Last modified by Mengting Qiu on 2024/04/02 16:44

From version 31.23
edited by Xiaoling
on 2022/06/07 10:13
Change comment: There is no comment for this version
To version 65.8
edited by Xiaoling
on 2022/07/08 15:34
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,9 +3,7 @@
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
... ... @@ -12,1017 +12,819 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 +**Table of Contents:**
18 18  
19 -(((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
16 +{{toc/}}
22 22  
23 -(((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 -)))
26 26  
27 -(((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 -)))
34 34  
35 -(((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 -)))
38 38  
39 39  
40 -[[image:1654503236291-817.png]]
23 += 1.  Introduction =
41 41  
25 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
42 42  
43 -[[image:1654503265560-120.png]]
44 -
45 -
46 -
47 -== 1.2 ​Features ==
48 -
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
51 -* Monitor Soil Moisture
52 -* Monitor Soil Temperature
53 -* Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 -* AT Commands to change parameters
56 -* Uplink on periodically
57 -* Downlink to change configure
58 -* IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
60 -
61 -
62 -== 1.3 Specification ==
63 -
64 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
65 -
66 -[[image:image-20220606162220-5.png]]
67 -
68 -
69 -
70 -== ​1.4 Applications ==
71 -
72 -* Smart Agriculture
73 -
74 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
75 -​
76 -
77 -== 1.5 Firmware Change log ==
78 -
79 -
80 -**LSE01 v1.0 :**  Release
81 -
82 -
83 -
84 -= 2. Configure LSE01 to connect to LoRaWAN network =
85 -
86 -== 2.1 How it works ==
87 -
88 88  (((
89 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
90 -)))
28 +
91 91  
92 -(((
93 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
94 -)))
30 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
95 95  
32 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
96 96  
34 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
97 97  
98 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
36 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
99 99  
100 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
101 -
102 -
103 -[[image:1654503992078-669.png]]
104 -
105 -
106 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
107 -
108 -
109 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
110 -
111 -Each LSE01 is shipped with a sticker with the default device EUI as below:
112 -
113 -[[image:image-20220606163732-6.jpeg]]
114 -
115 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
116 -
117 -**Add APP EUI in the application**
118 -
119 -
120 -[[image:1654504596150-405.png]]
121 -
122 -
123 -
124 -**Add APP KEY and DEV EUI**
125 -
126 -[[image:1654504683289-357.png]]
127 -
128 -
129 -
130 -**Step 2**: Power on LSE01
131 -
132 -
133 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
134 -
135 -[[image:image-20220606163915-7.png]]
136 -
137 -
138 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
139 -
140 -[[image:1654504778294-788.png]]
141 -
142 -
143 -
144 -== 2.3 Uplink Payload ==
145 -
146 -=== 2.3.1 MOD~=0(Default Mode) ===
147 -
148 -LSE01 will uplink payload via LoRaWAN with below payload format: 
149 -
150 -
151 -Uplink payload includes in total 11 bytes.
152 152  
153 -
154 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
155 -|=(((
156 -**Size**
157 -
158 -**(bytes)**
159 -)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1**
160 -|**Value**|(% style="width:46px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:160px" %)(((
161 -Temperature
162 -
163 -(Reserve, Ignore now)
164 -)))|(% style="width:104px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:126px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:114px" %)(((
165 -MOD & Digital Interrupt
166 -
167 -(Optional)
168 168  )))
169 169  
170 -[[image:1654504881641-514.png]]
41 +[[image:1654503236291-817.png]]
171 171  
172 172  
44 +[[image:1657245163077-232.png]]
173 173  
174 -=== 2.3.2 MOD~=1(Original value) ===
175 175  
176 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
177 177  
178 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
179 -|=(((
180 -**Size**
48 +== 1.2 ​ Features ==
181 181  
182 -**(bytes)**
183 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1**
184 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
185 -Temperature
50 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
51 +* Monitor Soil Moisture
52 +* Monitor Soil Temperature
53 +* Monitor Soil Conductivity
54 +* AT Commands to change parameters
55 +* Uplink on periodically
56 +* Downlink to change configure
57 +* IP66 Waterproof Enclosure
58 +* Ultra-Low Power consumption
59 +* AT Commands to change parameters
60 +* Micro SIM card slot for NB-IoT SIM
61 +* 8500mAh Battery for long term use
186 186  
187 -(Reserve, Ignore now)
188 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
189 -MOD & Digital Interrupt
190 190  
191 -(Optional)
192 -)))
64 +== 1.3  Specification ==
193 193  
194 -[[image:1654504907647-967.png]]
195 195  
67 +(% style="color:#037691" %)**Common DC Characteristics:**
196 196  
69 +* Supply Voltage: 2.1v ~~ 3.6v
70 +* Operating Temperature: -40 ~~ 85°C
197 197  
198 -=== 2.3.3 Battery Info ===
72 +(% style="color:#037691" %)**NB-IoT Spec:**
199 199  
200 -Check the battery voltage for LSE01.
