Last modified by Mengting Qiu on 2024/04/02 16:44

From version 31.20
edited by Xiaoling
on 2022/06/07 10:05
Change comment: There is no comment for this version
To version 81.2
edited by Xiaoling
on 2022/07/09 09:27
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NDDS75 NB-IoT Distance Detect Sensor User Manual
Content
... ... @@ -1,246 +1,130 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
2 +[[image:image-20220709085040-1.png||height="542" width="524"]]
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
8 -{{toc/}}
9 9  
8 +**Table of Contents:**
10 10  
11 11  
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
18 18  
19 -(((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
16 += 1.  Introduction =
22 22  
23 -(((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 -)))
18 +== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
26 26  
27 27  (((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
21 +
30 30  
31 31  (((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
33 33  )))
34 34  
35 -(((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
32 +
37 37  )))
38 38  
39 -
40 40  [[image:1654503236291-817.png]]
41 41  
42 42  
43 -[[image:1654503265560-120.png]]
38 +[[image:1657327959271-447.png]]
44 44  
45 45  
46 46  
47 -== 1.2 ​Features ==
42 +== 1.2 ​ Features ==
48 48  
49 -* LoRaWAN 1.0.3 Class A
44 +
45 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
50 50  * Ultra low power consumption
51 -* Monitor Soil Moisture
52 -* Monitor Soil Temperature
53 -* Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
47 +* Distance Detection by Ultrasonic technology
48 +* Flat object range 280mm - 7500mm
49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
50 +* Cable Length: 25cm
55 55  * AT Commands to change parameters
56 56  * Uplink on periodically
57 57  * Downlink to change configure
58 58  * IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
55 +* Micro SIM card slot for NB-IoT SIM
56 +* 8500mAh Battery for long term use
60 60  
61 61  
62 62  
63 -== 1.3 Specification ==
60 +== 1.3  Specification ==
64 64  
65 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
66 66  
67 -[[image:image-20220606162220-5.png]]
63 +(% style="color:#037691" %)**Common DC Characteristics:**
68 68  
65 +* Supply Voltage: 2.1v ~~ 3.6v
66 +* Operating Temperature: -40 ~~ 85°C
69 69  
68 +(% style="color:#037691" %)**NB-IoT Spec:**
70 70  
71 -== ​1.4 Applications ==
70 +* - B1 @H-FDD: 2100MHz
71 +* - B3 @H-FDD: 1800MHz
72 +* - B8 @H-FDD: 900MHz
73 +* - B5 @H-FDD: 850MHz
74 +* - B20 @H-FDD: 800MHz
75 +* - B28 @H-FDD: 700MHz
72 72  
73 -* Smart Agriculture
74 74  
75 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
76 -​
78 +(% style="color:#037691" %)**Battery:**
77 77  
78 -== 1.5 Firmware Change log ==
80 +* Li/SOCI2 un-chargeable battery
81 +* Capacity: 8500mAh
82 +* Self Discharge: <1% / Year @ 25°C
83 +* Max continuously current: 130mA
84 +* Max boost current: 2A, 1 second
79 79  
80 80  
81 -**LSE01 v1.0 :**  Release
87 +(% style="color:#037691" %)**Power Consumption**
82 82  
89 +* STOP Mode: 10uA @ 3.3v
90 +* Max transmit power: 350mA@3.3v
83 83  
84 84  
85 -= 2. Configure LSE01 to connect to LoRaWAN network =
86 86  
87 -== 2.1 How it works ==
88 88  
89 -(((
90 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
91 -)))
95 +== ​1.4  Applications ==
92 92  
93 -(((
94 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
95 -)))
97 +* Smart Buildings & Home Automation
98 +* Logistics and Supply Chain Management
99 +* Smart Metering
100 +* Smart Agriculture
101 +* Smart Cities
102 +* Smart Factory
96 96  
104 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
105 +​
97 97  
98 98  
99 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
100 100  
101 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
109 +== 1.5  Pin Definitions ==
102 102  
103 103  
104 -[[image:1654503992078-669.png]]
112 +[[image:1657328609906-564.png]]
105 105  
106 106  
107 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
108 108  
109 109  
110 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
117 += 2.  Use NDDS75 to communicate with IoT Server =
111 111  
112 -Each LSE01 is shipped with a sticker with the default device EUI as below:
119 +== 2.1  How it works ==
113 113  
114 -[[image:image-20220606163732-6.jpeg]]
115 -
116 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
117 -
118 -**Add APP EUI in the application**
119 -
120 -
121 -[[image:1654504596150-405.png]]
122 -
123 -
124 -
125 -**Add APP KEY and DEV EUI**
126 -
127 -[[image:1654504683289-357.png]]
128 -
129 -
130 -
131 -**Step 2**: Power on LSE01
132 -
133 -
134 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
135 -
136 -[[image:image-20220606163915-7.png]]
137 -
138 -
139 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
140 -
141 -[[image:1654504778294-788.png]]
142 -
143 -
144 -
145 -== 2.3 Uplink Payload ==
146 -
147 -=== 2.3.1 MOD~=0(Default Mode) ===
148 -
149 -LSE01 will uplink payload via LoRaWAN with below payload format: 
150 -
151 -
152 -Uplink payload includes in total 11 bytes.
