Last modified by Mengting Qiu on 2024/04/02 16:44

From version 31.25
edited by Xiaoling
on 2022/06/07 10:21
Change comment: There is no comment for this version
To version 50.2
edited by Xiaoling
on 2022/07/08 11:10
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,9 +3,7 @@
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
... ... @@ -12,61 +12,81 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 +**Table of Contents:**
18 18  
19 -(((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
22 22  
23 -(((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 -)))
26 26  
27 -(((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 -)))
34 34  
20 +
21 += 1.  Introduction =
22 +
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 +
35 35  (((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 -)))
26 +
38 38  
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
39 39  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
36 +
37 +)))
38 +
40 40  [[image:1654503236291-817.png]]
41 41  
42 42  
43 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
44 44  
45 45  
46 46  
47 47  == 1.2 ​Features ==
48 48  
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
51 51  * Monitor Soil Moisture
52 52  * Monitor Soil Temperature
53 53  * Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 55  * AT Commands to change parameters
56 56  * Uplink on periodically
57 57  * Downlink to change configure
58 58  * IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
60 60  
61 -== 1.3 Specification ==
62 +== 1.3  Specification ==
62 62  
64 +
65 +(% style="color:#037691" %)**Common DC Characteristics:**
66 +
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
69 +
70 +(% style="color:#037691" %)**NB-IoT Spec:**
71 +
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
78 +
79 +(% style="color:#037691" %)**Probe Specification:**
80 +
63 63  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
64 64  
65 -[[image:image-20220606162220-5.png]]
83 +[[image:image-20220708101224-1.png]]
66 66  
67 67  
68 68  
69 -== ​1.4 Applications ==
87 +== ​1.4  Applications ==
70 70  
71 71  * Smart Agriculture
72 72  
... ... @@ -73,157 +73,301 @@
73 73  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
74 74  ​
75 75  
76 -== 1.5 Firmware Change log ==
94 +== 1.5  Pin Definitions ==
77 77  
78 78  
79 -**LSE01 v1.0 :**  Release
97 +[[image:1657246476176-652.png]]
80 80  
81 81  
82 82  
83 -= 2. Configure LSE01 to connect to LoRaWAN network =
101 += 2.  Use NSE01 to communicate with IoT Server =
84 84  
85 -== 2.1 How it works ==
103 +== 2.1  How it works ==
86 86  
105 +
87 87  (((
88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
89 89  )))
90 90  
110 +
91 91  (((
92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
112 +The diagram below shows the working flow in default firmware of NSE01:
93 93  )))
94 94  
115 +[[image:image-20220708101605-2.png]]
95 95  
117 +(((
118 +
119 +)))
96 96  
97 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
98 98  
99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
100 100  
123 +== 2.2 ​ Configure the NSE01 ==
101 101  
102 -[[image:1654503992078-669.png]]
103 103  
126 +=== 2.2.1 Test Requirement ===
104 104  
105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
106 106  
129 +To use NSE01 in your city, make sure meet below requirements:
107 107  
108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
109 109  
110 -Each LSE01 is shipped with a sticker with the default device EUI as below:
135 +(((
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 +)))
111 111  
112 -[[image:image-20220606163732-6.jpeg]]
113 113  
114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
140 +[[image:1657249419225-449.png]]
115 115  
116 -**Add APP EUI in the application**
117 117  
118 118  
119 -[[image:1654504596150-405.png]]
144 +=== 2.2.2 Insert SIM card ===
120 120  
146 +Insert the NB-IoT Card get from your provider.
