +== 2.5 Downlink Payload == 548 548 549 - 923.6-SF7BW125toSF10BW125471 +By default, NSE01 prints the downlink payload to console port. 550 550 551 - 923.8- SF7BW125to SF10BW125473 +[[image:image-20220708133731-5.png]] 552 552 553 -924.0 - SF7BW125 to SF10BW125 554 554 555 -924.2 - SF7BW125 to SF10BW125 556 556 557 -924.4 - SF7BW125 to SF10BW125 477 +((( 478 +(% style="color:blue" %)**Examples:** 479 +))) 558 558 559 -924.6 - SF7BW125 to SF10BW125 481 +((( 482 + 483 +))) 560 560 485 +* ((( 486 +(% style="color:blue" %)**Set TDC** 487 +))) 561 561 562 -(% style="color:#037691" %)** Downlink:** 489 +((( 490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 491 +))) 563 563 564 -Uplink channels 1-8 (RX1) 493 +((( 494 +Payload: 01 00 00 1E TDC=30S 495 +))) 565 565 566 -923.2 - SF10BW125 (RX2) 497 +((( 498 +Payload: 01 00 00 3C TDC=60S 499 +))) 567 567 501 +((( 502 + 503 +))) 568 568 505 +* ((( 506 +(% style="color:blue" %)**Reset** 507 +))) 569 569 570 -=== 2.7.6 KR920-923 (KR920) === 509 +((( 510 +If payload = 0x04FF, it will reset the NSE01 511 +))) 571 571 572 -Default channel: 573 573 574 - 922.1-SF7BW125toSF12BW125514 +* (% style="color:blue" %)**INTMOD** 575 575 576 - 922.3-SF7BW125toSF12BW125516 +Downlink Payload: 06000003, Set AT+INTMOD=3 577 577 578 -922.5 - SF7BW125 to SF12BW125 579 579 580 580 581 - (% style="color:#037691"%)**Uplink:(OTAA mode, channel added by JoinAcceptmessage)**520 +== 2.6 LED Indicator == 582 582 583 -922.1 - SF7BW125 to SF12BW125 522 +((( 523 +The NSE01 has an internal LED which is to show the status of different state. 584 584 585 -922.3 - SF7BW125 to SF12BW125 586 586 587 -922.5 - SF7BW125 to SF12BW125 526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 527 +* Then the LED will be on for 1 second means device is boot normally. 528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 529 +* For each uplink probe, LED will be on for 500ms. 530 +))) 588 588 589 -922.7 - SF7BW125 to SF12BW125 590 590 591 -922.9 - SF7BW125 to SF12BW125 592 592 593 -923.1 - SF7BW125 to SF12BW125 594 594 595 - 923.3 - SF7BW125to SF12BW125535 +== 2.7 Installation in Soil == 596 596 537 +__**Measurement the soil surface**__ 597 597 598 - (%style="color:#037691" %)**Downlink:**539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 599 599 600 - Uplink channels1-7(RX1)541 +[[image:1657259653666-883.png]] 601 601 602 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 603 603 544 +((( 545 + 604 604 547 +((( 548 +Dig a hole with diameter > 20CM. 549 +))) 605 605 606 -=== 2.7.7 IN865-867 (IN865) === 551 +((( 552 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 553 +))) 554 +))) 607 607 608 - (% style="color:#037691" %)** Uplink:**556 +[[image:1654506665940-119.png]] 609 609 610 -865.0625 - SF7BW125 to SF12BW125 558 +((( 559 + 560 +))) 611 611 612 -865.4025 - SF7BW125 to SF12BW125 613 613 614 - 865.9850- SF7BW125toSF12BW125563 +== 2.8 Firmware Change Log == 615 615 616 616 617 - (% style="color:#037691"%)**Downlink:**566 +Download URL & Firmware Change log 618 618 619 - Uplinkchannels1-3 (RX1)568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 620 620 621 -866.550 - SF10BW125 (RX2) 622 622 571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 623 623 624 624 625 625 626 -== 2. 8LED Indicator ==575 +== 2.9 Battery Analysis == 627 627 628 - TheLSE01has an internal LED which isto show thestatus of differentstate.577 +=== 2.9.1 Battery Type === 629 629 630 -* Blink once when device power on. 631 -* Solid ON for 5 seconds once device successful Join the network. 632 -* Blink once when device transmit a packet. 633 633 580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 634 634 635 -== 2.9 Installation in Soil == 636 636 637 - **Measurement the soilsurface**583 +The battery is designed to last for several years depends on the actually use environment and update interval. 638 638 639 639 640 - [[image:1654506634463-199.png]]586 +The battery related documents as below: 641 641 642 -((( 643 -((( 644 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 645 -))) 646 -))) 588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 647 647 648 - 649 -[[image:1654506665940-119.png]] 650 - 651 651 ((( 652 - Digaholewith diameter >20CM.593 +[[image:image-20220708140453-6.png]] 653 653 ))) 654 654 655 -((( 656 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 657 -))) 658 658 659 659 660 - ==2.10Firmware Change Log ==598 +2.9.2 661 661 662 -((( 663 -**Firmware download link:** 664 -))) 600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 665 665 666 -((( 667 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 668 -))) 669 669 670 -((( 671 - 672 -))) 603 +Instruction to use as below: 673 673 674 -((( 675 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 676 -))) 677 677 678 -((( 679 - 680 -))) 606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 681 681 682 -((( 683 -**V1.0.** 684 -))) 608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 685 685 686 -((( 687 -Release 688 -))) 689 689 611 +Step 2: Open it and choose 690 690 691 -== 2.11 Battery Analysis == 613 +* Product Model 614 +* Uplink Interval 615 +* Working Mode 692 692 693 - ===2.11.1BatteryType===617 +And the Life expectation in difference case will be shown on the right. 694 694 695 -((( 696 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 697 -))) 698 698 699 -((( 700 -The battery is designed to last for more than 5 years for the LSN50. 