Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 24 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,8 +3,16 @@ 3 3 4 4 5 5 6 -**Contents:** 7 7 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 +**Table of Contents:** 15 + 8 8 {{toc/}} 9 9 10 10 ... ... @@ -12,718 +12,710 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 -= =1.1Whatis LoRaWAN Soil Moisture & EC Sensor==24 += 1. Introduction = 18 18 26 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 27 + 19 19 ((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 29 + 22 22 23 23 ((( 24 - Itdetects (% style="color:#4f81bd" %)**SoilMoisture**(%%),(%style="color:#4f81bd"%)**Soil Temperature**(%%)and(%style="color:#4f81bd"%)**SoilConductivity**(%%),anduploadsthevalueviawirelesstoLoRaWANIoT Server.32 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 25 25 ))) 26 26 27 27 ((( 28 - TheLoRawirelesstechnologyusedin LES01 allows devicetoend data andreachextremely longrangesatlowdata-rates. It provides ultra-longrangespreadspectrumcommunicationandhighinterferenceimmunitywhilst minimizing current consumption.36 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 29 29 ))) 30 30 31 31 ((( 32 - LES01is powered by (%style="color:#4f81bd"%)**4000mAor8500mAhLi-SOCI2battery**(%%),Itisdesignedfor long termuseup to10 years.40 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 33 ))) 34 34 35 35 ((( 36 - Each LES01ispre-loadwithasetfuniquekeys for LoRaWANregistrations,register thesekeys to localLoRaWANserver anditwill autoconnectafterpower on.44 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 37 37 ))) 38 38 47 + 48 +))) 39 39 40 40 [[image:1654503236291-817.png]] 41 41 42 42 43 -[[image:16545 03265560-120.png]]53 +[[image:1657245163077-232.png]] 44 44 45 45 46 46 47 -== 1.2 Features == 57 +== 1.2 Features == 48 48 49 -* LoRaWAN 1.0.3 Class A 50 -* Ultra low power consumption 59 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 51 51 * Monitor Soil Moisture 52 52 * Monitor Soil Temperature 53 53 * Monitor Soil Conductivity 54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 55 55 * AT Commands to change parameters 56 56 * Uplink on periodically 57 57 * Downlink to change configure 58 58 * IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 67 +* Ultra-Low Power consumption 68 +* AT Commands to change parameters 69 +* Micro SIM card slot for NB-IoT SIM 70 +* 8500mAh Battery for long term use 60 60 61 61 62 -== 1.3 Specification == 63 63 64 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 65 65 66 - [[image:image-20220606162220-5.png]]75 +== 1.3 Specification == 67 67 68 68 78 +(% style="color:#037691" %)**Common DC Characteristics:** 69 69 70 -== 1.4 Applications == 80 +* Supply Voltage: 2.1v ~~ 3.6v 81 +* Operating Temperature: -40 ~~ 85°C 71 71 72 - *SmartAgriculture83 +(% style="color:#037691" %)**NB-IoT Spec:** 73 73 74 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 75 - 85 +* - B1 @H-FDD: 2100MHz 86 +* - B3 @H-FDD: 1800MHz 87 +* - B8 @H-FDD: 900MHz 88 +* - B5 @H-FDD: 850MHz 89 +* - B20 @H-FDD: 800MHz 90 +* - B28 @H-FDD: 700MHz 76 76 77 - == 1.5 FirmwareChangeg==92 +Probe(% style="color:#037691" %)** Specification:** 78 78 94 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 79 79 80 - **LSE01v1.0 :** Release96 +[[image:image-20220708101224-1.png]] 81 81 82 82 83 83 84 -= 2.Configure LSE01 toconnect to LoRaWAN network=100 +== 1.4 Applications == 85 85 86 - ==2.1Howitworks ==102 +* Smart Agriculture 87 87 88 -((( 89 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 90 -))) 104 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 105 + 91 91 92 -((( 93 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 94 -))) 107 +== 1.5 Pin Definitions == 95 95 96 96 110 +[[image:1657246476176-652.png]] 97 97 98 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 99 99 100 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 101 101 114 += 2. Use NSE01 to communicate with IoT Server = 102 102 103 - [[image:1654503992078-669.png]]116 +== 2.1 How it works == 104 104 105 105 106 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 119 +((( 120 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 121 +))) 107 107 108 108 109 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 124 +((( 125 +The diagram below shows the working flow in default firmware of NSE01: 126 +))) 110 110 111 - Each LSE01is shipped withasticker with the default device EUI as below:128 +[[image:image-20220708101605-2.png]] 112 112 113 -[[image:image-20220606163732-6.jpeg]] 114 - 115 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 116 - 117 -**Add APP EUI in the application** 118 - 119 - 120 -[[image:1654504596150-405.png]] 121 - 122 - 123 - 124 -**Add APP KEY and DEV EUI** 125 - 126 -[[image:1654504683289-357.png]] 127 - 128 - 129 - 130 -**Step 2**: Power on LSE01 131 - 132 - 133 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 134 - 135 -[[image:image-20220606163915-7.png]] 136 - 137 - 138 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 139 - 140 -[[image:1654504778294-788.png]] 141 - 142 - 143 - 144 -== 2.3 Uplink Payload == 145 - 146 -=== 2.3.1 MOD~=0(Default Mode) === 147 - 148 -LSE01 will uplink payload via LoRaWAN with below payload format: 149 - 150 - 151 -Uplink payload includes in total 11 bytes. 