121 121  
148 +User need to take out the NB-IoT module and insert the SIM card like below:
122 122  
123 -**Add APP KEY and DEV EUI**
124 124  
125 -[[image:1654504683289-357.png]]
151 +[[image:1657249468462-536.png]]
126 126  
127 127  
128 128  
129 -**Step 2**: Power on LSE01
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
130 130  
157 +(((
158 +(((
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
160 +)))
161 +)))
131 131  
132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
133 133  
134 -[[image:image-20220606163915-7.png]]
164 +**Connection:**
135 135  
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
136 136  
137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
138 138  
139 -[[image:1654504778294-788.png]]
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
140 140  
141 141  
173 +In the PC, use below serial tool settings:
142 142  
175 +* Baud: (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity: (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
180 +
181 +(((
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 +)))
184 +
185 +[[image:image-20220708110657-3.png]]
186 +
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
188 +
189 +
190 +
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
192 +
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/index.php?title=Set_up_CoAP_Server>>url:http://wiki.dragino.com/index.php?title=Set_up_CoAP_Server]]
194 +
195 +
196 +**Use below commands:**
197 +
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
201 +
202 +
203 +
204 +For parameter description, please refer to AT command set
205 +
206 +[[image:1657249793983-486.png]]
207 +
208 +
209 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
210 +
211 +[[image:1657249831934-534.png]]
212 +
213 +
214 +
215 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
216 +
217 +
218 +This feature is supported since firmware version v1.0.1
219 +
220 +
221 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
222 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
223 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
224 +
225 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.jpg]]
226 +
227 +
228 +
229 +
230 +
231 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.jpg]]
232 +
233 +
234 +=== 2.2.6 Use MQTT protocol to uplink data ===
235 +
236 +
237 +This feature is supported since firmware version v110
238 +
239 +
240 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
241 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
242 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
243 +* (% style="color:blue" %)**AT+UNAME=UNAME            **(%%)~/~/Set the username of MQTT
244 +* (% style="color:blue" %)**AT+PWD=PWD                  **(%%)~/~/Set the password of MQTT
245 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB     **(%%)~/~/Set the sending topic of MQTT
246 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
247 +
248 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.gif]]
249 +
250 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.jpg]]
251 +
252 +
253 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
254 +
255 +
256 +=== 2.2.7 Use TCP protocol to uplink data ===
257 +
258 +
259 +This feature is supported since firmware version v110
260 +
261 +
262 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
263 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
264 +
265 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.jpg]]
266 +
267 +
268 +
269 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
270 +
271 +
272 +=== 2.2.8 Change Update Interval ===
273 +
274 +User can use below command to change the (% style="color:green" %)**uplink interval**.
275 +
276 +**~ (% style="color:blue" %)AT+TDC=600      (%%)**(% style="color:blue" %) (%%)~/~/ Set Update Interval to 600s
277 +
278 +
279 +(% style="color:red" %)**NOTE:**
280 +
281 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
282 +
283 +
284 +
285 +
286 +
287 +
288 +
143 143  == 2.3 Uplink Payload ==
144 144  
291 +
145 145  === 2.3.1 MOD~=0(Default Mode) ===
146 146  
147 147  LSE01 will uplink payload via LoRaWAN with below payload format: 
148 148  
149 -
296 +(((
150 150  Uplink payload includes in total 11 bytes.
151 -
298 +)))
152 152  
153 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
154 -|=(((
300 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
301 +|(((
155 155  **Size**
156 156  
157 157  **(bytes)**
158 -)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1**
159 -|**Value**|(% style="width:46px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:160px" %)(((
305 +)))|**2**|**2**|**2**|**2**|**2**|**1**
306 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
160 160  Temperature
161 161  
162 162  (Reserve, Ignore now)
163 -)))|(% style="width:104px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:126px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:114px" %)(((
310 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
164 164  MOD & Digital Interrupt
165 165  
166 166  (Optional)
167 167  )))
168 168  
169 -[[image:1654504881641-514.png]]
170 -
171 -
172 -
173 173  === 2.3.2 MOD~=1(Original value) ===
174 174  
175 175  This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
176 176  
177 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
178 -|=(((
320 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
321 +|(((
179 179  **Size**
180 180  
181 181  **(bytes)**
182 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1**
325 +)))|**2**|**2**|**2**|**2**|**2**|**1**
183 183  |**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
184 184  Temperature
185 185  
186 186  (Reserve, Ignore now)
187 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
330 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
188 188  MOD & Digital Interrupt
189 189  
190 190  (Optional)
191 191  )))
192 192  
193 -[[image:1654504907647-967.png]]
194 -
195 -
196 -
197 197  === 2.3.3 Battery Info ===
198 198  
338 +(((
199 199  Check the battery voltage for LSE01.