74 +* - B1 @H-FDD: 2100MHz
75 +* - B3 @H-FDD: 1800MHz
76 +* - B8 @H-FDD: 900MHz
77 +* - B5 @H-FDD: 850MHz
78 +* - B20 @H-FDD: 800MHz
79 +* - B28 @H-FDD: 700MHz
201 201  
202 -Ex1: 0x0B45 = 2885mV
81 +Probe(% style="color:#037691" %)** Specification:**
203 203  
204 -Ex2: 0x0B49 = 2889mV
83 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
205 205  
85 +[[image:image-20220708101224-1.png]]
206 206  
207 207  
208 -=== 2.3.4 Soil Moisture ===
209 209  
210 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
89 +== ​1. Applications ==
211 211  
212 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
91 +* Smart Agriculture
213 213  
93 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
94 +​
214 214  
215 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
96 +== 1.5  Pin Definitions ==
216 216  
217 217  
99 +[[image:1657246476176-652.png]]
218 218  
219 -=== 2.3.5 Soil Temperature ===
220 220  
221 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
222 222  
223 -**Example**:
103 += 2.  Use NSE01 to communicate with IoT Server =
224 224  
225 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
105 +== 2.1  How it works ==
226 226  
227 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
228 228  
229 -
230 -
231 -=== 2.3.6 Soil Conductivity (EC) ===
232 -
233 233  (((
234 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
109 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
235 235  )))
236 236  
237 -(((
238 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
239 -)))
240 240  
241 241  (((
242 -Generally, the EC value of irrigation water is less than 800uS / cm.
114 +The diagram below shows the working flow in default firmware of NSE01:
243 243  )))
244 244  
245 -(((
246 -
247 -)))
117 +[[image:image-20220708101605-2.png]]
248 248  
249 249  (((
250 250  
251 251  )))
252 252  
253 -=== 2.3.7 MOD ===
254 254  
255 -Firmware version at least v2.1 supports changing mode.
256 256  
257 -For example, bytes[10]=90
125 +== 2.2 ​ Configure the NSE01 ==
258 258  
259 -mod=(bytes[10]>>7)&0x01=1.
260 260  
128 +=== 2.2.1 Test Requirement ===
261 261  
262 -**Downlink Command:**
263 263  
264 -If payload = 0x0A00, workmode=0
131 +To use NSE01 in your city, make sure meet below requirements:
265 265  
266 -If** **payload =** **0x0A01, workmode=1
133 +* Your local operator has already distributed a NB-IoT Network there.
134 +* The local NB-IoT network used the band that NSE01 supports.
135 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
267 267  
137 +(((
138 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
139 +)))
268 268  
269 269  
270 -=== 2.3.8 ​Decode payload in The Things Network ===
142 +[[image:1657249419225-449.png]]
271 271  
272 -While using TTN network, you can add the payload format to decode the payload.
273 273  
274 274  
275 -[[image:1654505570700-128.png]]
146 +=== 2.2.2 Insert SIM card ===
276 276  
277 -The payload decoder function for TTN is here:
148 +Insert the NB-IoT Card get from your provider.
278 278  
279 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
150 +User need to take out the NB-IoT module and insert the SIM card like below:
280 280  
281 281  
282 -== 2.4 Uplink Interval ==
153 +[[image:1657249468462-536.png]]
283 283  
284 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
285 285  
286 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
287 287  
157 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
288 288  
159 +(((
160 +(((
161 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
162 +)))
163 +)))
289 289  
290 -== 2.5 Downlink Payload ==
291 291  
292 -By default, LSE50 prints the downlink payload to console port.
