Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 20 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,9 +3,7 @@ 3 3 4 4 5 5 6 -**Contents:** 7 7 8 -{{toc/}} 9 9 10 10 11 11 ... ... @@ -12,62 +12,81 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 - == 1.1 Whatis LoRaWANSoil Moisture& EC Sensor ==14 +**Table of Contents:** 18 18 19 -((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 22 22 23 -((( 24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 -))) 26 26 27 -((( 28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 -))) 34 34 20 + 21 += 1. Introduction = 22 + 23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 + 35 35 ((( 36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 -))) 26 + 38 38 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 39 39 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 + 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 + 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 + 36 + 37 +))) 38 + 40 40 [[image:1654503236291-817.png]] 41 41 42 42 43 -[[image:16545 03265560-120.png]]42 +[[image:1657245163077-232.png]] 44 44 45 45 46 46 47 47 == 1.2 Features == 48 48 49 - * LoRaWAN 1.0.3 Class A50 -* Ultra lowpower consumption48 + 49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 51 51 * Monitor Soil Moisture 52 52 * Monitor Soil Temperature 53 53 * Monitor Soil Conductivity 54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 55 55 * AT Commands to change parameters 56 56 * Uplink on periodically 57 57 * Downlink to change configure 58 58 * IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 59 +* Micro SIM card slot for NB-IoT SIM 60 +* 8500mAh Battery for long term use 60 60 62 +== 1.3 Specification == 61 61 62 -== 1.3 Specification == 63 63 65 +(% style="color:#037691" %)**Common DC Characteristics:** 66 + 67 +* Supply Voltage: 2.1v ~~ 3.6v 68 +* Operating Temperature: -40 ~~ 85°C 69 + 70 +(% style="color:#037691" %)**NB-IoT Spec:** 71 + 72 +* - B1 @H-FDD: 2100MHz 73 +* - B3 @H-FDD: 1800MHz 74 +* - B8 @H-FDD: 900MHz 75 +* - B5 @H-FDD: 850MHz 76 +* - B20 @H-FDD: 800MHz 77 +* - B28 @H-FDD: 700MHz 78 + 79 +(% style="color:#037691" %)**Probe Specification:** 80 + 64 64 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 65 65 66 -[[image:image-20220 606162220-5.png]]83 +[[image:image-20220708101224-1.png]] 67 67 68 68 69 69 70 -== 1.4 Applications == 87 +== 1.4 Applications == 71 71 72 72 * Smart Agriculture 73 73 ... ... @@ -74,678 +74,547 @@ 74 74 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 75 75 76 76 77 -== 1.5 Firmware Changelog==94 +== 1.5 Pin Definitions == 78 78 79 79 80 - **LSE01v1.0 :** Release97 +[[image:1657246476176-652.png]] 81 81 82 82 83 83 84 -= 2. ConfigureLSE01 to connect toLoRaWANnetwork=101 += 2. Use NSE01 to communicate with IoT Server = 85 85 86 -== 2.1 How it works == 103 +== 2.1 How it works == 87 87 105 + 88 88 ((( 89 -The LSE01 isconfiguredasLoRaWANOTAAClass Amodebydefault.IthasOTAAkeystojoinLoRaWANnetwork.Toconnect a localLoRaWAN network,you need toinputtheOTAAkeysin theLoRaWANserverandpoweronthe LSE0150. It willautomaticallyjointhenetworkviaOTAA and starttosendthesensor value107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 90 90 ))) 91 91 110 + 92 92 ((( 93 - In case you can’t set the OTAA keys in theLoRaWAN OTAA server,andyouhave tousethe keysfromtheserver, you can [[useAT Commands >>||anchor="H3.UsingtheATCommands"]].112 +The diagram below shows the working flow in default firmware of NSE01: 94 94 ))) 95 95 115 +[[image:image-20220708101605-2.png]] 96 96 97 - 98 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 99 - 100 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 101 - 102 - 103 -[[image:1654503992078-669.png]] 104 - 105 - 106 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 107 - 108 - 109 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 110 - 111 -Each LSE01 is shipped