Last modified by Mengting Qiu on 2024/04/02 16:44

From version 31.22
edited by Xiaoling
on 2022/06/07 10:08
Change comment: There is no comment for this version
To version 45.4
edited by Xiaoling
on 2022/07/08 10:36
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,9 +3,7 @@
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
... ... @@ -12,62 +12,85 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 +**Table of Contents:**
18 18  
19 -(((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
22 22  
23 -(((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 -)))
26 26  
27 -(((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 -)))
34 34  
20 +
21 += 1.  Introduction =
22 +
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 +
35 35  (((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 -)))
26 +
38 38  
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
39 39  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
36 +
37 +)))
38 +
40 40  [[image:1654503236291-817.png]]
41 41  
42 42  
43 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
44 44  
45 45  
46 46  
47 47  == 1.2 ​Features ==
48 48  
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
51 51  * Monitor Soil Moisture
52 52  * Monitor Soil Temperature
53 53  * Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 55  * AT Commands to change parameters
56 56  * Uplink on periodically
57 57  * Downlink to change configure
58 58  * IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
60 60  
61 61  
62 -== 1.3 Specification ==
63 63  
64 +== 1.3  Specification ==
65 +
66 +
67 +(% style="color:#037691" %)**Common DC Characteristics:**
68 +
69 +* Supply Voltage: 2.1v ~~ 3.6v
70 +* Operating Temperature: -40 ~~ 85°C
71 +
72 +
73 +(% style="color:#037691" %)**NB-IoT Spec:**
74 +
75 +* - B1 @H-FDD: 2100MHz
76 +* - B3 @H-FDD: 1800MHz
77 +* - B8 @H-FDD: 900MHz
78 +* - B5 @H-FDD: 850MHz
79 +* - B20 @H-FDD: 800MHz
80 +* - B28 @H-FDD: 700MHz
81 +
82 +
83 +(% style="color:#037691" %)**Probe Specification:**
84 +
64 64  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
65 65  
66 -[[image:image-20220606162220-5.png]]
87 +[[image:image-20220708101224-1.png]]
67 67  
68 68  
69 69  
70 -== ​1.4 Applications ==
91 +== ​1.4  Applications ==
71 71  
72 72  * Smart Agriculture
73 73  
... ... @@ -74,157 +74,314 @@
74 74  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
75 75  ​
76 76  
77 -== 1.5 Firmware Change log ==
98 +== 1.5  Pin Definitions ==
78 78  
79 79  
80 -**LSE01 v1.0 :**  Release
101 +[[image:1657246476176-652.png]]
81 81  
82 82  
83 83  
84 -= 2. Configure LSE01 to connect to LoRaWAN network =
105 += 2.  Use NSE01 to communicate with IoT Server =
85 85  
86 -== 2.1 How it works ==
107 +== 2.1  How it works ==
87 87  
109 +
88 88  (((
89 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
111 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
90 90  )))
91 91  
114 +
92 92  (((
93 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
116 +The diagram below shows the working flow in default firmware of NSE01:
94 94  )))
95 95  
119 +[[image:image-20220708101605-2.png]]
96 96  
121 +(((
122 +
123 +)))
97 97  
98 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
99 99  
100 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
101 101  
127 +== 2.2 ​ Configure the NSE01 ==
102 102  
103 -[[image:1654503992078-669.png]]
129 +=== 2.2.1 Test Requirement ===
104 104  
105 105  
106 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
132 +To use NSE01 in your city, make sure meet below requirements:
107 107  
134 +* Your local operator has already distributed a NB-IoT Network there.
135 +* The local NB-IoT network used the band that NSE01 supports.
136 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
108 108  
109 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
110 110  
111 -Each LSE01 is shipped with a sticker with the default device EUI as below:
139 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
112 112  
113 -[[image:image-20220606163732-6.jpeg]]
114 114  
115 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
142 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.gif]]
116 116  
117 -**Add APP EUI in the application**
118 118  
119 119  
120 -[[image:1654504596150-405.png]]
146 +1.