166 +**Connection:**
293 293  
294 -[[image:image-20220606165544-8.png]]
168 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
295 295  
170 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
296 296  
297 -**Examples:**
172 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
298 298  
299 299  
300 -* **Set TDC**
175 +In the PC, use below serial tool settings:
301 301  
302 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
177 +* Baud:  (% style="color:green" %)**9600**
178 +* Data bits:** (% style="color:green" %)8(%%)**
179 +* Stop bits: (% style="color:green" %)**1**
180 +* Parity:  (% style="color:green" %)**None**
181 +* Flow Control: (% style="color:green" %)**None**
303 303  
304 -Payload:    01 00 00 1E    TDC=30S
183 +(((
184 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
185 +)))
305 305  
306 -Payload:    01 00 00 3C    TDC=60S
187 +[[image:image-20220708110657-3.png]]
307 307  
189 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
308 308  
309 -* **Reset**
310 310  
311 -If payload = 0x04FF, it will reset the LSE01
312 312  
193 +=== 2.2.4 Use CoAP protocol to uplink data ===
313 313  
314 -* **CFM**
195 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
315 315  
316 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
317 317  
198 +**Use below commands:**
318 318  
200 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
201 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
202 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
319 319  
320 -== 2.6 ​Show Data in DataCake IoT Server ==
204 +For parameter description, please refer to AT command set
321 321  
322 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
206 +[[image:1657249793983-486.png]]
323 323  
324 324  
325 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
209 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
326 326  
327 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
211 +[[image:1657249831934-534.png]]
328 328  
329 329  
330 -[[image:1654505857935-743.png]]
331 331  
215 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
332 332  
333 -[[image:1654505874829-548.png]]
217 +This feature is supported since firmware version v1.0.1
334 334  
335 -Step 3: Create an account or log in Datacake.
336 336  
337 -Step 4: Search the LSE01 and add DevEUI.
220 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
221 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
222 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
338 338  
224 +[[image:1657249864775-321.png]]
339 339  
340 -[[image:1654505905236-553.png]]
341 341  
227 +[[image:1657249930215-289.png]]
342 342  
343 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
344 344  
345 -[[image:1654505925508-181.png]]
346 346  
231 +=== 2.2.6 Use MQTT protocol to uplink data ===
347 347  
233 +This feature is supported since firmware version v110
348 348  
349 -== 2.7 Frequency Plans ==
350 350  
351 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
236 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
237 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
238 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
239 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
240 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
241 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
242 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
352 352  
244 +[[image:1657249978444-674.png]]
353 353  
354 -=== 2.7.1 EU863-870 (EU868) ===
355 355  
356 -(% style="color:#037691" %)** Uplink:**
247 +[[image:1657249990869-686.png]]
357 357  
358 -868.1 - SF7BW125 to SF12BW125
359 359  
360 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
250 +(((
251 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
252 +)))
361 361  
362 -868.5 - SF7BW125 to SF12BW125
363 363  
364 -867.1 - SF7BW125 to SF12BW125
365 365  
366 -867.3 - SF7BW125 to SF12BW125
256 +=== 2.2.7 Use TCP protocol to uplink data ===
367 367  
368 -867.5 - SF7BW125 to SF12BW125
258 +This feature is supported since firmware version v110
369 369  
370 -867.7 - SF7BW125 to SF12BW125
371 371  
372 -867.9 - SF7BW125 to SF12BW125
261 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
262 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
373 373  
374 -868.8 - FSK
264 +[[image:1657250217799-140.png]]
375 375  
376 376  
377 -(% style="color:#037691" %)** Downlink:**
267 +[[image:1657250255956-604.png]]
378 378  
379 -Uplink channels 1-9 (RX1)
380 380  
381 -869.525 - SF9BW125 (RX2 downlink only)
382 382  
271 +=== 2.2.8 Change Update Interval ===
383 383  
273 +User can use below command to change the (% style="color:green" %)**uplink interval**.