with a sticker with the default device EUI as below: 112 - 113 -[[image:image-20220606163732-6.jpeg]] 114 - 115 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 116 - 117 -**Add APP EUI in the application** 118 - 119 - 120 -[[image:1654504596150-405.png]] 121 - 122 - 123 - 124 -**Add APP KEY and DEV EUI** 125 - 126 -[[image:1654504683289-357.png]] 127 - 128 - 129 - 130 -**Step 2**: Power on LSE01 131 - 132 - 133 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 134 - 135 -[[image:image-20220606163915-7.png]] 136 - 137 - 138 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 139 - 140 -[[image:1654504778294-788.png]] 141 - 142 - 143 - 144 -== 2.3 Uplink Payload == 145 - 146 -=== 2.3.1 MOD~=0(Default Mode) === 147 - 148 -LSE01 will uplink payload via LoRaWAN with below payload format: 149 - 150 - 151 -Uplink payload includes in total 11 bytes. 117 +((( 152 152 153 - 154 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 155 -|=((( 156 -**Size** 157 - 158 -**(bytes)** 159 -)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1** 160 -|**Value**|(% style="width:46px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:160px" %)((( 161 -Temperature 162 - 163 -(Reserve, Ignore now) 164 -)))|(% style="width:104px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:126px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:114px" %)((( 165 -MOD & Digital Interrupt 166 - 167 -(Optional) 168 168 ))) 169 169 170 -[[image:1654504881641-514.png]] 171 171 172 172 123 +== 2.2 Configure the NSE01 == 173 173 174 -=== 2.3.2 MOD~=1(Original value) === 175 175 176 - Thismodecangettheoriginal AD value of moistureand original conductivity (with temperature drift compensation).126 +=== 2.2.1 Test Requirement === 177 177 178 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 179 -|=((( 180 -**Size** 181 181 182 -**(bytes)** 183 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1** 184 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 -Temperature 129 +To use NSE01 in your city, make sure meet below requirements: 186 186 187 - (Reserve,Ignorenow)188 - )))|[[SoilMoisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[SoilConductivity(EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((189 - MOD&DigitalInterrupt131 +* Your local operator has already distributed a NB-IoT Network there. 132 +* The local NB-IoT network used the band that NSE01 supports. 133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 190 190 191 -(Optional) 135 +((( 136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 192 192 ))) 193 193 194 -[[image:1654504907647-967.png]] 195 195 140 +[[image:1657249419225-449.png]] 196 196 197 197 198 -=== 2.3.3 Battery Info === 199 199 200 - Checkthebattery voltageforLSE01.144 +=== 2.2.2 Insert SIM card === 201 201 202 - Ex1:0x0B45=2885mV146 +Insert the NB-IoT Card get from your provider. 203 203 204 - Ex2:0x0B49=2889mV148 +User need to take out the NB-IoT module and insert the SIM card like below: 205 205 206 206 151 +[[image:1657249468462-536.png]] 207 207 208 -=== 2.3.4 Soil Moisture === 209 209 210 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 211 211 212 - Forexample,ifthedatayougetfromtheregister is __0x050xDC__,themoisturecontentinthesoil is155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 213 213 214 - 215 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 216 - 217 - 218 - 219 -=== 2.3.5 Soil Temperature === 220 - 221 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 222 - 223 -**Example**: 224 - 225 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 226 - 227 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 228 - 229 - 230 - 231 -=== 2.3.6 Soil Conductivity (EC) === 232 - 233 233 ((( 234 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 235 -))) 236 - 237 237 ((( 238 - For example,ifthedatayougetfromtheregister is 0x000xC8,the