340 +)))
200 200  
342 +(((
201 201  Ex1: 0x0B45 = 2885mV
344 +)))
202 202  
346 +(((
203 203  Ex2: 0x0B49 = 2889mV
348 +)))
204 204  
205 205  
206 206  
207 207  === 2.3.4 Soil Moisture ===
208 208  
354 +(((
209 209  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
356 +)))
210 210  
358 +(((
211 211  For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
360 +)))
212 212  
362 +(((
363 +
364 +)))
213 213  
366 +(((
214 214  (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
368 +)))
215 215  
216 216  
217 217  
218 218  === 2.3.5 Soil Temperature ===
219 219  
374 +(((
220 220   Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
376 +)))
221 221  
378 +(((
222 222  **Example**:
380 +)))
223 223  
382 +(((
224 224  If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
384 +)))
225 225  
386 +(((
226 226  If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
388 +)))
227 227  
228 228  
229 229  
... ... @@ -273,19 +273,21 @@
273 273  
274 274  [[image:1654505570700-128.png]]
275 275  
438 +(((
276 276  The payload decoder function for TTN is here:
440 +)))
277 277  
278 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
442 +(((
443 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
444 +)))
279 279  
280 280  
281 281  == 2.4 Uplink Interval ==
282 282  
283 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>End Device AT Commands and Downlink Command||anchor="H4.1ChangeUplinkInterval"]]
449 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
284 284  
285 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
286 286  
287 287  
288 -
289 289  == 2.5 Downlink Payload ==
290 290  
291 291  By default, LSE50 prints the downlink payload to console port.
... ... @@ -293,24 +293,44 @@
293 293  [[image:image-20220606165544-8.png]]
294 294  
295 295  
296 -**Examples:**
460 +(((
461 +(% style="color:blue" %)**Examples:**
462 +)))
297 297  
464 +(((
465 +
466 +)))
298 298  
299 -* **Set TDC**
468 +* (((
469 +(% style="color:blue" %)**Set TDC**
470 +)))
300 300  
472 +(((
301 301  If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
474 +)))
302 302  
476 +(((
303 303  Payload:    01 00 00 1E    TDC=30S
478 +)))
304 304  
480 +(((
305 305  Payload:    01 00 00 3C    TDC=60S
482 +)))
306 306  
484 +(((
485 +
486 +)))
307 307  
308 -* **Reset**
488 +* (((
489 +(% style="color:blue" %)**Reset**
490 +)))
309 309  
492 +(((
310 310  If payload = 0x04FF, it will reset the LSE01
494 +)))
311 311  
312 312  
313 -* **CFM**
497 +* (% style="color:blue" %)**CFM**
314 314  
315 315  Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
316 316  
... ... @@ -318,12 +318,21 @@
318 318  
319 319  == 2.6 ​Show Data in DataCake IoT Server ==
320 320  
505 +(((
321 321  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
507 +)))
322 322  
509 +(((
510 +
511 +)))
323 323  
324 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
513 +(((
514 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
515 +)))
325 325  
326 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
517 +(((
518 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
519 +)))
327 327  
328 328  
329 329  [[image:1654505857935-743.png]]
... ... @@ -331,11 +331,12 @@
331 331  
332 332  [[image:1654505874829-548.png]]
333 333  
334 -Step 3: Create an account or log in Datacake.
335 335  
336 -Step 4: Search the LSE01 and add DevEUI.
528 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
337 337  
530 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
338 338  
532 +
339 339  [[image:1654505905236-553.png]]
340 340  
341 341  
... ... @@ -631,7 +631,6 @@
631 631  * Solid ON for 5 seconds once device successful Join the network.
632 632  * Blink once when device transmit a packet.