147 +11.
148 +111. Insert SIM card
121 121  
150 +Insert the NB-IoT Card get from your provider.
122 122  
123 123  
124 -**Add APP KEY and DEV EUI**
153 +User need to take out the NB-IoT module and insert the SIM card like below:
125 125  
126 -[[image:1654504683289-357.png]]
127 127  
156 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.gif]]
128 128  
129 129  
130 -**Step 2**: Power on LSE01
159 +1.
160 +11.
161 +111. Connect USB – TTL to NSE01 to configure it
131 131  
132 132  
133 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
164 +User need to configure NSE01 via serial port to set the **Server Address** / **Uplink Topic** to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
134 134  
135 -[[image:image-20220606163915-7.png]]
136 136  
137 137  
138 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
139 139  
140 -[[image:1654504778294-788.png]]
169 +Connection:
141 141  
171 +USB TTL GND <~-~-~-~-> GND
142 142  
173 +USB TTL TXD <~-~-~-~-> UART_RXD
143 143  
175 +USB TTL RXD <~-~-~-~-> UART_TXD
176 +
177 +
178 +
179 +In the PC, use below serial tool settings:
180 +
181 +* Baud: **9600**
182 +* Data bits:** 8**
183 +* Stop bits: **1**
184 +* Parity: **None**
185 +* Flow Control: **None**
186 +
187 +
188 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the **password: 12345678** to access AT Command input.
189 +
190 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.jpg]]
191 +
192 +Note: the valid AT Commands can be found at:
193 +
194 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
195 +
196 +
197 +1.
198 +11.
199 +111. Use CoAP protocol to uplink data 
200 +
201 +
202 +Note: if you don’t have CoAP server, you can refer this link to set up one:
203 +
204 +[[http:~~/~~/wiki.dragino.com/index.php?title=Set_up_CoAP_Server>>url:http://wiki.dragino.com/index.php?title=Set_up_CoAP_Server]]
205 +
206 +
207 +Use below commands:
208 +
209 +* **AT+PRO=1**    ~/~/ Set to use CoAP protocol to uplink
210 +* **AT+SERVADDR=120.24.4.116,5683   **~/~/ to set CoAP server address and port
211 +* **AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0"       **~/~/Set COAP resource path
212 +
213 +
214 +For parameter description, please refer to AT command set
215 +
216 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.jpg]]
217 +
218 +
219 +After configure the server address and **reset the device** (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
220 +
221 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.jpg]]
222 +
223 +1.
224 +11.
225 +111. Use UDP protocol to uplink data(Default protocol)
226 +
227 +
228 +This feature is supported since firmware version v1.0.1
229 +
230 +
231 +* **AT+PRO=2   ** ~/~/ Set to use UDP protocol to uplink
232 +* **AT+SERVADDR=120.24.4.116,5601   **~/~/ to set UDP server address and port
233 +* **AT+CFM=1       **~/~/If the server does not respond, this command is unnecessary
234 +
235 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.jpg]]
236 +
237 +
238 +
239 +
240 +
241 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.jpg]]
242 +
243 +
244 +1.
245 +11.
246 +111. Use MQTT protocol to uplink data
247 +
248 +
249 +This feature is supported since firmware version v110
250 +
251 +
252 +* **AT+PRO=3   ** ~/~/Set to use MQTT protocol to uplink
253 +* **AT+SERVADDR=120.24.4.116,1883   **~/~/Set MQTT server address and port
254 +* **AT+CLIENT=CLIENT **~/~/Set up the CLIENT of MQTT
255 +* **AT+UNAME=UNAME                           **~/~/Set the username of MQTT
256 +* **AT+PWD=PWD                                      **~/~/Set the password of MQTT
257 +* **AT+PUBTOPIC=NSE01_PUB   **~/~/Set the sending topic of MQTT
258 +* **AT+SUBTOPIC=NSE01_SUB    **~/~/Set the subscription topic of MQTT
259 +
260 +
261 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.gif]]
262 +
263 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.jpg]]
264 +
265 +
266 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
267 +
268 +
269 +1.