soilconductivityis00C8(H)=200(D)=200uS/cm.159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 239 239 ))) 240 - 241 -((( 242 -Generally, the EC value of irrigation water is less than 800uS / cm. 243 243 ))) 244 244 245 -((( 246 - 247 -))) 248 248 249 -((( 250 - 251 -))) 164 +**Connection:** 252 252 253 -= ==2.3.7MOD===166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 254 254 255 - Firmwareversionatst v2.1 supportschanging mode.168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 256 256 257 - Forexample,bytes[10]=90170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 258 258 259 -mod=(bytes[10]>>7)&0x01=1. 260 260 173 +In the PC, use below serial tool settings: 261 261 262 -**Downlink Command:** 175 +* Baud: (% style="color:green" %)**9600** 176 +* Data bits:** (% style="color:green" %)8(%%)** 177 +* Stop bits: (% style="color:green" %)**1** 178 +* Parity: (% style="color:green" %)**None** 179 +* Flow Control: (% style="color:green" %)**None** 263 263 264 -If payload = 0x0A00, workmode=0 181 +((( 182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 183 +))) 265 265 266 - If** **payload =** **0x0A01, workmode=1185 +[[image:image-20220708110657-3.png]] 267 267 187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 268 268 269 269 270 -=== 2.3.8 Decode payload in The Things Network === 271 271 272 - WhileusingTTNnetwork,youcan add thepayload formattodecodethepayload.191 +=== 2.2.4 Use CoAP protocol to uplink data === 273 273 193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 274 274 275 -[[image:1654505570700-128.png]] 276 276 277 - Thepayloaddecoder function for TTN ishere:196 +**Use below commands:** 278 278 279 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 198 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 280 280 202 +For parameter description, please refer to AT command set 281 281 282 - ==2.4Uplink Interval ==204 +[[image:1657249793983-486.png]] 283 283 284 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: 285 285 286 - [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 287 287 209 +[[image:1657249831934-534.png]] 288 288 289 289 290 -== 2.5 Downlink Payload == 291 291 292 - Bydefault,LSE50printsthe downlinkpayloadtonsoleport.213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 293 293 294 - [[image:image-20220606165544-8.png]]215 +This feature is supported since firmware version v1.0.1 295 295 296 296 297 -**Examples:** 218 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 298 298 222 +[[image:1657249864775-321.png]] 299 299 300 -* **Set TDC** 301 301 302 - If the payload=0100003C,itmeans set the END Node’s TDC to 0x00003C=60(S), while type code is 01.225 +[[image:1657249930215-289.png]] 303 303 304 -Payload: 01 00 00 1E TDC=30S 305 305 306 -Payload: 01 00 00 3C TDC=60S 307 307 229 +=== 2.2.6 Use MQTT protocol to uplink data === 308 308 309 - ***Reset**231 +This feature is supported since firmware version v110 310 310 311 -If payload = 0x04FF, it will reset the LSE01 312 312 234 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 237 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 238 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 313 313 314 - * **CFM**242 +[[image:1657249978444-674.png]] 315 315 316 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 317 317 245 +[[image:1657249990869-686.png]] 318 318 319 319 320 -== 2.6 Show Data in DataCake IoT Server == 248 +((( 249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 250 +))) 321 321 322 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 323 323 324 324 325 - **Step1**:Besurethatyour device isprogrammed and properlyconnectedtothenetwork atthis time.254 +=== 2.2.7 Use TCP protocol to uplink data === 326 326 327 - **Step 2**:ToconfiguretheApplication to forward data to DATACAKE you will needto addintegration. To add theDATACAKE integration,perform the following steps:256 +This feature is supported since firmware version v110 328 328 329 329 330 -[[image:1654505857935-743.png]] 259 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 331 331 262 +[[image:1657250217799-140.png]] 332 332 333 -[[image:1654505874829-548.png]] 334 334 335 - Step 3: Create an account or login Datacake.265 +[[image:1657250255956-604.png]] 336 336 337 -Step 4: Search the LSE01 and add DevEUI. 