130 +((( 152 152 153 - 154 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 155 -|=((( 156 -**Size** 157 - 158 -**(bytes)** 159 -)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1** 160 -|**Value**|(% style="width:46px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:160px" %)((( 161 -Temperature 162 - 163 -(Reserve, Ignore now) 164 -)))|(% style="width:104px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:126px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:114px" %)((( 165 -MOD & Digital Interrupt 166 - 167 -(Optional) 168 168 ))) 169 169 170 -[[image:1654504881641-514.png]] 171 171 172 172 136 +== 2.2 Configure the NSE01 == 173 173 174 -=== 2.3.2 MOD~=1(Original value) === 175 175 176 - Thismodecangettheoriginal AD value of moistureand original conductivity (with temperature drift compensation).139 +=== 2.2.1 Test Requirement === 177 177 178 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 179 -|=((( 180 -**Size** 181 181 182 -**(bytes)** 183 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1** 184 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 -Temperature 142 +((( 143 +To use NSE01 in your city, make sure meet below requirements: 144 +))) 186 186 187 - (Reserve,Ignorenow)188 - )))|[[SoilMoisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[SoilConductivity(EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((189 - MOD&DigitalInterrupt146 +* Your local operator has already distributed a NB-IoT Network there. 147 +* The local NB-IoT network used the band that NSE01 supports. 148 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 190 190 191 -(Optional) 150 +((( 151 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 192 192 ))) 193 193 194 -[[image:1654504907647-967.png]] 195 195 155 +[[image:1657249419225-449.png]] 196 196 197 197 198 -=== 2.3.3 Battery Info === 199 199 200 - Checkthebattery voltageforLSE01.159 +=== 2.2.2 Insert SIM card === 201 201 202 -Ex1: 0x0B45 = 2885mV 161 +((( 162 +Insert the NB-IoT Card get from your provider. 163 +))) 203 203 204 -Ex2: 0x0B49 = 2889mV 165 +((( 166 +User need to take out the NB-IoT module and insert the SIM card like below: 167 +))) 205 205 206 206 170 +[[image:1657249468462-536.png]] 207 207 208 -=== 2.3.4 Soil Moisture === 209 209 210 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 211 211 212 - Forexample,ifthedatayougetfromtheregister is __0x050xDC__,themoisturecontentinthesoil is174 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 213 213 176 +((( 177 +((( 178 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 179 +))) 180 +))) 214 214 215 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 216 216 183 +**Connection:** 217 217 185 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 218 218 219 - ===2.3.5SoilTemperature===187 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 220 220 221 - Getthetemperature in the soil. The value range of the register is-4000 - +800(Decimal), divide this value by 100 toget the temperature in the soil. Forxample, if the data yougetfromtheregisteris 0x09 0xEC, the temperature content in the soil is189 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 222 222 223 -**Example**: 224 224 225 -I fpayload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp=0105(H)/100=2.61°C192 +In the PC, use below serial tool settings: 226 226 227 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 194 +* Baud: (% style="color:green" %)**9600** 195 +* Data bits:** (% style="color:green" %)8(%%)** 196 +* Stop bits: (% style="color:green" %)**1** 197 +* Parity: (% style="color:green" %)**None** 198 +* Flow Control: (% style="color:green" %)**None** 228 228 229 - 230 - 231 -=== 2.3.6 Soil Conductivity (EC) === 232 - 233 233 ((( 234 - Obtain(%style="color:#4f81bd"%)**__solublesaltconcentration__**(%%)insoil or(%style="color:#4f81bd" %)**__soluble ionconcentrationinliquidfertilizer__**(%%)or(% style="color:#4f81bd" %)**__planting medium__**(%%).Thevaluerange of the register is0- 20000(Decimal)( Canbe greater than20000).201 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 235 235 ))) 236 236 237 -((( 238 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 239 -))) 204 +[[image:image-20220708110657-3.png]] 240 240 241 241 ((( 242 - Generally,theECvalueofirrigationwaterisless than800uS/207 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 243 243 ))) 244 244 245 -((( 246 - 247 -))) 248 248 249 -((( 250 - 251 -))) 252 252 253 -=== 2. 