153 -
154 -
155 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
156 -|=(((
157 -**Size**
158 -
159 -**(bytes)**
160 -)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1**
161 -|**Value**|(% style="width:46px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:160px" %)(((
162 -Temperature
163 -
164 -(Reserve, Ignore now)
165 -)))|(% style="width:104px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:126px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:114px" %)(((
166 -MOD & Digital Interrupt
167 -
168 -(Optional)
169 -)))
170 -
171 -[[image:1654504881641-514.png]]
172 -
173 -
174 -
175 -=== 2.3.2 MOD~=1(Original value) ===
176 -
177 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
178 -
179 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
180 -|=(((
181 -**Size**
182 -
183 -**(bytes)**
184 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1**
185 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
186 -Temperature
187 -
188 -(Reserve, Ignore now)
189 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
190 -MOD & Digital Interrupt
191 -
192 -(Optional)
193 -)))
194 -
195 -[[image:1654504907647-967.png]]
196 -
197 -
198 -
199 -=== 2.3.3 Battery Info ===
200 -
201 -Check the battery voltage for LSE01.
202 -
203 -Ex1: 0x0B45 = 2885mV
204 -
205 -Ex2: 0x0B49 = 2889mV
206 -
207 -
208 -
209 -=== 2.3.4 Soil Moisture ===
210 -
211 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
212 -
213 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
214 -
215 -
216 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
217 -
218 -
219 -
220 -=== 2.3.5 Soil Temperature ===
221 -
222 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
223 -
224 -**Example**:
225 -
226 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
227 -
228 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
229 -
230 -
231 -
232 -=== 2.3.6 Soil Conductivity (EC) ===
233 -
234 234  (((
235 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
122 +The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
236 236  )))
237 237  
238 -(((
239 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
240 -)))
241 241  
242 242  (((
243 -Generally, the EC value of irrigation water is less than 800uS / cm.
127 +The diagram below shows the working flow in default firmware of NDDS75:
244 244  )))
245 245  
246 246  (((
... ... @@ -247,482 +247,601 @@
247 247  
248 248  )))
249 249  
134 +[[image:1657328659945-416.png]]
135 +
250 250  (((
251 251  
252 252  )))
253 253  
254 -=== 2.3.7 MOD ===
255 255  
256 -Firmware version at least v2.1 supports changing mode.
141 +== 2.2 Configure the NDDS75 ==
257 257  
258 -For example, bytes[10]=90
259 259  
260 -mod=(bytes[10]>>7)&0x01=1.
144 +=== 2.2.1 Test Requirement ===
261 261  
146 +(((
147 +To use NDDS75 in your city, make sure meet below requirements:
148 +)))
262 262  
263 -Downlink Command:
150 +* Your local operator has already distributed a NB-IoT Network there.
151 +* The local NB-IoT network used the band that NSE01 supports.
152 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
264 264  
265 -If payload = 0x0A00, workmode=0
154 +(((
155 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
156 +)))
266 266  
267 -If** **payload =** **0x0A01, workmode=1
268 268  
159 +[[image:1657328756309-230.png]]
269 269  
270 270  
271 -=== 2.3.8 ​Decode payload in The Things Network ===
272 272  
273 -While using TTN network, you can add the payload format to decode the payload.
163 +=== 2.2.2 Insert SIM card ===
274 274  
165 +(((
166 +Insert the NB-IoT Card get from your provider.
167 +)))
275 275  
276 -[[image:1654505570700-128.png]]
169 +(((
170 +User need to take out the NB-IoT module and insert the SIM card like below:
171 +)))
277 277  
278 -The payload decoder function for TTN is here:
279 279  
280 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
174 +[[image:1657328884227-504.png]]
281 281  
282 282  
283 -== 2.4 Uplink Interval ==
284 284  
285 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
178 +=== 2.2.3 Connect USB TTL to NDDS75 to configure it ===
286 286  
287 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
180 +(((
181 +(((
182 +User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
183 +)))
184 +)))
288 288  
186 +[[image:image-20220709092052-2.png]]
289 289  
188 +**Connection:**
290 290  
291 -== 2.5 Downlink Payload ==
190 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
292 292  
293 -By default, LSE50 prints the downlink payload to console port.