338 338 339 339 340 - [[image:1654505905236-553.png]]269 +=== 2.2.8 Change Update Interval === 341 341 271 +User can use below command to change the (% style="color:green" %)**uplink interval**. 342 342 343 - Afteradded,thesensordata arrive TTN,itwillalsoarriveandshow inMydevices.273 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 344 344 345 -[[image:1654505925508-181.png]] 275 +((( 276 +(% style="color:red" %)**NOTE:** 277 +))) 346 346 279 +((( 280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 281 +))) 347 347 348 348 349 -== 2.7 Frequency Plans == 350 350 351 - TheLSE01uses OTAA mode and below frequencyplans by default. If user want to useit with differentfrequencyplan, please refer the AT commandsets.285 +== 2.3 Uplink Payload == 352 352 287 +In this mode, uplink payload includes in total 18 bytes 353 353 354 -=== 2.7.1 EU863-870 (EU868) === 289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 290 +|=(% style="width: 50px;" %)((( 291 +**Size(bytes)** 292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 355 355 356 - (%style="color:#037691"%)** Uplink:**295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 357 357 358 -868.1 - SF7BW125 to SF12BW125 359 359 360 - 868.3-SF7BW125 to SF12BW125 and SF7BW250298 +[[image:image-20220708111918-4.png]] 361 361 362 -868.5 - SF7BW125 to SF12BW125 363 363 364 - 867.1-SF7BW125toSF12BW125301 +The payload is ASCII string, representative same HEX: 365 365 366 - 867.3- SF7BW125to SF12BW125303 +0x72403155615900640c7817075e0a8c02f900 where: 367 367 368 -867.5 - SF7BW125 to SF12BW125 305 +* Device ID: 0x 724031556159 = 724031556159 306 +* Version: 0x0064=100=1.0.0 369 369 370 -867.7 - SF7BW125 to SF12BW125 308 +* BAT: 0x0c78 = 3192 mV = 3.192V 309 +* Singal: 0x17 = 23 310 +* Soil Moisture: 0x075e= 1886 = 18.86 % 311 +* Soil Temperature:0x0a8c =2700=27 °C 312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 313 +* Interrupt: 0x00 = 0 371 371 372 - 867.9- SF7BW125to SF12BW125315 +== 2.4 Payload Explanation and Sensor Interface == 373 373 374 -868.8 - FSK 375 375 318 +=== 2.4.1 Device ID === 376 376 377 - (% style="color:#037691"%)**Downlink:**320 +By default, the Device ID equal to the last 6 bytes of IMEI. 378 378 379 -U plinkchannels1-9(RX1)322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 380 380 381 - 869.525 - SF9BW125 (RX2 downlink only)324 +**Example:** 382 382 326 +AT+DEUI=A84041F15612 383 383 328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 384 384 385 -=== 2.7.2 US902-928(US915) === 386 386 387 -Used in USA, Canada and South America. Default use CHE=2 388 388 389 - (%style="color:#037691" %)**Uplink:**332 +=== 2.4.2 Version Info === 390 390 391 - 903.9 -SF7BW125toSF10BW125334 +Specify the software version: 0x64=100, means firmware version 1.00. 392 392 393 - 904.1-SF7BW125toSF10BW125336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 394 394 395 -904.3 - SF7BW125 to SF10BW125 396 396 397 -904.5 - SF7BW125 to SF10BW125 398 398 399 - 904.7- SF7BW125toSF10BW125340 +=== 2.4.3 Battery Info === 400 400 401 -904.9 - SF7BW125 to SF10BW125 342 +((( 343 +Check the battery voltage for LSE01. 344 +))) 402 402 403 -905.1 - SF7BW125 to SF10BW125 346 +((( 347 +Ex1: 0x0B45 = 2885mV 348 +))) 404 404 405 -905.3 - SF7BW125 to SF10BW125 350 +((( 351 +Ex2: 0x0B49 = 2889mV 352 +))) 406 406 407 407 408 -(% style="color:#037691" %)**Downlink:** 409 409 410 - 923.3-SF7BW500toSF12BW500356 +=== 2.4.4 Signal Strength === 411 411 412 - 923.9-SF7BW500to SF12BW500358 +NB-IoT Network signal Strength. 