3.7MOD===212 +=== 2.2.4 Use CoAP protocol to uplink data === 254 254 255 - Firmwareversion atleastv2.1supportschangingmode.214 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 256 256 257 -For example, bytes[10]=90 258 258 259 - mod=(bytes[10]>>7)&0x01=1.217 +**Use below commands:** 260 260 219 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 220 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 221 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 261 261 262 - **DownlinkCommand:**223 +For parameter description, please refer to AT command set 263 263 264 - If payload = 0x0A00, workmode=0225 +[[image:1657249793983-486.png]] 265 265 266 -If** **payload =** **0x0A01, workmode=1 267 267 228 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 268 268 230 +[[image:1657249831934-534.png]] 269 269 270 -=== 2.3.8 Decode payload in The Things Network === 271 271 272 -While using TTN network, you can add the payload format to decode the payload. 273 273 234 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 274 274 275 - [[image:1654505570700-128.png]]236 +This feature is supported since firmware version v1.0.1 276 276 277 -The payload decoder function for TTN is here: 278 278 279 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 239 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 240 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 241 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 280 280 243 +[[image:1657249864775-321.png]] 281 281 282 -== 2.4 Uplink Interval == 283 283 284 - The LSE01 by default uplink the sensor dataevery20minutes.User canchange this interval by AT Command or LoRaWAN Downlink Command. See this link:246 +[[image:1657249930215-289.png]] 285 285 286 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 287 287 288 288 250 +=== 2.2.6 Use MQTT protocol to uplink data === 289 289 290 - ==2.5DownlinkPayload==252 +This feature is supported since firmware version v110 291 291 292 -By default, LSE50 prints the downlink payload to console port. 293 293 294 -[[image:image-20220606165544-8.png]] 255 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 256 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 257 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 258 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 259 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 260 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 261 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 295 295 263 +[[image:1657249978444-674.png]] 296 296 297 -**Examples:** 298 298 266 +[[image:1657249990869-686.png]] 299 299 300 -* **Set TDC** 301 301 302 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 269 +((( 270 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 271 +))) 303 303 304 -Payload: 01 00 00 1E TDC=30S 305 305 306 -Payload: 01 00 00 3C TDC=60S 307 307 275 +=== 2.2.7 Use TCP protocol to uplink data === 308 308 309 - ***Reset**277 +This feature is supported since firmware version v110 310 310 311 -If payload = 0x04FF, it will reset the LSE01 312 312 280 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 281 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 313 313 314 - * **CFM**283 +[[image:1657250217799-140.png]] 315 315 316 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 317 317 286 +[[image:1657250255956-604.png]] 318 318 319 319 320 -== 2.6 Show Data in DataCake IoT Server == 321 321 322 - [[DATACAKE>>url:https://datacake.co/]]providesahumanfriendlyinterface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]]to connectto TTN and see the data in DATACAKE. Beloware the steps:290 +=== 2.2.8 Change Update Interval === 323 323 292 +User can use below command to change the (% style="color:green" %)**uplink interval**. 324 324 325 -* *Step1**:Besurethatyour device is programmedandproperlyconnectedto the networkatthistime.294 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 326 326 327 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 296 +((( 297 +(% style="color:red" %)**NOTE:** 298 +))) 328 328 300 +((( 301 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 302 +))) 329 329 330 -[[image:1654505857935-743.png]] 331 331 332 332 333 - [[image:1654505874829-548.png]]306 +== 2.3 Uplink Payload == 334 334 335 - Step3: Createan accountorloginDatacake.308 +In this mode, uplink payload includes in total 18 bytes 336 336 337 -Step 4: Search the LSE01 and add DevEUI. 310 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 311 +|=(% style="width: 60px;" %)((( 312 +**Size(bytes)** 313 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 314 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 338 338 316 +((( 317 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 318 +))) 339 339 340 -[[image:1654505905236-553.png]] 341 341 321 +[[image:image-20220708111918-4.png]] 342 342 343 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 344 344 345 - [[image:1654505925508-181.png]]324 +The payload is ASCII string, representative same HEX: 346 346 326 +0x72403155615900640c7817075e0a8c02f900 where: 347 347 328 +* Device ID: 0x 724031556159 = 724031556159 329 +* Version: 0x0064=100=1.0.0 348 348 349 -== 2.7 Frequency Plans == 331 +* BAT: 0x0c78 = 3192 mV = 3.192V 332 +* Singal: 0x17 = 23 333 +* Soil Moisture: 0x075e= 1886 = 18.86 % 334 +* Soil Temperature:0x0a8c =2700=27 °C 335 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 336 +* Interrupt: 0x00 = 0 350 350 351 