270 +11.
271 +111. Use TCP protocol to uplink data
272 +
273 +
274 +This feature is supported since firmware version v110
275 +
276 +
277 +* **AT+PRO=4   ** ~/~/ Set to use TCP protocol to uplink
278 +* **AT+SERVADDR=120.24.4.116,5600   **~/~/ to set TCP server address and port
279 +
280 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.jpg]]
281 +
282 +
283 +
284 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
285 +
286 +
287 +1.
288 +11.
289 +111. Change Update Interval
290 +
291 +User can use below command to change the **uplink interval**.
292 +
293 +**~ AT+TDC=600      **~/~/ Set Update Interval to 600s
294 +
295 +
296 +**NOTE:**
297 +
298 +1. By default, the device will send an uplink message every 1 hour.
299 +
300 +
301 +
302 +
303 +
304 +
305 +
144 144  == 2.3 Uplink Payload ==
145 145  
308 +
146 146  === 2.3.1 MOD~=0(Default Mode) ===
147 147  
148 148  LSE01 will uplink payload via LoRaWAN with below payload format: 
149 149  
150 -
313 +(((
151 151  Uplink payload includes in total 11 bytes.
152 -
315 +)))
153 153  
154 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
155 -|=(((
317 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
318 +|(((
156 156  **Size**
157 157  
158 158  **(bytes)**
159 -)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1**
160 -|**Value**|(% style="width:46px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:160px" %)(((
322 +)))|**2**|**2**|**2**|**2**|**2**|**1**
323 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
161 161  Temperature
162 162  
163 163  (Reserve, Ignore now)
164 -)))|(% style="width:104px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:126px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:114px" %)(((
327 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
165 165  MOD & Digital Interrupt
166 166  
167 167  (Optional)
168 168  )))
169 169  
170 -[[image:1654504881641-514.png]]
171 -
172 -
173 -
174 174  === 2.3.2 MOD~=1(Original value) ===
175 175  
176 176  This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
177 177  
178 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
179 -|=(((
337 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
338 +|(((
180 180  **Size**
181 181  
182 182  **(bytes)**
183 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1**
342 +)))|**2**|**2**|**2**|**2**|**2**|**1**
184 184  |**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
185 185  Temperature
186 186  
187 187  (Reserve, Ignore now)
188 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
347 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
189 189  MOD & Digital Interrupt
190 190  
191 191  (Optional)
192 192  )))
193 193  
194 -[[image:1654504907647-967.png]]
195 -
196 -
197 -
198 198  === 2.3.3 Battery Info ===
199 199  
355 +(((
200 200  Check the battery voltage for LSE01.
357 +)))
201 201  
359 +(((
202 202  Ex1: 0x0B45 = 2885mV
361 +)))
203 203  
363 +(((
204 204  Ex2: 0x0B49 = 2889mV
365 +)))
205 205  
206 206  
207 207  
208 208  === 2.3.4 Soil Moisture ===
209 209  
371 +(((
210 210  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
373 +)))
211 211  
375 +(((
212 212  For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
377 +)))
213 213  
379 +(((
380 +
381 +)))
214 214  
383 +(((
215 215  (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
385 +)))
216 216  
217 217  
218 218  
219 219  === 2.3.5 Soil Temperature ===
220 220  
391 +(((
221 221   Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
393 +)))
222 222  
395 +(((
223 223  **Example**:
397 +)))
224 224  
399 +(((
225 225  If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
401 +)))
226 226  
403 +(((
227 227  If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
405 +)))
228 228  
229 229  
230 230  
... ... @@ -259,7 +259,7 @@
259 259  mod=(bytes[10]>>7)&0x01=1.