192 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
294 294  
295 -[[image:image-20220606165544-8.png]]
194 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
296 296  
297 297  
298 -**Examples:**
197 +In the PC, use below serial tool settings:
299 299  
199 +* Baud:  (% style="color:green" %)**9600**
200 +* Data bits:** (% style="color:green" %)8(%%)**
201 +* Stop bits: (% style="color:green" %)**1**
202 +* Parity:  (% style="color:green" %)**None**
203 +* Flow Control: (% style="color:green" %)**None**
300 300  
301 -* **Set TDC**
205 +(((
206 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
207 +)))
302 302  
303 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
209 +[[image:1657329814315-101.png]]
304 304  
305 -Payload:    01 00 00 1E    TDC=30S
211 +(((
212 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
213 +)))
306 306  
307 -Payload:    01 00 00 3C    TDC=60S
308 308  
309 309  
310 -* **Reset**
217 +=== 2.2.4 Use CoAP protocol to uplink data ===
311 311  
312 -If payload = 0x04FF, it will reset the LSE01
219 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
313 313  
314 314  
315 -* **CFM**
222 +**Use below commands:**
316 316  
317 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
224 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
225 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
226 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
318 318  
228 +For parameter description, please refer to AT command set
319 319  
230 +[[image:1657249793983-486.png]]
320 320  
321 -== 2.6 ​Show Data in DataCake IoT Server ==
322 322  
323 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
233 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
324 324  
235 +[[image:1657249831934-534.png]]
325 325  
326 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
327 327  
328 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
329 329  
239 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
330 330  
331 -[[image:1654505857935-743.png]]
241 +This feature is supported since firmware version v1.0.1
332 332  
333 333  
334 -[[image:1654505874829-548.png]]
244 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
245 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
246 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
335 335  
336 -Step 3: Create an account or log in Datacake.
248 +[[image:1657249864775-321.png]]
337 337  
338 -Step 4: Search the LSE01 and add DevEUI.
339 339  
251 +[[image:1657249930215-289.png]]
340 340  
341 -[[image:1654505905236-553.png]]
342 342  
343 343  
344 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
255 +=== 2.2.6 Use MQTT protocol to uplink data ===
345 345  
346 -[[image:1654505925508-181.png]]
257 +This feature is supported since firmware version v110
347 347  
348 348  
260 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
261 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
262 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
263 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
264 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
265 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
266 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
349 349  
350 -== 2.7 Frequency Plans ==
268 +[[image:1657249978444-674.png]]
351 351  
352 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
353 353  
271 +[[image:1657249990869-686.png]]
354 354  
355 -=== 2.7.1 EU863-870 (EU868) ===
356 356  
357 -(% style="color:#037691" %)** Uplink:**
274 +(((
275 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
276 +)))
358 358  
359 -868.1 - SF7BW125 to SF12BW125
360 360  
361 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
362 362  
363 -868.5 - SF7BW125 to SF12BW125
280 +=== 2.2.7 Use TCP protocol to uplink data ===
364 364  
365 -867.1 - SF7BW125 to SF12BW125
282 +This feature is supported since firmware version v110
366 366  
367 -867.3 - SF7BW125 to SF12BW125
368 368  
369 -867.5 - SF7BW125 to SF12BW125
285 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
286 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
370 370  
371 -867.7 - SF7BW125 to SF12BW125
288 +[[image:1657250217799-140.png]]
372 372  
373 -867.9 - SF7BW125 to SF12BW125
374 374  
375 -868.8 - FSK
291 +[[image:1657250255956-604.png]]
376 376  
377 377  
378 -(% style="color:#037691" %)** Downlink:**
379 379  
380 -Uplink channels 1-9 (RX1)
295 +=== 2.2.8 Change Update Interval ===
381 381  
382 -869.525 - SF9BW125 (RX2 downlink only)
297 +User can use below command to change the (% style="color:green" %)**uplink interval**.