413 413 414 - 924.5- SF7BW500toSF12BW500360 +**Ex1: 0x1d = 29** 415 415 416 - 925.1-SF7BW500toSF12BW500362 +(% style="color:blue" %)**0**(%%) -113dBm or less 417 417 418 - 925.7- SF7BW500toSF12BW500364 +(% style="color:blue" %)**1**(%%) -111dBm 419 419 420 - 926.3- SF7BW500to SF12BW500366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 421 421 422 - 926.9- SF7BW500toSF12BW500368 +(% style="color:blue" %)**31** (%%) -51dBm or greater 423 423 424 -9 27.5-SF7BW500toSF12BW500370 +(% style="color:blue" %)**99** (%%) Not known or not detectable 425 425 426 -923.3 - SF12BW500(RX2 downlink only) 427 427 428 428 374 +=== 2.4.5 Soil Moisture === 429 429 430 -=== 2.7.3 CN470-510 (CN470) === 376 +((( 377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 378 +))) 431 431 432 -Used in China, Default use CHE=1 380 +((( 381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 382 +))) 433 433 434 -(% style="color:#037691" %)**Uplink:** 384 +((( 385 + 386 +))) 435 435 436 -486.3 - SF7BW125 to SF12BW125 388 +((( 389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 390 +))) 437 437 438 -486.5 - SF7BW125 to SF12BW125 439 439 440 -486.7 - SF7BW125 to SF12BW125 441 441 442 -4 86.9-SF7BW125toSF12BW125394 +=== 2.4.6 Soil Temperature === 443 443 444 -487.1 - SF7BW125 to SF12BW125 396 +((( 397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 398 +))) 445 445 446 -487.3 - SF7BW125 to SF12BW125 400 +((( 401 +**Example**: 402 +))) 447 447 448 -487.5 - SF7BW125 to SF12BW125 404 +((( 405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 406 +))) 449 449 450 -487.7 - SF7BW125 to SF12BW125 408 +((( 409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 410 +))) 451 451 452 452 453 -(% style="color:#037691" %)**Downlink:** 454 454 455 - 506.7-SF7BW125toSF12BW125414 +=== 2.4.7 Soil Conductivity (EC) === 456 456 457 -506.9 - SF7BW125 to SF12BW125 416 +((( 417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 418 +))) 458 458 459 -507.1 - SF7BW125 to SF12BW125 420 +((( 421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 422 +))) 460 460 461 -507.3 - SF7BW125 to SF12BW125 424 +((( 425 +Generally, the EC value of irrigation water is less than 800uS / cm. 426 +))) 462 462 463 -507.5 - SF7BW125 to SF12BW125 428 +((( 429 + 430 +))) 464 464 465 -507.7 - SF7BW125 to SF12BW125 432 +((( 433 + 434 +))) 466 466 467 - 507.9- SF7BW125toSF12BW125436 +=== 2.4.8 Digital Interrupt === 468 468 469 - 508.1-SF7BW125toSF12BW125438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 470 470 471 - 505.3- SF12BW125 (RX2 downlinkonly)440 +The command is: 472 472 442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 473 473 474 474 475 - ===2.7.4AU915-928(AU915)===445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 476 476 477 -Default use CHE=2 478 478 479 - (% style="color:#037691" %)**Uplink:**448 +Example: 480 480 481 - 916.8-SF7BW125to SF12BW125450 +0x(00): Normal uplink packet. 482 482 483 - 917.0- SF7BW125toSF12BW125452 +0x(01): Interrupt Uplink Packet. 484 484 485 -917.2 - SF7BW125 to SF12BW125 486 486 487 -917.4 - SF7BW125 to SF12BW125 488 488 489 - 917.6- SF7BW125 toSF12BW125456 +=== 2.4.9 +5V Output === 490 490 491 - 917.8-SF7BW125 toSF12BW125458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 492 492 493 -918.0 - SF7BW125 to SF12BW125 494 494 495 - 918.2- SF7BW125 toSF12BW125461 +The 5V output time can be controlled by AT Command. 