260 260  
261 261  
262 -Downlink Command:
440 +**Downlink Command:**
263 263  
264 264  If payload = 0x0A00, workmode=0
265 265  
... ... @@ -274,19 +274,21 @@
274 274  
275 275  [[image:1654505570700-128.png]]
276 276  
455 +(((
277 277  The payload decoder function for TTN is here:
457 +)))
278 278  
279 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
459 +(((
460 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
461 +)))
280 280  
281 281  
282 282  == 2.4 Uplink Interval ==
283 283  
284 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
466 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
285 285  
286 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
287 287  
288 288  
289 -
290 290  == 2.5 Downlink Payload ==
291 291  
292 292  By default, LSE50 prints the downlink payload to console port.
... ... @@ -294,24 +294,44 @@
294 294  [[image:image-20220606165544-8.png]]
295 295  
296 296  
297 -**Examples:**
477 +(((
478 +(% style="color:blue" %)**Examples:**
479 +)))
298 298  
481 +(((
482 +
483 +)))
299 299  
300 -* **Set TDC**
485 +* (((
486 +(% style="color:blue" %)**Set TDC**
487 +)))
301 301  
489 +(((
302 302  If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
491 +)))
303 303  
493 +(((
304 304  Payload:    01 00 00 1E    TDC=30S
495 +)))
305 305  
497 +(((
306 306  Payload:    01 00 00 3C    TDC=60S
499 +)))
307 307  
501 +(((
502 +
503 +)))
308 308  
309 -* **Reset**
505 +* (((
506 +(% style="color:blue" %)**Reset**
507 +)))
310 310  
509 +(((
311 311  If payload = 0x04FF, it will reset the LSE01
511 +)))
312 312  
313 313  
314 -* **CFM**
514 +* (% style="color:blue" %)**CFM**
315 315  
316 316  Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
317 317  
... ... @@ -319,12 +319,21 @@
319 319  
320 320  == 2.6 ​Show Data in DataCake IoT Server ==
321 321  
522 +(((
322 322  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
524 +)))
323 323  
526 +(((
527 +
528 +)))
324 324  
325 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
530 +(((
531 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
532 +)))
326 326  
327 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
534 +(((
535 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
536 +)))
328 328  
329 329  
330 330  [[image:1654505857935-743.png]]
... ... @@ -332,11 +332,12 @@
332 332  
333 333  [[image:1654505874829-548.png]]
334 334  
335 -Step 3: Create an account or log in Datacake.
336 336  
337 -Step 4: Search the LSE01 and add DevEUI.
545 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
338 338  
547 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
339 339  
549 +
340 340  [[image:1654505905236-553.png]]
341 341  
342 342  
... ... @@ -646,6 +646,7 @@
646 646  )))
647 647  
648 648  
859 +
649 649  [[image:1654506665940-119.png]]
650 650  
651 651  (((
... ... @@ -707,16 +707,16 @@
707 707  )))
708 708  
709 709  * (((
710 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
921 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
711 711  )))
712 712  * (((
713 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
924 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
714 714  )))
715 715  * (((
716 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
927 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
717 717  )))
718 718  
719 - [[image:image-20220606171726-9.png]]
930 + [[image:image-20220610172436-1.png]]
720 720  
721 721  
722 722  
... ... @@ -751,13 +751,13 @@
751 751  
752 752  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
753 753  
754 -[[image:1654501986557-872.png]]
965 +[[image:1654501986557-872.png||height="391" width="800"]]
755 755  
756 756  
757 757  Or if you have below board, use below connection:
758 758  
759 759  
760 -[[image:1654502005655-729.png]]
971 +[[image:1654502005655-729.png||height="503" width="801"]]
761 761  
762 762  
763 763  
... ... @@ -764,10 +764,10 @@
764 764  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
765 765  
766 766  
767 - [[image:1654502050864-459.png]]
978 + [[image:1654502050864-459.png||height="564" width="806"]]
768 768  
769 769  
770 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
981 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
771 771  
772 772  
773 773  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -879,20 +879,38 @@
879 879  
880 880  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
881 881  
882 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10FirmwareChangeLog"]].