384 384  
385 -=== 2.7.2 US902-928(US915) ===
275 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
386 386  
387 -Used in USA, Canada and South America. Default use CHE=2
277 +(((
278 +(% style="color:red" %)**NOTE:**
279 +)))
388 388  
389 -(% style="color:#037691" %)**Uplink:**
281 +(((
282 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
283 +)))
390 390  
391 -903.9 - SF7BW125 to SF10BW125
392 392  
393 -904.1 - SF7BW125 to SF10BW125
394 394  
395 -904.3 - SF7BW125 to SF10BW125
287 +== 2.3  Uplink Payload ==
396 396  
397 -904.5 - SF7BW125 to SF10BW125
289 +In this mode, uplink payload includes in total 18 bytes
398 398  
399 -904.7 - SF7BW125 to SF10BW125
291 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
292 +|=(% style="width: 50px;" %)(((
293 +**Size(bytes)**
294 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
295 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
400 400  
401 -904.9 - SF7BW125 to SF10BW125
297 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
402 402  
403 -905.1 - SF7BW125 to SF10BW125
404 404  
405 -905.3 - SF7BW125 to SF10BW125
300 +[[image:image-20220708111918-4.png]]
406 406  
407 407  
408 -(% style="color:#037691" %)**Downlink:**
303 +The payload is ASCII string, representative same HEX:
409 409  
410 -923.3 - SF7BW500 to SF12BW500
305 +0x72403155615900640c7817075e0a8c02f900 where:
411 411  
412 -923.9 - SF7BW500 to SF12BW500
307 +* Device ID: 0x 724031556159 = 724031556159
308 +* Version: 0x0064=100=1.0.0
413 413  
414 -924.5 - SF7BW500 to SF12BW500
310 +* BAT: 0x0c78 = 3192 mV = 3.192V
311 +* Singal: 0x17 = 23
312 +* Soil Moisture: 0x075e= 1886 = 18.86  %
313 +* Soil Temperature:0x0a8c =2700=27 °C
314 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
315 +* Interrupt: 0x00 = 0
415 415  
416 -925.1 - SF7BW500 to SF12BW500
417 417  
418 -925.7 - SF7BW500 to SF12BW500
318 +== 2. Payload Explanation and Sensor Interface ==
419 419  
420 -926.3 - SF7BW500 to SF12BW500
421 421  
422 -926.9 - SF7BW500 to SF12BW500
321 +=== 2.4.1  Device ID ===
423 423  
424 -927.5 - SF7BW500 to SF12BW500
323 +By default, the Device ID equal to the last 6 bytes of IMEI.
425 425  
426 -923.3 - SF12BW500(RX2 downlink only)
325 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
427 427  
327 +**Example:**
428 428  
329 +AT+DEUI=A84041F15612
429 429  
430 -=== 2.7.3 CN470-510 (CN470) ===
331 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
431 431  
432 -Used in China, Default use CHE=1
433 433  
434 -(% style="color:#037691" %)**Uplink:**
435 435  
436 -486.3 - SF7BW125 to SF12BW125
335 +=== 2.4.2  Version Info ===
437 437  
438 -486.5 - SF7BW125 to SF12BW125
337 +Specify the software version: 0x64=100, means firmware version 1.00.
439 439  
440 -486.7 - SF7BW125 to SF12BW125
339 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
441 441  
442 -486.9 - SF7BW125 to SF12BW125
443 443  
444 -487.1 - SF7BW125 to SF12BW125
445 445  
446 -487.3 - SF7BW125 to SF12BW125
343 +=== 2.4.3  Battery Info ===
447 447  
448 -487.5 - SF7BW125 to SF12BW125
345 +(((
346 +Check the battery voltage for LSE01.
347 +)))
449 449  
450 -487.7 - SF7BW125 to SF12BW125
349 +(((
350 +Ex1: 0x0B45 = 2885mV
351 +)))
451 451  
353 +(((
354 +Ex2: 0x0B49 = 2889mV
355 +)))
452 452  
453 -(% style="color:#037691" %)**Downlink:**
454 454  
455 -506.7 - SF7BW125 to SF12BW125
456 456  
457 -506.9 - SF7BW125 to SF12BW125
359 +=== 2.4.4  Signal Strength ===
458 458  
459 -507.1 - SF7BW125 to SF12BW125
361 +NB-IoT Network signal Strength.
460 460  
461 -507.3 - SF7BW125 to SF12BW125
363 +**Ex1: 0x1d = 29**
462 462  
463 -507.5 - SF7BW125 to SF12BW125
365 +(% style="color:blue" %)**0**(%%)  -113dBm or less
464 464  
465 -507.7 - SF7BW125 to SF12BW125
367 +(% style="color:blue" %)**1**(%%)  -111dBm
466 466  
467 -507.9 - SF7BW125 to SF12BW125
369 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
468 468  
469 -508.1 - SF7BW125 to SF12BW125
371 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
470 470  
471 -505.3 - SF12BW125 (RX2 downlink only)
373 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
472 472  
473 473  
474 474  
475 -=== 2.7.4 AU915-928(AU915) ===
377 +=== 2.4.5  Soil Moisture ===
476 476  
477 -Default use CHE=2
379 +(((
380 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
381 +)))
478 478  
479 -(% style="color:#037691" %)**Uplink:**
383 +(((
384 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
385 +)))
480 480  
481 -916.8 - SF7BW125 to SF12BW125
387 +(((
388 +
389 +)))
482 482  
483 -917.0 - SF7BW125 to SF12BW125
391 +(((
392 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
393 +)))
484 484  
485 -917.2 - SF7BW125 to SF12BW125
486 486  
487 -917.4 - SF7BW125 to SF12BW125
488 488  
489 -917.6 - SF7BW125 to SF12BW125
397 +=== 2.4.6  Soil Temperature ===
490 490  
491 -917.8 - SF7BW125 to SF12BW125
399 +(((
400 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
401 +)))
492 492  
493 -918.0 - SF7BW125 to SF12BW125
403 +(((
404 +**Example**:
405 +)))
494 494  
495 -918.2 - SF7BW125 to SF12BW125
407 +(((
408 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
409 +)))
496 496  
411 +(((
412 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
413 +)))
497 497  
498 -(% style="color:#037691" %)**Downlink:**
499 499  
500 -923.3 - SF7BW500 to SF12BW500
501 501  
502 -923.9 - SF7BW500 to SF12BW500
417 +=== 2.4.7  Soil Conductivity (EC) ===
503 503  
504 -924.5 - SF7BW500 to SF12BW500
419 +(((
420 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
421 +)))
505 505  
506 -925.1 - SF7BW500 to SF12BW500
423 +(((
424 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
425 +)))
507 507  
508 -925.7 - SF7BW500 to SF12BW500
427 +(((
428 +Generally, the EC value of irrigation water is less than 800uS / cm.