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 352 352 353 353 354 -=== 2.7.1 EU863-870 (EU868) === 355 355 356 - (%style="color:#037691"%)** Uplink:**341 +== 2.4 Payload Explanation and Sensor Interface == 357 357 358 -868.1 - SF7BW125 to SF12BW125 359 359 360 - 868.3- SF7BW125 to SF12BW125andSF7BW250344 +=== 2.4.1 Device ID === 361 361 362 -868.5 - SF7BW125 to SF12BW125 346 +((( 347 +By default, the Device ID equal to the last 6 bytes of IMEI. 348 +))) 363 363 364 -867.1 - SF7BW125 to SF12BW125 350 +((( 351 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 352 +))) 365 365 366 -867.3 - SF7BW125 to SF12BW125 354 +((( 355 +**Example:** 356 +))) 367 367 368 -867.5 - SF7BW125 to SF12BW125 358 +((( 359 +AT+DEUI=A84041F15612 360 +))) 369 369 370 -867.7 - SF7BW125 to SF12BW125 362 +((( 363 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 364 +))) 371 371 372 -867.9 - SF7BW125 to SF12BW125 373 373 374 -868.8 - FSK 375 375 368 +=== 2.4.2 Version Info === 376 376 377 -(% style="color:#037691" %)** Downlink:** 370 +((( 371 +Specify the software version: 0x64=100, means firmware version 1.00. 372 +))) 378 378 379 -Uplink channels 1-9 (RX1) 374 +((( 375 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 376 +))) 380 380 381 -869.525 - SF9BW125 (RX2 downlink only) 382 382 383 383 380 +=== 2.4.3 Battery Info === 384 384 385 -=== 2.7.2 US902-928(US915) === 382 +((( 383 +Check the battery voltage for LSE01. 384 +))) 386 386 387 -Used in USA, Canada and South America. Default use CHE=2 386 +((( 387 +Ex1: 0x0B45 = 2885mV 388 +))) 388 388 389 -(% style="color:#037691" %)**Uplink:** 390 +((( 391 +Ex2: 0x0B49 = 2889mV 392 +))) 390 390 391 -903.9 - SF7BW125 to SF10BW125 392 392 393 -904.1 - SF7BW125 to SF10BW125 394 394 395 - 904.3-SF7BW125toSF10BW125396 +=== 2.4.4 Signal Strength === 396 396 397 -904.5 - SF7BW125 to SF10BW125 398 +((( 399 +NB-IoT Network signal Strength. 400 +))) 398 398 399 -904.7 - SF7BW125 to SF10BW125 402 +((( 403 +**Ex1: 0x1d = 29** 404 +))) 400 400 401 -904.9 - SF7BW125 to SF10BW125 406 +((( 407 +(% style="color:blue" %)**0**(%%) -113dBm or less 408 +))) 402 402 403 -905.1 - SF7BW125 to SF10BW125 410 +((( 411 +(% style="color:blue" %)**1**(%%) -111dBm 412 +))) 404 404 405 -905.3 - SF7BW125 to SF10BW125 414 +((( 415 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 416 +))) 406 406 418 +((( 419 +(% style="color:blue" %)**31** (%%) -51dBm or greater 420 +))) 407 407 408 -(% style="color:#037691" %)**Downlink:** 422 +((( 423 +(% style="color:blue" %)**99** (%%) Not known or not detectable 424 +))) 409 409 410 -923.3 - SF7BW500 to SF12BW500 411 411 412 -923.9 - SF7BW500 to SF12BW500 413 413 414 - 924.5-SF7BW500toSF12BW500428 +=== 2.4.5 Soil Moisture === 415 415 416 -925.1 - SF7BW500 to SF12BW500 430 +((( 431 +((( 432 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 433 +))) 434 +))) 417 417 418 -925.7 - SF7BW500 to SF12BW500 436 +((( 437 +((( 438 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 439 +))) 440 +))) 419 419 420 -926.3 - SF7BW500 to SF12BW500 442 +((( 443 + 444 +))) 421 421 422 -926.9 - SF7BW500 to SF12BW500 446 +((( 447 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 448 +))) 423 423 424 -927.5 - SF7BW500 to SF12BW500 425 425 426 -923.3 - SF12BW500(RX2 downlink only) 427 427 452 +=== 2.4.6 Soil Temperature === 428 428 454 +((( 455 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 456 +))) 429 429 430 -=== 2.7.3 CN470-510 (CN470) === 458 +((( 459 +**Example**: 460 +))) 431 431 432 -Used in China, Default use CHE=1 462 +((( 463 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 464 +))) 433 433 434 -(% style="color:#037691" %)**Uplink:** 466 +((( 467 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 468 +))) 435 435 436 -486.3 - SF7BW125 to SF12BW125 437 437 438 -486.5 - SF7BW125 to SF12BW125 439 439 440 -4 86.7-SF7BW125toSF12BW125472 +=== 2.4.7 Soil Conductivity (EC) === 441 441 442 -486.9 - SF7BW125 to SF12BW125 474 +((( 475 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 476 +))) 443 443 444 -487.1 - SF7BW125 to SF12BW125 478 +((( 479 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 480 +))) 445 445 446 -487.3 - SF7BW125 to SF12BW125 482 +((( 483 +Generally, the EC value of irrigation water is less than 800uS / cm. 484 +))) 447 447 448 -487.5 - SF7BW125 to SF12BW125 486 +((( 487 + 488 +))) 449 449 450 -487.7 - SF7BW125 to SF12BW125 490 +((( 491 + 492 +))) 451 451 494 +=== 2.4.8 Digital Interrupt === 452 452 453 -(% style="color:#037691" %)**Downlink:** 496 +((( 497 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 498 +))) 454 454 455 -506.7 - SF7BW125 to SF12BW125 500 +((( 501 +The command is: 502 +))) 456 456 457 -506.9 - SF7BW125 to SF12BW125 504 +((( 505 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 506 +))) 458 458 459 -507.1 - SF7BW125 to SF12BW125 460 460 461 -507.3 - SF7BW125 to SF12BW125 509 +((( 510 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 511 +))) 462 462 463 -507.5 - SF7BW125 to SF12BW125 464 464 465 -507.7 - SF7BW125 to SF12BW125 514 +((( 515 +Example: 516 +))) 466 466 467 -507.9 - SF7BW125 to SF12BW125 518 +((( 519 +0x(00): Normal uplink packet. 