1093 +(((
1094 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
883 883  When downloading the images, choose the required image file for download. ​
1096 +)))
884 884  
1098 +(((
1099 +
1100 +)))
885 885  
1102 +(((
886 886  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
1104 +)))
887 887  
1106 +(((
1107 +
1108 +)))
888 888  
1110 +(((
889 889  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1112 +)))
890 890  
1114 +(((
1115 +
1116 +)))
891 891  
1118 +(((
892 892  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1120 +)))
893 893  
894 894  [[image:image-20220606154726-3.png]]
895 895  
1124 +
896 896  When you use the TTN network, the US915 frequency bands use are:
897 897  
898 898  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -905,37 +905,47 @@
905 905  * 905.3 - SF7BW125 to SF10BW125
906 906  * 904.6 - SF8BW500
907 907  
1137 +(((
908 908  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
909 909  
910 -(% class="box infomessage" %)
911 -(((
912 -**AT+CHE=2**
1140 +* (% style="color:#037691" %)**AT+CHE=2**
1141 +* (% style="color:#037691" %)**ATZ**
913 913  )))
914 914  
915 -(% class="box infomessage" %)
916 916  (((
917 -**ATZ**
918 -)))
1145 +
919 919  
920 920  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1148 +)))
921 921  
1150 +(((
1151 +
1152 +)))
922 922  
1154 +(((
923 923  The **AU915** band is similar. Below are the AU915 Uplink Channels.
1156 +)))
924 924  
925 925  [[image:image-20220606154825-4.png]]
926 926  
927 927  
1161 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
928 928  
1163 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1164 +
1165 +
929 929  = 5. Trouble Shooting =
930 930  
931 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
1168 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
932 932  
933 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1170 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
934 934  
935 935  
936 -== 5.2 AT Command input doesnt work ==
1173 +== 5.2 AT Command input doesn't work ==
937 937  
938 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1175 +(((
1176 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1177 +)))
939 939  
940 940  
941 941  == 5.3 Device rejoin in at the second uplink packet ==
... ... @@ -947,7 +947,9 @@
947 947  
948 948  (% style="color:#4f81bd" %)**Cause for this issue:**
949 949  
1189 +(((
950 950  The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1191 +)))
951 951  
952 952  
953 953  (% style="color:#4f81bd" %)**Solution: **
... ... @@ -954,7 +954,7 @@
954 954  
955 955  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
956 956  
957 -[[image:1654500929571-736.png]]
1198 +[[image:1654500929571-736.png||height="458" width="832"]]
958 958  
959 959  
960 960  = 6. ​Order Info =
... ... @@ -987,7 +987,9 @@
987 987  = 7. Packing Info =
988 988  
989 989  (((
990 -**Package Includes**:
1231 +
1232 +
1233 +(% style="color:#037691" %)**Package Includes**:
991 991  )))
992 992  
993 993  * (((
... ... @@ -996,10 +996,8 @@
996 996  
997 997  (((
998 998  
999 -)))
1000 1000  
1001 -(((
1002 -**Dimension and weight**:
1243 +(% style="color:#037691" %)**Dimension and weight**:
1003 1003  )))
1004 1004  
1005 1005  * (((
... ... @@ -1014,7 +1014,6 @@
1014 1014  * (((
1015 1015  Weight / pcs : g
1016 1016  
1017 -
1018 1018  
1019 1019  )))
1020 1020  
... ... @@ -1022,5 +1022,3 @@
1022 1022  
1023 1023  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1024 1024  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1025 -
1026 -
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content