701 -))) 702 702 703 -((( 704 -((( 705 -The battery-related documents are as below: 706 -))) 707 -))) 621 +=== 2.9.3 Battery Note === 708 708 709 -* ((( 710 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 711 -))) 712 -* ((( 713 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 714 -))) 715 -* ((( 716 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 717 -))) 718 - 719 - [[image:image-20220606171726-9.png]] 720 - 721 - 722 - 723 -=== 2.11.2 Battery Note === 724 - 725 725 ((( 726 726 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 727 727 ))) ... ... @@ -728,22 +728,12 @@ 728 728 729 729 730 730 731 -=== 2. 11.3Replace the battery ===629 +=== 2.9.4 Replace the battery === 732 732 733 -((( 734 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 735 -))) 631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 736 736 737 -((( 738 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 739 -))) 740 740 741 -((( 742 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 743 -))) 744 744 745 - 746 - 747 747 = 3. Using the AT Commands = 748 748 749 749 == 3.1 Access AT Commands == ... ... @@ -751,13 +751,13 @@ 751 751 752 752 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 753 753 754 -[[image:1654501986557-872.png]] 642 +[[image:1654501986557-872.png||height="391" width="800"]] 755 755 756 756 757 757 Or if you have below board, use below connection: 758 758 759 759 760 -[[image:1654502005655-729.png]] 648 +[[image:1654502005655-729.png||height="503" width="801"]] 761 761 762 762 763 763 ... ... @@ -764,10 +764,10 @@ 764 764 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 765 765 766 766 767 - [[image:1654502050864-459.png]] 655 + [[image:1654502050864-459.png||height="564" width="806"]] 768 768 769 769 770 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>> url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 771 771 772 772 773 773 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> ... ... @@ -879,20 +879,38 @@ 879 879 880 880 == 4.1 How to change the LoRa Frequency Bands/Region? == 881 881 770 +((( 882 882 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 883 883 When downloading the images, choose the required image file for download. 773 +))) 884 884 775 +((( 776 + 777 +))) 885 885 779 +((( 886 886 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 781 +))) 887 887 783 +((( 784 + 785 +))) 888 888 787 +((( 889 889 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 789 +))) 890 890 791 +((( 792 + 793 +))) 891 891 795 +((( 892 892 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 797 +))) 893 893 894 894 [[image:image-20220606154726-3.png]] 895 895 801 + 896 896 When you use the TTN network, the US915 frequency bands use are: 897 897 898 898 * 903.9 - SF7BW125 to SF10BW125 ... ... @@ -905,37 +905,47 @@ 905 905 * 905.3 - SF7BW125 to SF10BW125 906 906 * 904.6 - SF8BW500 907 907 814 +((( 908 908 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 909 909 910 -(% class="box infomessage" %) 911 -((( 912 -**AT+CHE=2** 817 +* (% style="color:#037691" %)**AT+CHE=2** 818 +* (% style="color:#037691" %)**ATZ** 913 913 ))) 914 914 915 -(% class="box infomessage" %) 916 916 ((( 917 -**ATZ** 918 -))) 822 + 919 919 920 920 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 825 +))) 921 921 827 +((( 828 + 829 +))) 922 922 831 +((( 923 923 The **AU915** band is similar. Below are the AU915 Uplink Channels. 833 +))) 924 924 925 925 [[image:image-20220606154825-4.png]] 926 926 927 927 838 +== 4.2 Can I calibrate LSE01 to different soil types? == 928 928 840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 841 + 842 + 929 929 = 5. Trouble Shooting = 930 930 931 -== 5.1 Why I can ’t join TTN in US915 / AU915 bands? ==845 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 932 932 933 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. LoRaWANCommunication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 934 934 935 935 936 -== 5.2 AT Command input doesn ’t work ==850 +== 5.2 AT Command input doesn't work == 937 937 938 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 852 +((( 853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 854 +))) 939 939 940 940 941 941 == 5.3 Device rejoin in at the second uplink packet == ... ... @@ -947,7 +947,9 @@ 947 947 948 948 (% style="color:#4f81bd" %)**Cause for this issue:** 949 949 866 +((( 950 950 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 868 +))) 951 951 952 952 953 953 (% style="color:#4f81bd" %)**Solution: ** ... ... @@ -954,7 +954,7 @@ 954 954 955 955 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 956 956 957 -[[image:1654500929571-736.png]] 875 +[[image:1654500929571-736.png||height="458" width="832"]] 958 958 959 959 960 960 = 6. Order Info = ... ... @@ -987,7 +987,9 @@ 987 987 = 7. Packing Info = 988 988 989 989 ((( 990 -**Package Includes**: 908 + 909 + 910 +(% style="color:#037691" %)**Package Includes**: 991 991 ))) 992 992 993 993 * ((( ... ... @@ -996,10 +996,8 @@ 996 996 997 997 ((( 998 998 999 -))) 1000 1000 1001 -((( 1002 -**Dimension and weight**: 920 +(% style="color:#037691" %)**Dimension and weight**: 1003 1003 ))) 1004 1004 1005 1005 * ((( ... ... @@ -1014,7 +1014,6 @@ 1014 1014 * ((( 1015 1015 Weight / pcs : g 1016 1016 1017 - 1018 1018 1019 1019 ))) 1020 1020 ... ... @@ -1022,5 +1022,3 @@ 1022 1022 1023 1023 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1024 1024 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1025 - 1026 -
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content