520 +))) 468 468 469 -508.1 - SF7BW125 to SF12BW125 522 +((( 523 +0x(01): Interrupt Uplink Packet. 524 +))) 470 470 471 -505.3 - SF12BW125 (RX2 downlink only) 472 472 473 473 528 +=== 2.4.9 +5V Output === 474 474 475 -=== 2.7.4 AU915-928(AU915) === 530 +((( 531 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 532 +))) 476 476 477 -Default use CHE=2 478 478 479 -(% style="color:#037691" %)**Uplink:** 535 +((( 536 +The 5V output time can be controlled by AT Command. 537 +))) 480 480 481 -916.8 - SF7BW125 to SF12BW125 539 +((( 540 +(% style="color:blue" %)**AT+5VT=1000** 541 +))) 482 482 483 -917.0 - SF7BW125 to SF12BW125 543 +((( 544 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 545 +))) 484 484 485 -917.2 - SF7BW125 to SF12BW125 486 486 487 -917.4 - SF7BW125 to SF12BW125 488 488 489 - 917.6- SF7BW125toSF12BW125549 +== 2.5 Downlink Payload == 490 490 491 - 917.8-SF7BW125toSF12BW125551 +By default, NSE01 prints the downlink payload to console port. 492 492 493 - 918.0-SF7BW125 to SF12BW125553 +[[image:image-20220708133731-5.png]] 494 494 495 -918.2 - SF7BW125 to SF12BW125 496 496 556 +((( 557 +(% style="color:blue" %)**Examples:** 558 +))) 497 497 498 -(% style="color:#037691" %)**Downlink:** 560 +((( 561 + 562 +))) 499 499 500 -923.3 - SF7BW500 to SF12BW500 564 +* ((( 565 +(% style="color:blue" %)**Set TDC** 566 +))) 501 501 502 -923.9 - SF7BW500 to SF12BW500 568 +((( 569 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 570 +))) 503 503 504 -924.5 - SF7BW500 to SF12BW500 572 +((( 573 +Payload: 01 00 00 1E TDC=30S 574 +))) 505 505 506 -925.1 - SF7BW500 to SF12BW500 576 +((( 577 +Payload: 01 00 00 3C TDC=60S 578 +))) 507 507 508 -925.7 - SF7BW500 to SF12BW500 580 +((( 581 + 582 +))) 509 509 510 -926.3 - SF7BW500 to SF12BW500 584 +* ((( 585 +(% style="color:blue" %)**Reset** 586 +))) 511 511 512 -926.9 - SF7BW500 to SF12BW500 588 +((( 589 +If payload = 0x04FF, it will reset the NSE01 590 +))) 513 513 514 -927.5 - SF7BW500 to SF12BW500 515 515 516 - 923.3- SF12BW500(RX2downlinkonly)593 +* (% style="color:blue" %)**INTMOD** 517 517 595 +((( 596 +Downlink Payload: 06000003, Set AT+INTMOD=3 597 +))) 518 518 519 519 520 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 521 521 522 - (% style="color:#037691"%)**DefaultUplinkchannel:**601 +== 2.6 LED Indicator == 523 523 524 -923.2 - SF7BW125 to SF10BW125 603 +((( 604 +The NSE01 has an internal LED which is to show the status of different state. 525 525 526 -923.4 - SF7BW125 to SF10BW125 527 527 607 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 608 +* Then the LED will be on for 1 second means device is boot normally. 609 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 610 +* For each uplink probe, LED will be on for 500ms. 611 +))) 528 528 529 -(% style="color:#037691" %)**Additional Uplink Channel**: 530 530 531 -(OTAA mode, channel added by JoinAccept message) 532 532 533 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 534 534 535 - 922.2 - SF7BW125to SF10BW125616 +== 2.7 Installation in Soil == 536 536 537 - 922.4- SF7BW125toSF10BW125618 +__**Measurement the soil surface**__ 538 538 539 -922.6 - SF7BW125 to SF10BW125 620 +((( 621 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 622 +))) 540 540 541 - 922.8 - SF7BW125to SF10BW125624 +[[image:1657259653666-883.png]] 542 542 543 -923.0 - SF7BW125 to SF10BW125 544 544 545 -922.0 - SF7BW125 to SF10BW125 627 +((( 628 + 546 546 630 +((( 631 +Dig a hole with diameter > 20CM. 632 +))) 547 547 548 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 634 +((( 635 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 636 +))) 637 +))) 549 549 550 - 923.6 - SF7BW125to SF10BW125639 +[[image:1654506665940-119.png]] 551 551 552 -923.8 - SF7BW125 to SF10BW125 641 +((( 642 + 643 +))) 553 553 554 -924.0 - SF7BW125 to SF10BW125 555 555 556 - 924.2- SF7BW125toSF10BW125646 +== 2.8 Firmware Change Log == 557 557 558 -924.4 - SF7BW125 to SF10BW125 559 559 560 - 924.6-SF7BW125toSF10BW125649 +Download URL & Firmware Change log 561 561 651 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 562 562 563 -(% style="color:#037691" %)** Downlink:** 564 564 565 -Up linkchannels 1-8 (RX1)654 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 566 566 567 -923.2 - SF10BW125 (RX2) 568 568 569 569 658 +== 2.9 Battery Analysis == 570 570 571 -=== 2. 7.6KR920-923(KR920)===660 +=== 2.9.1 Battery Type === 572 572 573 -Default channel: 574 574 575 -922.1 - SF7BW125 to SF12BW125 576 - 577 -922.3 - SF7BW125 to SF12BW125 578 - 579 -922.5 - SF7BW125 to SF12BW125 580 - 581 - 582 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 583 - 584 -922.1 - SF7BW125 to SF12BW125 585 - 586 -922.3 - SF7BW125 to SF12BW125 587 - 588 -922.5 - SF7BW125 to SF12BW125 589 - 590 -922.7 - SF7BW125 to SF12BW125 591 - 592 -922.9 - SF7BW125 to SF12BW125 593 - 594 -923.1 - SF7BW125 to SF12BW125 595 - 596 -923.3 - SF7BW125 to SF12BW125 597 - 598 - 599 -(% style="color:#037691" %)**Downlink:** 600 - 601 -Uplink channels 1-7(RX1) 602 - 603 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 604 - 605 - 606 - 607 -=== 2.7.7 IN865-867 (IN865) === 608 - 609 -(% style="color:#037691" %)** Uplink:** 610 - 611 -865.0625 - SF7BW125 to SF12BW125 612 - 613 -865.4025 - SF7BW125 to SF12BW125 614 - 615 -865.9850 - SF7BW125 to SF12BW125 616 - 617 - 618 -(% style="color:#037691" %) **Downlink:** 619 - 620 -Uplink channels 1-3 (RX1) 621 - 622 -866.550 - SF10BW125 (RX2) 623 - 624 - 625 - 626 - 627 -== 2.8 LED Indicator == 628 - 629 -The LSE01 has an internal LED which is to show the status of different state. 