496 496 463 +(% style="color:blue" %)**AT+5VT=1000** 497 497 498 - (%style="color:#037691"%)**Downlink:**465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 499 499 500 -923.3 - SF7BW500 to SF12BW500 501 501 502 -923.9 - SF7BW500 to SF12BW500 503 503 504 - 924.5-SF7BW500 toSF12BW500469 +== 2.5 Downlink Payload == 505 505 506 - 925.1-SF7BW500toSF12BW500471 +By default, NSE01 prints the downlink payload to console port. 507 507 508 - 925.7-SF7BW500 to SF12BW500473 +[[image:image-20220708133731-5.png]] 509 509 510 -926.3 - SF7BW500 to SF12BW500 511 511 512 -926.9 - SF7BW500 to SF12BW500 513 513 514 -927.5 - SF7BW500 to SF12BW500 477 +((( 478 +(% style="color:blue" %)**Examples:** 479 +))) 515 515 516 -923.3 - SF12BW500(RX2 downlink only) 481 +((( 482 + 483 +))) 517 517 485 +* ((( 486 +(% style="color:blue" %)**Set TDC** 487 +))) 518 518 489 +((( 490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 491 +))) 519 519 520 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 493 +((( 494 +Payload: 01 00 00 1E TDC=30S 495 +))) 521 521 522 -(% style="color:#037691" %)**Default Uplink channel:** 497 +((( 498 +Payload: 01 00 00 3C TDC=60S 499 +))) 523 523 524 -923.2 - SF7BW125 to SF10BW125 501 +((( 502 + 503 +))) 525 525 526 -923.4 - SF7BW125 to SF10BW125 505 +* ((( 506 +(% style="color:blue" %)**Reset** 507 +))) 527 527 509 +((( 510 +If payload = 0x04FF, it will reset the NSE01 511 +))) 528 528 529 -(% style="color:#037691" %)**Additional Uplink Channel**: 530 530 531 -( OTAAmode,channeladded by JoinAcceptmessage)514 +* (% style="color:blue" %)**INTMOD** 532 532 533 - (%style="color:#037691" %)**AS920~~AS923for Japan,Malaysia,Singapore**:516 +Downlink Payload: 06000003, Set AT+INTMOD=3 534 534 535 -922.2 - SF7BW125 to SF10BW125 536 536 537 -922.4 - SF7BW125 to SF10BW125 538 538 539 - 922.6-SF7BW125toSF10BW125520 +== 2.6 LED Indicator == 540 540 541 -922.8 - SF7BW125 to SF10BW125 522 +((( 523 +The NSE01 has an internal LED which is to show the status of different state. 542 542 543 -923.0 - SF7BW125 to SF10BW125 544 544 545 -922.0 - SF7BW125 to SF10BW125 526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 527 +* Then the LED will be on for 1 second means device is boot normally. 528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 529 +* For each uplink probe, LED will be on for 500ms. 530 +))) 546 546 547 547 548 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 549 549 550 -923.6 - SF7BW125 to SF10BW125 551 551 552 - 923.8 - SF7BW125to SF10BW125535 +== 2.7 Installation in Soil == 553 553 554 - 924.0- SF7BW125toSF10BW125537 +__**Measurement the soil surface**__ 555 555 556 - 924.2-SF7BW125SF10BW125539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 557 557 558 - 924.4 - SF7BW125to SF10BW125541 +[[image:1657259653666-883.png]] 559 559 560 -924.6 - SF7BW125 to SF10BW125 561 561 544 +((( 545 + 562 562 563 -(% style="color:#037691" %)** Downlink:** 547 +((( 548 +Dig a hole with diameter > 20CM. 549 +))) 564 564 565 -Uplink channels 1-8 (RX1) 551 +((( 552 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 553 +))) 554 +))) 566 566 567 -9 23.2-SF10BW125 (RX2)556 +[[image:1654506665940-119.png]] 568 568 558 +((( 559 + 560 +))) 569 569 570 570 571 -== =2.7.6KR920-923(KR920)===563 +== 2.8 Firmware Change Log == 572 572 573 -Default channel: 574 574 575 - 922.1-SF7BW125toSF12BW125566 +Download URL & Firmware Change log 576 576 577 - 922.3-F7BW125toSF12BW125568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 578 578 579 -922.5 - SF7BW125 to SF12BW125 580 580 571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 581 581 582 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 583 583 584 -922.1 - SF7BW125 to SF12BW125 585 585 586 - 922.3- SF7BW125toSF12BW125575 +== 2.9 Battery Analysis == 587 587 588 - 922.5 - SF7BW125toSF12BW125577 +=== 2.9.1 Battery Type === 589 589 590 -922.7 - SF7BW125 to SF12BW125 591 591 592 - 922.9-SF7BW125to SF12BW125580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 593 593 594 -923.1 - SF7BW125 to SF12BW125 595 595 596 - 923.3-SF7BW125toSF12BW125583 +The battery is designed to last for several years depends on the actually use environment and update interval. 