383 383  
299 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
384 384  
301 +(((
302 +(% style="color:red" %)**NOTE:**
303 +)))
385 385  
386 -=== 2.7.2 US902-928(US915) ===
305 +(((
306 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
307 +)))
387 387  
388 -Used in USA, Canada and South America. Default use CHE=2
389 389  
390 -(% style="color:#037691" %)**Uplink:**
391 391  
392 -903.9 - SF7BW125 to SF10BW125
311 +== 2.3  Uplink Payload ==
393 393  
394 -904.1 - SF7BW125 to SF10BW125
313 +In this mode, uplink payload includes in total 18 bytes
395 395  
396 -904.3 - SF7BW125 to SF10BW125
315 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
316 +|=(% style="width: 60px;" %)(((
317 +**Size(bytes)**
318 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
319 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
397 397  
398 -904.5 - SF7BW125 to SF10BW125
321 +(((
322 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
323 +)))
399 399  
400 -904.7 - SF7BW125 to SF10BW125
401 401  
402 -904.9 - SF7BW125 to SF10BW125
326 +[[image:image-20220708111918-4.png]]
403 403  
404 -905.1 - SF7BW125 to SF10BW125
405 405  
406 -905.3 - SF7BW125 to SF10BW125
329 +The payload is ASCII string, representative same HEX:
407 407  
331 +0x72403155615900640c7817075e0a8c02f900 where:
408 408  
409 -(% style="color:#037691" %)**Downlink:**
333 +* Device ID: 0x 724031556159 = 724031556159
334 +* Version: 0x0064=100=1.0.0
410 410  
411 -923.3 - SF7BW500 to SF12BW500
336 +* BAT: 0x0c78 = 3192 mV = 3.192V
337 +* Singal: 0x17 = 23
338 +* Soil Moisture: 0x075e= 1886 = 18.86  %
339 +* Soil Temperature:0x0a8c =2700=27 °C
340 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
341 +* Interrupt: 0x00 = 0
412 412  
413 -923.9 - SF7BW500 to SF12BW500
343 +== 2. Payload Explanation and Sensor Interface ==
414 414  
415 -924.5 - SF7BW500 to SF12BW500
416 416  
417 -925.1 - SF7BW500 to SF12BW500
346 +=== 2.4.1  Device ID ===
418 418  
419 -925.7 - SF7BW500 to SF12BW500
348 +(((
349 +By default, the Device ID equal to the last 6 bytes of IMEI.
350 +)))
420 420  
421 -926.3 - SF7BW500 to SF12BW500
352 +(((
353 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
354 +)))
422 422  
423 -926.9 - SF7BW500 to SF12BW500
356 +(((
357 +**Example:**
358 +)))
424 424  
425 -927.5 - SF7BW500 to SF12BW500
360 +(((
361 +AT+DEUI=A84041F15612
362 +)))
426 426  
427 -923.3 - SF12BW500(RX2 downlink only)
364 +(((
365 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
366 +)))
428 428  
429 429  
430 430  
431 -=== 2.7.3 CN470-510 (CN470) ===
370 +=== 2.4. Version Info ===
432 432  
433 -Used in China, Default use CHE=1
372 +(((
373 +Specify the software version: 0x64=100, means firmware version 1.00.
374 +)))
434 434  
435 -(% style="color:#037691" %)**Uplink:**
376 +(((
377 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
378 +)))
436 436  
437 -486.3 - SF7BW125 to SF12BW125
438 438  
439 -486.5 - SF7BW125 to SF12BW125
440 440  
441 -486.7 - SF7BW125 to SF12BW125
382 +=== 2.4. Battery Info ===
442 442  
443 -486.9 - SF7BW125 to SF12BW125
384 +(((
385 +Check the battery voltage for LSE01.
386 +)))
444 444  
445 -487.1 - SF7BW125 to SF12BW125
388 +(((
389 +Ex1: 0x0B45 = 2885mV
390 +)))
446 446  
447 -487.3 - SF7BW125 to SF12BW125
392 +(((
393 +Ex2: 0x0B49 = 2889mV
394 +)))
448 448  
449 -487.5 - SF7BW125 to SF12BW125
450 450  
451 -487.7 - SF7BW125 to SF12BW125
452 452  
398 +=== 2.4.4  Signal Strength ===
453 453  
454 -(% style="color:#037691" %)**Downlink:**
400 +(((
401 +NB-IoT Network signal Strength.
402 +)))
455 455  
456 -506.7 - SF7BW125 to SF12BW125
404 +(((
405 +**Ex1: 0x1d = 29**
406 +)))
457 457  
458 -506.9 - SF7BW125 to SF12BW125
408 +(((
409 +(% style="color:blue" %)**0**(%%)  -113dBm or less
410 +)))
459 459  
460 -507.1 - SF7BW125 to SF12BW125
412 +(((
413 +(% style="color:blue" %)**1**(%%)  -111dBm
414 +)))
461 461  
462 -507.3 - SF7BW125 to SF12BW125
416 +(((
417 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
418 +)))
463 463  
464 -507.5 - SF7BW125 to SF12BW125
420 +(((
421 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
422 +)))
465 465  
466 -507.7 - SF7BW125 to SF12BW125
424 +(((
425 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
426 +)))
467 467  
468 -507.9 - SF7BW125 to SF12BW125
469 469  
470 -508.1 - SF7BW125 to SF12BW125
471 471  
472 -505.3 - SF12BW125 (RX2 downlink only)
430 +=== 2.4.5  Soil Moisture ===
473 473  
432 +(((
433 +(((
434 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
435 +)))
436 +)))
474 474  
438 +(((
439 +(((
440 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
441 +)))
442 +)))
475 475  
476 -=== 2.7.4 AU915-928(AU915) ===
444 +(((
445 +
446 +)))
477 477  
478 -Default use CHE=2
448 +(((
449 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
450 +)))
479 479  
480 -(% style="color:#037691" %)**Uplink:**
481 481  
482 -916.8 - SF7BW125 to SF12BW125
483 483  
484 -917.0 - SF7BW125 to SF12BW125
454 +=== 2.4.6  Soil Temperature ===
485 485  
486 -917.2 - SF7BW125 to SF12BW125
456 +(((
457 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
458 +)))
487 487  
488 -917.4 - SF7BW125 to SF12BW125
460 +(((
461 +**Example**:
462 +)))
489 489  
490 -917.6 - SF7BW125 to SF12BW125
464 +(((
465 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
466 +)))
491 491  
492 -917.8 - SF7BW125 to SF12BW125
468 +(((
469 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
470 +)))
493 493  
494 -918.0 - SF7BW125 to SF12BW125
495 495  
496 -918.2 - SF7BW125 to SF12BW125
497 497  
474 +=== 2.4.7  Soil Conductivity (EC) ===
498 498  
499 -(% style="color:#037691" %)**Downlink:**
476 +(((
477 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
478 +)))
500 500  
501 -923.3 - SF7BW500 to SF12BW500
480 +(((
481 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
482 +)))
502 502  
503 -923.9 - SF7BW500 to SF12BW500
484 +(((
485 +Generally, the EC value of irrigation water is less than 800uS / cm.