429 +)))
509 509  
510 -926.3 - SF7BW500 to SF12BW500
431 +(((
432 +
433 +)))
511 511  
512 -926.9 - SF7BW500 to SF12BW500
435 +(((
436 +
437 +)))
513 513  
514 -927.5 - SF7BW500 to SF12BW500
439 +=== 2.4.8  Digital Interrupt ===
515 515  
516 -923.3 - SF12BW500(RX2 downlink only)
441 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
517 517  
443 +The command is:
518 518  
445 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
519 519  
520 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
521 521  
522 -(% style="color:#037691" %)**Default Uplink channel:**
448 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
523 523  
524 -923.2 - SF7BW125 to SF10BW125
525 525  
526 -923.4 - SF7BW125 to SF10BW125
451 +Example:
527 527  
453 +0x(00): Normal uplink packet.
528 528  
529 -(% style="color:#037691" %)**Additional Uplink Channel**:
455 +0x(01): Interrupt Uplink Packet.
530 530  
531 -(OTAA mode, channel added by JoinAccept message)
532 532  
533 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
534 534  
535 -922.2 - SF7BW125 to SF10BW125
459 +=== 2.4.9  ​+5V Output ===
536 536  
537 -922.4 - SF7BW125 to SF10BW125
461 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
538 538  
539 -922.6 - SF7BW125 to SF10BW125
540 540  
541 -922.8 - SF7BW125 to SF10BW125
464 +The 5V output time can be controlled by AT Command.
542 542  
543 -923.0 - SF7BW125 to SF10BW125
466 +(% style="color:blue" %)**AT+5VT=1000**
544 544  
545 -922.0 - SF7BW125 to SF10BW125
468 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
546 546  
547 547  
548 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
549 549  
550 -923.6 - SF7BW125 to SF10BW125
472 +== 2.5  Downlink Payload ==
551 551  
552 -923.8 - SF7BW125 to SF10BW125
474 +By default, NSE01 prints the downlink payload to console port.
553 553  
554 -924.0 - SF7BW125 to SF10BW125
476 +[[image:image-20220708133731-5.png]]
555 555  
556 -924.2 - SF7BW125 to SF10BW125
557 557  
558 -924.4 - SF7BW125 to SF10BW125
479 +(((
480 +(% style="color:blue" %)**Examples:**
481 +)))
559 559  
560 -924.6 - SF7BW125 to SF10BW125
483 +(((
484 +
485 +)))
561 561  
487 +* (((
488 +(% style="color:blue" %)**Set TDC**
489 +)))
562 562  
563 -(% style="color:#037691" %)** Downlink:**
491 +(((
492 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
493 +)))
564 564  
565 -Uplink channels 1-8 (RX1)
495 +(((
496 +Payload:    01 00 00 1E    TDC=30S
497 +)))
566 566  
567 -923.2 - SF10BW125 (RX2)
499 +(((
500 +Payload:    01 00 00 3C    TDC=60S
501 +)))
568 568  
503 +(((
504 +
505 +)))
569 569  
507 +* (((
508 +(% style="color:blue" %)**Reset**
509 +)))
570 570  
571 -=== 2.7.6 KR920-923 (KR920) ===
511 +(((
512 +If payload = 0x04FF, it will reset the NSE01
513 +)))
572 572  
573 -Default channel:
574 574  
575 -922.1 - SF7BW125 to SF12BW125
516 +* (% style="color:blue" %)**INTMOD**
576 576  
577 -922.3 - SF7BW125 to SF12BW125
518 +Downlink Payload: 06000003, Set AT+INTMOD=3
578 578  
579 -922.5 - SF7BW125 to SF12BW125
580 580  
581 581  
582 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
522 +== 2.6  ​LED Indicator ==
583 583  
584 -922.1 - SF7BW125 to SF12BW125
524 +(((
525 +The NSE01 has an internal LED which is to show the status of different state.