597 597 598 598 599 - (%style="color:#037691"%)**Downlink:**586 +The battery related documents as below: 600 600 601 -Uplink channels 1-7(RX1) 588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 602 602 603 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 604 - 605 - 606 - 607 -=== 2.7.7 IN865-867 (IN865) === 608 - 609 -(% style="color:#037691" %)** Uplink:** 610 - 611 -865.0625 - SF7BW125 to SF12BW125 612 - 613 -865.4025 - SF7BW125 to SF12BW125 614 - 615 -865.9850 - SF7BW125 to SF12BW125 616 - 617 - 618 -(% style="color:#037691" %) **Downlink:** 619 - 620 -Uplink channels 1-3 (RX1) 621 - 622 -866.550 - SF10BW125 (RX2) 623 - 624 - 625 - 626 - 627 -== 2.8 LED Indicator == 628 - 629 -The LSE01 has an internal LED which is to show the status of different state. 630 - 631 -* Blink once when device power on. 632 -* Solid ON for 5 seconds once device successful Join the network. 633 -* Blink once when device transmit a packet. 634 - 635 - 636 - 637 -== 2.9 Installation in Soil == 638 - 639 -**Measurement the soil surface** 640 - 641 - 642 -[[image:1654506634463-199.png]] 643 - 644 644 ((( 645 -((( 646 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 593 +[[image:image-20220708140453-6.png]] 647 647 ))) 648 -))) 649 649 650 650 651 -[[image:1654506665940-119.png]] 652 652 653 -((( 654 -Dig a hole with diameter > 20CM. 655 -))) 598 +2.9.2 656 656 657 -((( 658 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 659 -))) 600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 660 660 661 661 662 - ==2.10FirmwareChangeLog ==603 +Instruction to use as below: 663 663 664 -((( 665 -**Firmware download link:** 666 -))) 667 667 668 -((( 669 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 670 -))) 606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 671 671 672 -((( 673 - 674 -))) 608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 675 675 676 -((( 677 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 678 -))) 679 679 680 -((( 681 - 682 -))) 611 +Step 2: Open it and choose 683 683 684 - (((685 -* *V1.0.**686 - )))613 +* Product Model 614 +* Uplink Interval 615 +* Working Mode 687 687 688 -((( 689 -Release 690 -))) 617 +And the Life expectation in difference case will be shown on the right. 691 691 692 692 693 -== 2.11 Battery Analysis == 694 694 695 -=== 2. 11.1BatteryType ===621 +=== 2.9.3 Battery Note === 696 696 697 697 ((( 698 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 699 -))) 700 - 701 -((( 702 -The battery is designed to last for more than 5 years for the LSN50. 703 -))) 704 - 705 -((( 706 -((( 707 -The battery-related documents are as below: 708 -))) 709 -))) 710 - 711 -* ((( 712 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 713 -))) 714 -* ((( 715 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 716 -))) 717 -* ((( 718 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 719 -))) 720 - 721 - [[image:image-20220606171726-9.png]] 722 - 723 - 724 - 725 -=== 2.11.2 Battery Note === 726 - 727 -((( 728 728 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 729 729 ))) 730 730 731 731 732 732 733 -=== 2. 11.3Replace the battery ===629 +=== 2.9.4 Replace the battery === 734 734 735 -((( 736 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 737 -))) 631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 738 738 739 -((( 740 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 741 -))) 742 742 743 -((( 744 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 745 -))) 746 746 747 - 748 - 749 749 = 3. Using the AT Commands = 750 750 751 751 == 3.1 Access AT Commands == ... ... @@ -753,13 +753,13 @@ 753 753 754 754 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 755 755 756 -[[image:1654501986557-872.png]] 642 +[[image:1654501986557-872.png||height="391" width="800"]] 757 757 758 758 759 759 Or if you have below board, use below connection: 760 760 761 761 762 -[[image:1654502005655-729.png]] 648 +[[image:1654502005655-729.png||height="503" width="801"]] 763 763 764 764 765 765 ... ... @@ -766,10 +766,10 @@ 766 766 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 767 767 768 768 769 - [[image:1654502050864-459.png]] 655 + [[image:1654502050864-459.png||height="564" width="806"]] 770 770 771 771 772 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>> url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 773 773 774 774 775 775 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> ... ... @@ -881,20 +881,38 @@ 881 881 882 882 == 4.1 How to change the LoRa Frequency Bands/Region? == 883 883 770 +((( 884 884 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 885 885 When downloading the images, choose the required image file for download. 