630 - 631 -* Blink once when device power on. 632 -* Solid ON for 5 seconds once device successful Join the network. 633 -* Blink once when device transmit a packet. 634 - 635 - 636 - 637 -== 2.9 Installation in Soil == 638 - 639 -**Measurement the soil surface** 640 - 641 - 642 -[[image:1654506634463-199.png]] 643 - 644 644 ((( 645 -((( 646 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 664 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 647 647 ))) 648 -))) 649 649 650 650 651 -[[image:1654506665940-119.png]] 652 - 653 653 ((( 654 - Dig aholewithdiameter>20CM.669 +The battery is designed to last for several years depends on the actually use environment and update interval. 655 655 ))) 656 656 657 -((( 658 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 659 -))) 660 660 661 - 662 -== 2.10 Firmware Change Log == 663 - 664 664 ((( 665 - **Firmware downloadlink:**674 +The battery related documents as below: 666 666 ))) 667 667 668 - (((669 -[[ http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]670 - )))677 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 678 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 679 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 671 671 672 672 ((( 673 - 682 +[[image:image-20220708140453-6.png]] 674 674 ))) 675 675 676 -((( 677 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 678 -))) 679 679 680 -((( 681 - 682 -))) 683 683 684 -((( 685 -**V1.0.** 686 -))) 687 +=== 2.9.2 Power consumption Analyze === 687 687 688 688 ((( 689 - Release690 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 690 690 ))) 691 691 692 692 693 -== 2.11 Battery Analysis == 694 - 695 -=== 2.11.1 Battery Type === 696 - 697 697 ((( 698 - The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The batteryis non-rechargeablebattery type with a lowdischargerate (<2% per year). Thistype ofbattery is commonly used in IoT devices such aswater meter.695 +Instruction to use as below: 699 699 ))) 700 700 701 701 ((( 702 - Thebatterys designedlastforrethan5 years fortheSN50.699 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 703 703 ))) 704 704 702 + 705 705 ((( 706 -((( 707 -The battery-related documents are as below: 704 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 708 708 ))) 709 -))) 710 710 711 711 * ((( 712 - [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],708 +Product Model 713 713 ))) 714 714 * ((( 715 - [[Lithium-ThionylChloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],711 +Uplink Interval 716 716 ))) 717 717 * ((( 718 - [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]],[[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]714 +Working Mode 719 719 ))) 720 720 721 - [[image:image-20220606171726-9.png]] 717 +((( 718 +And the Life expectation in difference case will be shown on the right. 719 +))) 722 722 721 +[[image:image-20220708141352-7.jpeg]] 723 723 724 724 725 -=== 2.11.2 Battery Note === 726 726 725 +=== 2.9.3 Battery Note === 726 + 727 727 ((( 728 728 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 729 729 ))) ... ... @@ -730,299 +730,195 @@ 730 730 731 731 732 732 733 -=== 2. 11.3Replace the battery ===733 +=== 2.9.4 Replace the battery === 734 734 735 735 ((( 736 - IfBattery is lower than 2.7v,usershouldreplace the battery ofLSE01.736 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 737 737 ))) 738 738 739 + 740 + 741 += 3. Access NB-IoT Module = 742 + 739 739 ((( 740 - You can changethe battery in the LSE01.The type of battery isnot limitedas longas the outputis between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the maincircuit. If you need to use a battery with lessthan 3.3v, pleaseremovethe D1and shortcut thewopadsofitso therewon’tbe voltage drop between battery andmain board.744 +Users can directly access the AT command set of the NB-IoT module. 