585 585  
586 -922.3 - SF7BW125 to SF12BW125
587 587  
588 -922.5 - SF7BW125 to SF12BW125
528 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
529 +* Then the LED will be on for 1 second means device is boot normally.
530 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
531 +* For each uplink probe, LED will be on for 500ms.
532 +)))
589 589  
590 -922.7 - SF7BW125 to SF12BW125
591 591  
592 -922.9 - SF7BW125 to SF12BW125
593 593  
594 -923.1 - SF7BW125 to SF12BW125
595 595  
596 -923.3 - SF7BW125 to SF12BW125
537 +== 2.7  Installation in Soil ==
597 597  
539 +__**Measurement the soil surface**__
598 598  
599 -(% style="color:#037691" %)**Downlink:**
541 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
600 600  
601 -Uplink channels 1-7(RX1)
543 +[[image:1657259653666-883.png]] ​
602 602  
603 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
604 604  
546 +(((
547 +
605 605  
549 +(((
550 +Dig a hole with diameter > 20CM.
551 +)))
606 606  
607 -=== 2.7.7 IN865-867 (IN865) ===
553 +(((
554 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
555 +)))
556 +)))
608 608  
609 -(% style="color:#037691" %)** Uplink:**
558 +[[image:1654506665940-119.png]]
610 610  
611 -865.0625 - SF7BW125 to SF12BW125
560 +(((
561 +
562 +)))
612 612  
613 -865.4025 - SF7BW125 to SF12BW125
614 614  
615 -865.9850 - SF7BW125 to SF12BW125
565 +== 2.8  Firmware Change Log ==
616 616  
617 617  
618 -(% style="color:#037691" %) **Downlink:**
568 +Download URL & Firmware Change log
619 619  
620 -Uplink channels 1-3 (RX1)
570 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
621 621  
622 -866.550 - SF10BW125 (RX2)
623 623  
573 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
624 624  
625 625  
626 626  
627 -== 2.8 LED Indicator ==
577 +== 2. ​Battery Analysis ==
628 628  
629 -The LSE01 has an internal LED which is to show the status of different state.
579 +=== 2.9.1  ​Battery Type ===
630 630  
631 -* Blink once when device power on.
632 -* Solid ON for 5 seconds once device successful Join the network.
633 -* Blink once when device transmit a packet.
634 634  
582 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
635 635  
636 636  
637 -== 2.9 Installation in Soil ==
585 +The battery is designed to last for several years depends on the actually use environment and update interval
638 638  
639 -**Measurement the soil surface**
640 640  
588 +The battery related documents as below:
641 641  
642 -[[image:1654506634463-199.png]] ​
590 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
591 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
592 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
643 643  
644 644  (((
645 -(((
646 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
595 +[[image:image-20220708140453-6.png]]
647 647  )))
648 -)))
649 649  
650 650  
651 -[[image:1654506665940-119.png]]
652 652  
653 -(((
654 -Dig a hole with diameter > 20CM.
655 -)))
600 +=== 2.9.2  Power consumption Analyze ===
656 656  
657 657  (((
658 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
603 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
659 659  )))
660 660  
661 661  
662 -== 2.10 ​Firmware Change Log ==
663 -
664 664  (((
665 -**Firmware download link:**
608 +Instruction to use as below:
666 666  )))
667 667  
668 668  (((
669 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
612 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
670 670  )))
671 671  
672 -(((
673 -
674 -)))
675 675  
676 676  (((
677 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
617 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
678 678  )))
679 679  
680 -(((
681 -
620 +* (((
621 +Product Model
682 682  )))
683 -
684 -(((
685 -**V1.0.**
623 +* (((
624 +Uplink Interval
686 686  )))
626 +* (((
627 +Working Mode
628 +)))
687 687  
688 688  (((
689 -Release
631 +And the Life expectation in difference case will be shown on the right.