486 +)))
504 504  
505 -924.5 - SF7BW500 to SF12BW500
488 +(((
489 +
490 +)))
506 506  
507 -925.1 - SF7BW500 to SF12BW500
492 +(((
493 +
494 +)))
508 508  
509 -925.7 - SF7BW500 to SF12BW500
496 +=== 2.4.8  Digital Interrupt ===
510 510  
511 -926.3 - SF7BW500 to SF12BW500
498 +(((
499 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
500 +)))
512 512  
513 -926.9 - SF7BW500 to SF12BW500
502 +(((
503 +The command is:
504 +)))
514 514  
515 -927.5 - SF7BW500 to SF12BW500
506 +(((
507 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
508 +)))
516 516  
517 -923.3 - SF12BW500(RX2 downlink only)
518 518  
511 +(((
512 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
513 +)))
519 519  
520 520  
521 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
516 +(((
517 +Example:
518 +)))
522 522  
523 -(% style="color:#037691" %)**Default Uplink channel:**
520 +(((
521 +0x(00): Normal uplink packet.
522 +)))
524 524  
525 -923.2 - SF7BW125 to SF10BW125
524 +(((
525 +0x(01): Interrupt Uplink Packet.
526 +)))
526 526  
527 -923.4 - SF7BW125 to SF10BW125
528 528  
529 529  
530 -(% style="color:#037691" %)**Additional Uplink Channel**:
530 +=== 2.4.9  ​+5V Output ===
531 531  
532 -(OTAA mode, channel added by JoinAccept message)
532 +(((
533 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
534 +)))
533 533  
534 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
535 535  
536 -922.2 - SF7BW125 to SF10BW125
537 +(((
538 +The 5V output time can be controlled by AT Command.
539 +)))
537 537  
538 -922.4 - SF7BW125 to SF10BW125
541 +(((
542 +(% style="color:blue" %)**AT+5VT=1000**
543 +)))
539 539  
540 -922.6 - SF7BW125 to SF10BW125
545 +(((
546 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
547 +)))
541 541  
542 -922.8 - SF7BW125 to SF10BW125
543 543  
544 -923.0 - SF7BW125 to SF10BW125
545 545  
546 -922.0 - SF7BW125 to SF10BW125
551 +== 2.5  Downlink Payload ==
547 547  
553 +By default, NSE01 prints the downlink payload to console port.
548 548  
549 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
555 +[[image:image-20220708133731-5.png]]
550 550  
551 -923.6 - SF7BW125 to SF10BW125
552 552  
553 -923.8 - SF7BW125 to SF10BW125
558 +(((
559 +(% style="color:blue" %)**Examples:**
560 +)))
554 554  
555 -924.0 - SF7BW125 to SF10BW125
562 +(((
563 +
564 +)))
556 556  
557 -924.2 - SF7BW125 to SF10BW125
566 +* (((
567 +(% style="color:blue" %)**Set TDC**
568 +)))
558 558  
559 -924.4 - SF7BW125 to SF10BW125
570 +(((
571 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
572 +)))
560 560  
561 -924.6 - SF7BW125 to SF10BW125
574 +(((
575 +Payload:    01 00 00 1E    TDC=30S
576 +)))
562 562  
578 +(((
579 +Payload:    01 00 00 3C    TDC=60S
580 +)))
563 563  
564 -(% style="color:#037691" %)** Downlink:**
582 +(((
583 +
584 +)))
565 565  
566 -Uplink channels 1-8 (RX1)
586 +* (((
587 +(% style="color:blue" %)**Reset**
588 +)))
567 567  
568 -923.2 - SF10BW125 (RX2)
590 +(((
591 +If payload = 0x04FF, it will reset the NSE01
592 +)))
569 569  
570 570  
595 +* (% style="color:blue" %)**INTMOD**
571 571  
572 -=== 2.7.6 KR920-923 (KR920) ===
597 +(((
598 +Downlink Payload: 06000003, Set AT+INTMOD=3
599 +)))
573 573  
574 -Default channel:
575 575  
576 -922.1 - SF7BW125 to SF12BW125
577 577  
578 -922.3 - SF7BW125 to SF12BW125
603 +== 2. ​LED Indicator ==
579 579  
580 -922.5 - SF7BW125 to SF12BW125
605 +(((
606 +The NSE01 has an internal LED which is to show the status of different state.