741 741 ))) 742 742 743 743 ((( 744 -The defaultbattery packof LSE01 includesa ER18505 plussupercapacitor.Ifusercan’tfind this pack locally, theycan find ER18505orequivalence,whichwillalsoworkinmostcase.The SPC can enlargethebattery lifeforigh frequency use(updateperiod below5minutes)748 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 745 745 ))) 746 746 751 +[[image:1657261278785-153.png]] 747 747 748 748 749 -= 3. Using the AT Commands = 750 750 751 -= =3.1AccessAT Commands ==755 += 4. Using the AT Commands = 752 752 757 +== 4.1 Access AT Commands == 753 753 754 - LSE01supportsATCommandsetn the stock firmware.Youcanuse a USB toTTLadaptertoconnect to LSE01forusing ATcommand,asbelow.759 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 755 755 756 -[[image:1654501986557-872.png]] 757 757 762 +AT+<CMD>? : Help on <CMD> 758 758 759 - Orifyouhavebelowboard,usebelowconnection:764 +AT+<CMD> : Run <CMD> 760 760 766 +AT+<CMD>=<value> : Set the value 761 761 762 - [[image:1654502005655-729.png]]768 +AT+<CMD>=? : Get the value 763 763 764 764 765 - 766 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 767 - 768 - 769 - [[image:1654502050864-459.png]] 770 - 771 - 772 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 773 - 774 - 775 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 776 - 777 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 778 - 779 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 780 - 781 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 782 - 783 - 784 784 (% style="color:#037691" %)**General Commands**(%%) 785 785 786 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention773 +AT : Attention 787 787 788 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help775 +AT? : Short Help 789 789 790 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset777 +ATZ : MCU Reset 791 791 792 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval779 +AT+TDC : Application Data Transmission Interval 793 793 781 +AT+CFG : Print all configurations 794 794 795 - (%style="color:#037691"%)**Keys,IDsand EUIs management**783 +AT+CFGMOD : Working mode selection 796 796 797 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI785 +AT+INTMOD : Set the trigger interrupt mode 798 798 799 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey787 +AT+5VT : Set extend the time of 5V power 800 800 801 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key789 +AT+PRO : Choose agreement 802 802 803 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress791 +AT+WEIGRE : Get weight or set weight to 0 804 804 805 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI793 +AT+WEIGAP : Get or Set the GapValue of weight 806 806 807 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)795 +AT+RXDL : Extend the sending and receiving time 808 808 809 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network797 +AT+CNTFAC : Get or set counting parameters 810 810 811 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode799 +AT+SERVADDR : Server Address 812 812 813 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 814 814 815 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network802 +(% style="color:#037691" %)**COAP Management** 816 816 817 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode804 +AT+URI : Resource parameters 818 818 819 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 820 820 821 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format807 +(% style="color:#037691" %)**UDP Management** 822 822 823 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat809 +AT+CFM : Upload confirmation mode (only valid for UDP) 824 824 825 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 826 826 827 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data812 +(% style="color:#037691" %)**MQTT Management** 828 828 814 +AT+CLIENT : Get or Set MQTT client 829 829 830 - (%style="color:#037691"%)**LoRaNetworkManagement**816 +AT+UNAME : Get or Set MQTT Username 831 831 832 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate818 +AT+PWD : Get or Set MQTT password 833 833 834 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA820 +AT+PUBTOPIC : Get or Set MQTT publish topic 835 835 836 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting822 +AT+SUBTOPIC : Get or Set MQTT subscription topic 837 837 838 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 839 839 840 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink825 +(% style="color:#037691" %)**Information** 841 841 842 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink827 +AT+FDR : Factory Data Reset 843 843 844 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1829 +AT+PWORD : Serial Access Password 845 845 846 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 847 847 848 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 849 849 850 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1833 += 5. FAQ = 851 851 852 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2835 +== 5.1 How to Upgrade Firmware == 853 853 854 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 855 855 856 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 838 +((( 839 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 840 +))) 857 857 858 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 842 +((( 843 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 844 +))) 859 859 860 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 846 +((( 847 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 848 +))) 861 861 862 862 863 -(% style="color:#037691" %)**Information** 864 864 865 - (% style="background-color:#dcdcdc"%)**AT+RSSI**(%%):RSSIoftheLastReceivedPacket852 +== 5.2 Can I calibrate NSE01 to different soil types? == 866 866 867 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 854 +((( 855 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. 