690 690  )))
691 691  
634 +[[image:image-20220708141352-7.jpeg]]
692 692  
693 -== 2.11 ​Battery Analysis ==
694 694  
695 -=== 2.11.1 ​Battery Type ===
696 696  
697 -(((
698 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
699 -)))
638 +=== 2.9.3  ​Battery Note ===
700 700  
701 701  (((
702 -The battery is designed to last for more than 5 years for the LSN50.
641 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
703 703  )))
704 704  
705 -(((
706 -(((
707 -The battery-related documents are as below:
708 -)))
709 -)))
710 710  
711 -* (((
712 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
713 -)))
714 -* (((
715 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
716 -)))
717 -* (((
718 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
719 -)))
720 720  
721 - [[image:image-20220606171726-9.png]]
646 +=== 2.9.4  Replace the battery ===
722 722  
723 -
724 -
725 -=== 2.11.2 ​Battery Note ===
726 -
727 727  (((
728 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
649 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
729 729  )))
730 730  
731 731  
732 732  
733 -=== 2.11.3 Replace the battery ===
654 += 3. ​ Access NB-IoT Module =
734 734  
735 735  (((
736 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
657 +Users can directly access the AT command set of the NB-IoT module.
737 737  )))
738 738  
739 739  (((
740 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
661 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
741 741  )))
742 742  
743 -(((
744 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
745 -)))
664 +[[image:1657261278785-153.png]]
746 746  
747 747  
748 748  
749 -= 3. Using the AT Commands =
668 += 4.  Using the AT Commands =
750 750  
751 -== 3.1 Access AT Commands ==
670 +== 4.1  Access AT Commands ==
752 752  
672 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
753 753  
754 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
755 755  
756 -[[image:1654501986557-872.png]]
675 +AT+<CMD>?  : Help on <CMD>
757 757  
677 +AT+<CMD>         : Run <CMD>
758 758  
759 -Or if you have below board, use below connection:
679 +AT+<CMD>=<value> : Set the value
760 760  
681 +AT+<CMD>=?  : Get the value
761 761  
762 -[[image:1654502005655-729.png]]
763 763  
764 -
765 -
766 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
767 -
768 -
769 - [[image:1654502050864-459.png]]
770 -
771 -
772 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
773 -
774 -
775 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
776 -
777 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
778 -
779 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
780 -
781 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
782 -
783 -
784 784  (% style="color:#037691" %)**General Commands**(%%)      
785 785  
786 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
686 +AT  : Attention       
787 787  
788 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
688 +AT?  : Short Help     
789 789  
790 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
690 +ATZ  : MCU Reset    
791 791  
792 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
692 +AT+TDC  : Application Data Transmission Interval
793 793  
694 +AT+CFG  : Print all configurations
794 794  
795 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
696 +AT+CFGMOD           : Working mode selection
796 796  
797 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
698 +AT+INTMOD            : Set the trigger interrupt mode
798 798  
799 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
700 +AT+5VT  : Set extend the time of 5V power  
800 800  
801 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
702 +AT+PRO  : Choose agreement
802 802  
803 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
704 +AT+WEIGRE  : Get weight or set weight to 0
804 804  
805 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
706 +AT+WEIGAP  : Get or Set the GapValue of weight
806 806  
807 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
708 +AT+RXDL  : Extend the sending and receiving time
808 808  
809 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
710 +AT+CNTFAC  : Get or set counting parameters
810 810  
811 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
712 +AT+SERVADDR  : Server Address
812 812  
813 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
814 814  
815 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
715 +(% style="color:#037691" %)**COAP Management**      
816 816  
817 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
717 +AT+URI            : Resource parameters
818 818  
819 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
820 820  
821 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
720 +(% style="color:#037691" %)**UDP Management**
822 822  
823 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
722 +AT+CFM          : Upload confirmation mode (only valid for UDP)
824 824  
825 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
826 826  
827 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
725 +(% style="color:#037691" %)**MQTT Management**
828 828  
727 +AT+CLIENT               : Get or Set MQTT client
829 829  
830 -(% style="color:#037691" %)**LoRa Network Management**
729 +AT+UNAME  : Get or Set MQTT Username
831 831  
832 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
731 +AT+PWD                  : Get or Set MQTT password
833 833  
834 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
733 +AT+PUBTOPI : Get or Set MQTT publish topic
835 835  
836 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
735 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
837 837  
838 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
839 839  
840 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
738 +(% style="color:#037691" %)**Information**          
841 841  
842 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
740 +AT+FDR  : Factory Data Reset
843 843  
844 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
742 +AT+PWOR : Serial Access Password
845 845  
846 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
847 847  
848 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
849 849  
850 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
746 += ​5.  FAQ =
851 851  
852 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
748 +== 5.1 How to Upgrade Firmware ==
853 853  
854 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
855 855  
856 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
751 +(((
752 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
753 +)))
857 857  
858 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
859 -
860 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
861 -
862 -
863 -(% style="color:#037691" %)**Information** 
864 -
865 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
866 -
867 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
868 -
869 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
870 -
871 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
872 -
873 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
874 -
875 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
876 -
877 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
878 -
879 -
880 -= ​4. FAQ =
881 -
882 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
883 -
884 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10FirmwareChangeLog"]].