581 581  
582 582  
583 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
609 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
610 +* Then the LED will be on for 1 second means device is boot normally.
611 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
612 +* For each uplink probe, LED will be on for 500ms.
613 +)))
584 584  
585 -922.1 - SF7BW125 to SF12BW125
586 586  
587 -922.3 - SF7BW125 to SF12BW125
588 588  
589 -922.5 - SF7BW125 to SF12BW125
590 590  
591 -922.7 - SF7BW125 to SF12BW125
618 +== 2.7  Installation in Soil ==
592 592  
593 -922.9 - SF7BW125 to SF12BW125
620 +__**Measurement the soil surface**__
594 594  
595 -923.1 - SF7BW125 to SF12BW125
622 +(((
623 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
624 +)))
596 596  
597 -923.3 - SF7BW125 to SF12BW125
626 +[[image:1657259653666-883.png]] ​
598 598  
599 599  
600 -(% style="color:#037691" %)**Downlink:**
629 +(((
630 +
601 601  
602 -Uplink channels 1-7(RX1)
632 +(((
633 +Dig a hole with diameter > 20CM.
634 +)))
603 603  
604 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
636 +(((
637 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
638 +)))
639 +)))
605 605  
641 +[[image:1654506665940-119.png]]
606 606  
643 +(((
644 +
645 +)))
607 607  
608 -=== 2.7.7 IN865-867 (IN865) ===
609 609  
610 -(% style="color:#037691" %)** Uplink:**
648 +== 2.8  ​Firmware Change Log ==
611 611  
612 -865.0625 - SF7BW125 to SF12BW125
613 613  
614 -865.4025 - SF7BW125 to SF12BW125
651 +Download URL & Firmware Change log
615 615  
616 -865.9850 - SF7BW125 to SF12BW125
653 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
617 617  
618 618  
619 -(% style="color:#037691" %) **Downlink:**
656 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
620 620  
621 -Uplink channels 1-3 (RX1)
622 622  
623 -866.550 - SF10BW125 (RX2)
624 624  
660 +== 2.9  ​Battery Analysis ==
625 625  
662 +=== 2.9.1  ​Battery Type ===
626 626  
627 627  
628 -== 2.8 LED Indicator ==
629 -
630 -The LSE01 has an internal LED which is to show the status of different state.
631 -
632 -* Blink once when device power on.
633 -* Solid ON for 5 seconds once device successful Join the network.
634 -* Blink once when device transmit a packet.
635 -
636 -== 2.9 Installation in Soil ==
637 -
638 -**Measurement the soil surface**
639 -
640 -
641 -[[image:1654506634463-199.png]] ​
642 -
643 643  (((
644 -(((
645 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
666 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
646 646  )))
647 -)))
648 648  
649 649  
650 -[[image:1654506665940-119.png]]
651 -
652 652  (((
653 -Dig a hole with diameter > 20CM.
671 +The battery is designed to last for several years depends on the actually use environment and update interval. 
654 654  )))
655 655  
656 -(((
657 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
658 -)))
659 659  
660 -
661 -== 2.10 ​Firmware Change Log ==
662 -
663 663  (((
664 -**Firmware download link:**
676 +The battery related documents as below:
665 665  )))
666 666  
667 -(((
668 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
669 -)))
679 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
680 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
681 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
670 670  
671 671  (((
672 -
684 +[[image:image-20220708140453-6.png]]
673 673  )))
674 674  
675 -(((
676 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
677 -)))
678 678  
679 -(((
680 -
681 -)))
682 682  
683 -(((
684 -**V1.0.**
685 -)))
689 +=== 2.9.2  Power consumption Analyze ===
686 686  
687 687  (((
688 -Release
692 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
689 689  )))
690 690  
691 691  
692 -== 2.11 ​Battery Analysis ==
693 -
694 -=== 2.11.1 ​Battery Type ===
695 -
696 696  (((
697 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
697 +Instruction to use as below:
698 698  )))
699 699  
700 700  (((
701 -The battery is designed to last for more than 5 years for the LSN50.