856 +))) 868 868 869 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 870 870 871 - (% style="background-color:#dcdcdc"%)**AT+FDR**(%%) : Factory DataReset859 += 6. Trouble Shooting = 872 872 873 - (%style="background-color:#dcdcdc"%)**AT+PORT**(%%): ApplicationPort861 +== 6.1 Connection problem when uploading firmware == 874 874 875 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 876 876 877 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 878 - 879 - 880 -= 4. FAQ = 881 - 882 -== 4.1 How to change the LoRa Frequency Bands/Region? == 883 - 884 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10FirmwareChangeLog"]]. 885 -When downloading the images, choose the required image file for download. 886 - 887 - 888 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 889 - 890 - 891 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 892 - 893 - 894 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 895 - 896 -[[image:image-20220606154726-3.png]] 897 - 898 -When you use the TTN network, the US915 frequency bands use are: 899 - 900 -* 903.9 - SF7BW125 to SF10BW125 901 -* 904.1 - SF7BW125 to SF10BW125 902 -* 904.3 - SF7BW125 to SF10BW125 903 -* 904.5 - SF7BW125 to SF10BW125 904 -* 904.7 - SF7BW125 to SF10BW125 905 -* 904.9 - SF7BW125 to SF10BW125 906 -* 905.1 - SF7BW125 to SF10BW125 907 -* 905.3 - SF7BW125 to SF10BW125 908 -* 904.6 - SF8BW500 909 - 910 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 911 - 912 -(% class="box infomessage" %) 913 913 ((( 914 -** AT+CHE=2**865 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 915 915 ))) 916 916 917 -(% class=" boxinfomessage" %)868 +(% class="wikigeneratedid" %) 918 918 ((( 919 - **ATZ**870 + 920 920 ))) 921 921 922 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 923 923 874 +== 6.2 AT Command input doesn't work == 924 924 925 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 876 +((( 877 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 926 926 927 -[[image:image-20220606154825-4.png]] 879 + 880 +))) 928 928 929 929 883 += 7. Order Info = 930 930 931 -= 5. Trouble Shooting = 932 932 933 - == 5.1 Why I can’tjoin TTNin US915 / AU915bands?==886 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 934 934 935 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 936 936 937 - 938 -== 5.2 AT Command input doesn’t work == 939 - 940 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 941 - 942 - 943 -== 5.3 Device rejoin in at the second uplink packet == 944 - 945 -(% style="color:#4f81bd" %)**Issue describe as below:** 946 - 947 -[[image:1654500909990-784.png]] 948 - 949 - 950 -(% style="color:#4f81bd" %)**Cause for this issue:** 951 - 952 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 953 - 954 - 955 -(% style="color:#4f81bd" %)**Solution: ** 956 - 957 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 958 - 959 -[[image:1654500929571-736.png]] 960 - 961 - 962 -= 6. Order Info = 963 - 964 - 965 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 966 - 967 - 968 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 969 - 970 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 971 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 972 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 973 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 974 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 975 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 976 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 977 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 978 - 979 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 980 - 981 -* (% style="color:red" %)**4**(%%): 4000mAh battery 982 -* (% style="color:red" %)**8**(%%): 8500mAh battery 983 - 984 984 (% class="wikigeneratedid" %) 985 985 ((( 986 986 987 987 ))) 988 988 989 -= 7. Packing Info =894 += 8. Packing Info = 990 990 991 991 ((( 992 -**Package Includes**: 993 -))) 897 + 994 994 995 -* ((( 996 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 899 +(% style="color:#037691" %)**Package Includes**: 900 + 901 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 902 +* External antenna x 1 997 997 ))) 998 998 999 999 ((( 1000 1000 1001 -))) 1002 1002 1003 -((( 1004 -**Dimension and weight**: 1005 -))) 908 +(% style="color:#037691" %)**Dimension and weight**: 1006 1006 1007 -* (((1008 - DeviceSize:cm910 +* Size: 195 x 125 x 55 mm 911 +* Weight: 420g 1009 1009 ))) 1010 -* ((( 1011 -Device Weight: g 1012 -))) 1013 -* ((( 1014 -Package Size / pcs : cm 1015 -))) 1016 -* ((( 1017 -Weight / pcs : g 1018 1018 914 +((( 915 + 1019 1019 917 + 1020 1020 1021 1021 ))) 1022 1022 1023 -= 8. Support =921 += 9. Support = 1024 1024 1025 1025 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1026 1026 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1027 - 1028 -
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content