885 -When downloading the images, choose the required image file for download. ​
886 -
887 -
888 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
889 -
890 -
891 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
892 -
893 -
894 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
895 -
896 -[[image:image-20220606154726-3.png]]
897 -
898 -When you use the TTN network, the US915 frequency bands use are:
899 -
900 -* 903.9 - SF7BW125 to SF10BW125
901 -* 904.1 - SF7BW125 to SF10BW125
902 -* 904.3 - SF7BW125 to SF10BW125
903 -* 904.5 - SF7BW125 to SF10BW125
904 -* 904.7 - SF7BW125 to SF10BW125
905 -* 904.9 - SF7BW125 to SF10BW125
906 -* 905.1 - SF7BW125 to SF10BW125
907 -* 905.3 - SF7BW125 to SF10BW125
908 -* 904.6 - SF8BW500
909 -
910 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
911 -
912 -(% class="box infomessage" %)
913 913  (((
914 -**AT+CHE=2**
756 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
915 915  )))
916 916  
917 -(% class="box infomessage" %)
918 918  (((
919 -**ATZ**
760 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
920 920  )))
921 921  
922 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
923 923  
924 924  
925 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
765 += 6.  Trouble Shooting =
926 926  
927 -[[image:image-20220606154825-4.png]]
767 +== 6.1  ​Connection problem when uploading firmware ==
928 928  
929 929  
770 +(% class="wikigeneratedid" %)
771 +(((
772 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
773 +)))
930 930  
931 -= 5. Trouble Shooting =
932 932  
933 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
934 934  
935 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
777 +== 6. AT Command input doesn't work ==
936 936  
779 +(((
780 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
781 +)))
937 937  
938 -== 5.2 AT Command input doesn’t work ==
939 939  
940 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
941 941  
785 += 7. ​ Order Info =
942 942  
943 -== 5.3 Device rejoin in at the second uplink packet ==
944 944  
945 -(% style="color:#4f81bd" %)**Issue describe as below:**
788 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
946 946  
947 -[[image:1654500909990-784.png]]
948 948  
949 -
950 -(% style="color:#4f81bd" %)**Cause for this issue:**
951 -
952 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
953 -
954 -
955 -(% style="color:#4f81bd" %)**Solution: **
956 -
957 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
958 -
959 -[[image:1654500929571-736.png]]
960 -
961 -
962 -= 6. ​Order Info =
963 -
964 -
965 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
966 -
967 -
968 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
969 -
970 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
971 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
972 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
973 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
974 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
975 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
976 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
977 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
978 -
979 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
980 -
981 -* (% style="color:red" %)**4**(%%): 4000mAh battery
982 -* (% style="color:red" %)**8**(%%): 8500mAh battery
983 -
984 984  (% class="wikigeneratedid" %)
985 985  (((
986 986  
987 987  )))
988 988  
989 -= 7. Packing Info =
796 += 8.  Packing Info =
990 990  
991 991  (((
992 -**Package Includes**:
993 -)))
799 +
994 994  
995 -* (((
996 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
801 +(% style="color:#037691" %)**Package Includes**:
802 +
803 +
804 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
805 +* External antenna x 1
997 997  )))
998 998  
999 999  (((
1000 1000  
1001 -)))
1002 1002  
1003 -(((
1004 -**Dimension and weight**:
1005 -)))
811 +(% style="color:#037691" %)**Dimension and weight**:
1006 1006  
1007 -* (((
1008 -Device Size: cm
813 +
814 +* Size: 195 x 125 x 55 mm
815 +* Weight:   420g
1009 1009  )))
1010 -* (((
1011 -Device Weight: g
1012 -)))
1013 -* (((
1014 -Package Size / pcs : cm
1015 -)))
1016 -* (((
1017 -Weight / pcs : g
1018 1018  
818 +(((
819 +
1019 1019  
821 +
1020 1020  
1021 1021  )))
1022 1022  
1023 -= 8. Support =
825 += 9.  Support =
1024 1024  
1025 1025  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1026 1026  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1027 -
1028 -
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content