701 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
702 702  )))
703 703  
704 +
704 704  (((
705 -(((
706 -The battery-related documents are as below:
706 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
707 707  )))
708 -)))
709 709  
710 710  * (((
711 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
710 +Product Model
712 712  )))
713 713  * (((
714 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
713 +Uplink Interval
715 715  )))
716 716  * (((
717 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
716 +Working Mode
718 718  )))
719 719  
720 - [[image:image-20220606171726-9.png]]
719 +(((
720 +And the Life expectation in difference case will be shown on the right.
721 +)))
721 721  
723 +[[image:image-20220708141352-7.jpeg]]
722 722  
723 723  
724 -=== 2.11.2 ​Battery Note ===
725 725  
727 +=== 2.9.3  ​Battery Note ===
728 +
726 726  (((
727 727  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
728 728  )))
... ... @@ -729,299 +729,195 @@
729 729  
730 730  
731 731  
732 -=== 2.11.3 Replace the battery ===
735 +=== 2.9. Replace the battery ===
733 733  
734 734  (((
735 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
738 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
736 736  )))
737 737  
741 +
742 +
743 += 3. ​ Access NB-IoT Module =
744 +
738 738  (((
739 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
746 +Users can directly access the AT command set of the NB-IoT module.
740 740  )))
741 741  
742 742  (((
743 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
750 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
744 744  )))
745 745  
753 +[[image:1657261278785-153.png]]
746 746  
747 747  
748 -= 3. ​Using the AT Commands =
749 749  
750 -== 3.1 Access AT Commands ==
757 += 4.  Using the AT Commands =
751 751  
759 +== 4.1  Access AT Commands ==
752 752  
753 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
761 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
754 754  
755 -[[image:1654501986557-872.png]]
756 756  
764 +AT+<CMD>?  : Help on <CMD>
757 757  
758 -Or if you have below board, use below connection:
766 +AT+<CMD>         : Run <CMD>
759 759  
768 +AT+<CMD>=<value> : Set the value
760 760  
761 -[[image:1654502005655-729.png]]
770 +AT+<CMD>=?  : Get the value
762 762  
763 763  
764 -
765 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
766 -
767 -
768 - [[image:1654502050864-459.png]]
769 -
770 -
771 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
772 -
773 -
774 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
775 -
776 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
777 -
778 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
779 -
780 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
781 -
782 -
783 783  (% style="color:#037691" %)**General Commands**(%%)      
784 784  
785 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
775 +AT  : Attention       
786 786  
787 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
777 +AT?  : Short Help     
788 788  
789 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
779 +ATZ  : MCU Reset    
790 790  
791 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
781 +AT+TDC  : Application Data Transmission Interval
792 792  
783 +AT+CFG  : Print all configurations
793 793  
794 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
785 +AT+CFGMOD           : Working mode selection
795 795  
796 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
787 +AT+INTMOD            : Set the trigger interrupt mode
797 797  
798 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
789 +AT+5VT  : Set extend the time of 5V power  
799 799  
800 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
791 +AT+PRO  : Choose agreement
801 801  
802 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
793 +AT+WEIGRE  : Get weight or set weight to 0
803 803  
804 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
795 +AT+WEIGAP  : Get or Set the GapValue of weight
805 805  
806 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
797 +AT+RXDL  : Extend the sending and receiving time
807 807  
808 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
799 +AT+CNTFAC  : Get or set counting parameters
809 809  
810 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
801 +AT+SERVADDR  : Server Address
811 811  
812 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
813 813  
814 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
804 +(% style="color:#037691" %)**COAP Management**      
815 815  
816 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
806 +AT+URI            : Resource parameters
817 817  
818 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
819 819  
820 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
809 +(% style="color:#037691" %)**UDP Management**
821 821  
822 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
811 +AT+CFM          : Upload confirmation mode (only valid for UDP)
823 823  
824 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
825 825  
826 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
814 +(% style="color:#037691" %)**MQTT Management**
827 827  
816 +AT+CLIENT               : Get or Set MQTT client
828 828  
829 -(% style="color:#037691" %)**LoRa Network Management**
818 +AT+UNAME  : Get or Set MQTT Username
830 830  
831 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
820 +AT+PWD                  : Get or Set MQTT password
832 832  
833 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
822 +AT+PUBTOPI : Get or Set MQTT publish topic
834 834  
835 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
824 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
836 836  
837 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
838 838  
839 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
827 +(% style="color:#037691" %)**Information**          
840 840  
841 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
829 +AT+FDR  : Factory Data Reset
842 842  
843 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
831 +AT+PWOR : Serial Access Password
844 844  
845 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
846 846  
847 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
848 848  
849 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
835 += ​5.  FAQ =
850 850  
851 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
837 +== 5.1 How to Upgrade Firmware ==
852 852  
853 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
854 854  
855 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
840 +(((
841 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
842 +)))
856 856  
857 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
844 +(((
845 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
846 +)))
858 858  
859 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
848 +(((
849 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
850 +)))
860 860  
861 861  
862 -(% style="color:#037691" %)**Information** 
863 863  
864 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
854 +== 5.2  Can I calibrate NSE01 to different soil types? ==
865 865  
866 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
856 +(((
857 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
858 +)))
867 867  
868 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
869 869  
870 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
861 += 6.  Trouble Shooting =
871 871  
872 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
863 +== 6.1  ​Connection problem when uploading firmware ==
873 873  
874 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
875 875  
876 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
877 -
878 -
879 -= ​4. FAQ =
880 -
881 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
882 -
883 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10FirmwareChangeLog"]].