633 633  
634 -
635 635  == 2.9 Installation in Soil ==
636 636  
637 637  **Measurement the soil surface**
... ... @@ -646,6 +646,7 @@
646 646  )))
647 647  
648 648  
842 +
649 649  [[image:1654506665940-119.png]]
650 650  
651 651  (((
... ... @@ -707,16 +707,16 @@
707 707  )))
708 708  
709 709  * (((
710 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
904 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
711 711  )))
712 712  * (((
713 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
907 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
714 714  )))
715 715  * (((
716 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
910 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
717 717  )))
718 718  
719 - [[image:image-20220606171726-9.png]]
913 + [[image:image-20220610172436-1.png]]
720 720  
721 721  
722 722  
... ... @@ -751,13 +751,13 @@
751 751  
752 752  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
753 753  
754 -[[image:1654501986557-872.png]]
948 +[[image:1654501986557-872.png||height="391" width="800"]]
755 755  
756 756  
757 757  Or if you have below board, use below connection:
758 758  
759 759  
760 -[[image:1654502005655-729.png]]
954 +[[image:1654502005655-729.png||height="503" width="801"]]
761 761  
762 762  
763 763  
... ... @@ -764,10 +764,10 @@
764 764  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
765 765  
766 766  
767 - [[image:1654502050864-459.png]]
961 + [[image:1654502050864-459.png||height="564" width="806"]]
768 768  
769 769  
770 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
964 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
771 771  
772 772  
773 773  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -879,20 +879,38 @@
879 879  
880 880  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
881 881  
1076 +(((
882 882  You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
883 883  When downloading the images, choose the required image file for download. ​
1079 +)))
884 884  
1081 +(((
1082 +
1083 +)))
885 885  
1085 +(((
886 886  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
1087 +)))
887 887  
1089 +(((
1090 +
1091 +)))
888 888  
1093 +(((
889 889  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1095 +)))
890 890  
1097 +(((
1098 +
1099 +)))
891 891  
1101 +(((
892 892  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1103 +)))
893 893  
894 894  [[image:image-20220606154726-3.png]]
895 895  
1107 +
896 896  When you use the TTN network, the US915 frequency bands use are:
897 897  
898 898  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -905,37 +905,47 @@
905 905  * 905.3 - SF7BW125 to SF10BW125
906 906  * 904.6 - SF8BW500
907 907  
1120 +(((
908 908  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
909 909  
910 -(% class="box infomessage" %)
911 -(((
912 -**AT+CHE=2**
1123 +* (% style="color:#037691" %)**AT+CHE=2**
1124 +* (% style="color:#037691" %)**ATZ**
913 913  )))
914 914  
915 -(% class="box infomessage" %)
916 916  (((
917 -**ATZ**
918 -)))
1128 +
919 919  
920 920  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1131 +)))
921 921  
1133 +(((
1134 +
1135 +)))
922 922  
1137 +(((
923 923  The **AU915** band is similar. Below are the AU915 Uplink Channels.
1139 +)))
924 924  
925 925  [[image:image-20220606154825-4.png]]
926 926  
927 927  
1144 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
928 928  
1146 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1147 +
1148 +
929 929  = 5. Trouble Shooting =
930 930  
931 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
1151 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
932 932  
933 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1153 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
934 934  
935 935  
936 -== 5.2 AT Command input doesnt work ==
1156 +== 5.2 AT Command input doesn't work ==
937 937  
938 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1158 +(((
1159 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1160 +)))
939 939  
940 940  
941 941  == 5.3 Device rejoin in at the second uplink packet ==
... ... @@ -947,7 +947,9 @@
947 947  
948 948  (% style="color:#4f81bd" %)**Cause for this issue:**
949 949  
1172 +(((
950 950  The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1174 +)))
951 951  
952 952  
953 953  (% style="color:#4f81bd" %)**Solution: **
... ... @@ -954,7 +954,7 @@
954 954  
955 955  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
956 956  
957 -[[image:1654500929571-736.png]]
1181 +[[image:1654500929571-736.png||height="458" width="832"]]
958 958  
959 959  
960 960  = 6. ​Order Info =
... ... @@ -987,7 +987,9 @@
987 987  = 7. Packing Info =
988 988  
989 989  (((
990 -**Package Includes**:
1214 +
1215 +
1216 +(% style="color:#037691" %)**Package Includes**:
991 991  )))
992 992  
993 993  * (((
... ... @@ -996,10 +996,8 @@
996 996  
997 997  (((
998 998  
999 -)))
1000 1000  
1001 -(((
1002 -**Dimension and weight**:
1226 +(% style="color:#037691" %)**Dimension and weight**:
1003 1003  )))
1004 1004  
1005 1005  * (((
... ... @@ -1014,7 +1014,6 @@
1014 1014  * (((
1015 1015  Weight / pcs : g
1016 1016  
1017 -
1018 1018  
1019 1019  )))
1020 1020  
... ... @@ -1022,5 +1022,3 @@
1022 1022  
1023 1023  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1024 1024  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1025 -
1026 -
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content