773 +))) 886 886 775 +((( 776 + 777 +))) 887 887 779 +((( 888 888 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 781 +))) 889 889 783 +((( 784 + 785 +))) 890 890 787 +((( 891 891 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 789 +))) 892 892 791 +((( 792 + 793 +))) 893 893 795 +((( 894 894 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 797 +))) 895 895 896 896 [[image:image-20220606154726-3.png]] 897 897 801 + 898 898 When you use the TTN network, the US915 frequency bands use are: 899 899 900 900 * 903.9 - SF7BW125 to SF10BW125 ... ... @@ -907,37 +907,47 @@ 907 907 * 905.3 - SF7BW125 to SF10BW125 908 908 * 904.6 - SF8BW500 909 909 814 +((( 910 910 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 911 911 912 -(% class="box infomessage" %) 913 -((( 914 -**AT+CHE=2** 817 +* (% style="color:#037691" %)**AT+CHE=2** 818 +* (% style="color:#037691" %)**ATZ** 915 915 ))) 916 916 917 -(% class="box infomessage" %) 918 918 ((( 919 -**ATZ** 920 -))) 822 + 921 921 922 922 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 825 +))) 923 923 827 +((( 828 + 829 +))) 924 924 831 +((( 925 925 The **AU915** band is similar. Below are the AU915 Uplink Channels. 833 +))) 926 926 927 927 [[image:image-20220606154825-4.png]] 928 928 929 929 838 +== 4.2 Can I calibrate LSE01 to different soil types? == 930 930 840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 841 + 842 + 931 931 = 5. Trouble Shooting = 932 932 933 -== 5.1 Why I can ’t join TTN in US915 / AU915 bands? ==845 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 934 934 935 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. LoRaWANCommunication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 936 936 937 937 938 -== 5.2 AT Command input doesn ’t work ==850 +== 5.2 AT Command input doesn't work == 939 939 940 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 852 +((( 853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 854 +))) 941 941 942 942 943 943 == 5.3 Device rejoin in at the second uplink packet == ... ... @@ -949,7 +949,9 @@ 949 949 950 950 (% style="color:#4f81bd" %)**Cause for this issue:** 951 951 866 +((( 952 952 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 868 +))) 953 953 954 954 955 955 (% style="color:#4f81bd" %)**Solution: ** ... ... @@ -956,7 +956,7 @@ 956 956 957 957 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 958 958 959 -[[image:1654500929571-736.png]] 875 +[[image:1654500929571-736.png||height="458" width="832"]] 960 960 961 961 962 962 = 6. Order Info = ... ... @@ -989,7 +989,9 @@ 989 989 = 7. Packing Info = 990 990 991 991 ((( 992 -**Package Includes**: 908 + 909 + 910 +(% style="color:#037691" %)**Package Includes**: 993 993 ))) 994 994 995 995 * ((( ... ... @@ -998,10 +998,8 @@ 998 998 999 999 ((( 1000 1000 1001 -))) 1002 1002 1003 -((( 1004 -**Dimension and weight**: 920 +(% style="color:#037691" %)**Dimension and weight**: 1005 1005 ))) 1006 1006 1007 1007 * ((( ... ... @@ -1016,7 +1016,6 @@ 1016 1016 * ((( 1017 1017 Weight / pcs : g 1018 1018 1019 - 1020 1020 1021 1021 ))) 1022 1022 ... ... @@ -1024,5 +1024,3 @@ 1024 1024 1025 1025 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1026 1026 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1027 - 1028 -
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content