884 -When downloading the images, choose the required image file for download. ​
885 -
886 -
887 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
888 -
889 -
890 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
891 -
892 -
893 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
894 -
895 -[[image:image-20220606154726-3.png]]
896 -
897 -When you use the TTN network, the US915 frequency bands use are:
898 -
899 -* 903.9 - SF7BW125 to SF10BW125
900 -* 904.1 - SF7BW125 to SF10BW125
901 -* 904.3 - SF7BW125 to SF10BW125
902 -* 904.5 - SF7BW125 to SF10BW125
903 -* 904.7 - SF7BW125 to SF10BW125
904 -* 904.9 - SF7BW125 to SF10BW125
905 -* 905.1 - SF7BW125 to SF10BW125
906 -* 905.3 - SF7BW125 to SF10BW125
907 -* 904.6 - SF8BW500
908 -
909 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
910 -
911 -(% class="box infomessage" %)
912 912  (((
913 -**AT+CHE=2**
867 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
914 914  )))
915 915  
916 -(% class="box infomessage" %)
870 +(% class="wikigeneratedid" %)
917 917  (((
918 -**ATZ**
872 +
919 919  )))
920 920  
921 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
922 922  
876 +== 6.2  AT Command input doesn't work ==
923 923  
924 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
878 +(((
879 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
925 925  
926 -[[image:image-20220606154825-4.png]]
881 +
882 +)))
927 927  
928 928  
885 += 7. ​ Order Info =
929 929  
930 -= 5. Trouble Shooting =
931 931  
932 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
888 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
933 933  
934 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
935 935  
936 -
937 -== 5.2 AT Command input doesn’t work ==
938 -
939 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
940 -
941 -
942 -== 5.3 Device rejoin in at the second uplink packet ==
943 -
944 -(% style="color:#4f81bd" %)**Issue describe as below:**
945 -
946 -[[image:1654500909990-784.png]]
947 -
948 -
949 -(% style="color:#4f81bd" %)**Cause for this issue:**
950 -
951 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
952 -
953 -
954 -(% style="color:#4f81bd" %)**Solution: **
955 -
956 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
957 -
958 -[[image:1654500929571-736.png]]
959 -
960 -
961 -= 6. ​Order Info =
962 -
963 -
964 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
965 -
966 -
967 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
968 -
969 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
970 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
971 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
972 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
973 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
974 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
975 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
976 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
977 -
978 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
979 -
980 -* (% style="color:red" %)**4**(%%): 4000mAh battery
981 -* (% style="color:red" %)**8**(%%): 8500mAh battery
982 -
983 983  (% class="wikigeneratedid" %)
984 984  (((
985 985  
986 986  )))
987 987  
988 -= 7. Packing Info =
896 += 8.  Packing Info =
989 989  
990 990  (((
991 -**Package Includes**:
992 -)))
899 +
993 993  
994 -* (((
995 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
901 +(% style="color:#037691" %)**Package Includes**:
902 +
903 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
904 +* External antenna x 1
996 996  )))
997 997  
998 998  (((
999 999  
1000 -)))
1001 1001  
1002 -(((
1003 -**Dimension and weight**:
1004 -)))
910 +(% style="color:#037691" %)**Dimension and weight**:
1005 1005  
1006 -* (((
1007 -Device Size: cm
912 +* Size: 195 x 125 x 55 mm
913 +* Weight:   420g
1008 1008  )))
1009 -* (((
1010 -Device Weight: g
1011 -)))
1012 -* (((
1013 -Package Size / pcs : cm
1014 -)))
1015 -* (((
1016 -Weight / pcs : g
1017 1017  
916 +(((
917 +
1018 1018  
919 +
1019 1019  
1020 1020  )))
1021 1021  
1022 -= 8. Support =
923 += 9.  Support =
1023 1023  
1024 1024  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1025 1025  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1026 -
1027 -
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.3 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +247.3 KB
Content