Last modified by Mengting Qiu on 2024/04/02 16:44

From version 31.20
edited by Xiaoling
on 2022/06/07 10:05
Change comment: There is no comment for this version
To version 68.1
edited by Xiaoling
on 2022/07/09 08:40
Change comment: Uploaded new attachment "image-20220709084038-1.jpeg", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NDDS75 NB-IoT Distance Detect Sensor User Manual
Content
... ... @@ -1,11 +1,9 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
2 +[[image:1657271519014-786.png]]
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
... ... @@ -12,717 +12,713 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
13 +**Table of Contents:**
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
18 18  
19 -(((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
22 22  
23 -(((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 -)))
26 26  
27 -(((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 -)))
34 34  
35 -(((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 -)))
38 38  
21 += 1.  Introduction =
39 39  
40 -[[image:1654503236291-817.png]]
23 +== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
41 41  
25 +(((
26 +
42 42  
43 -[[image:1654503265560-120.png]]
28 +The Dragino NDDS75 is a **NB-IOT Distance Detection Sensor** for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses **ultrasonic sensing technology** for **distance measurement**, and temperature compensation is performed internally to improve the reliability of data. The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
44 44  
30 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server.
45 45  
32 +**NarrowBand-Internet of Things (NB-IoT)** is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
46 46  
47 -== 1.2 ​Features ==
34 +NDDS75 is powered by 8**500mA Li-SOCI2 battery**; It is designed for long term use up to 5 years*.
48 48  
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
51 -* Monitor Soil Moisture
52 -* Monitor Soil Temperature
53 -* Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 -* AT Commands to change parameters
56 -* Uplink on periodically
57 -* Downlink to change configure
58 -* IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
36 +~* Actually lifetime depends on network coverage and uplink interval and other factors
60 60  
61 -
62 -
63 -== 1.3 Specification ==
64 -
65 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
66 -
67 -[[image:image-20220606162220-5.png]]
68 -
69 -
70 -
71 -== ​1.4 Applications ==
72 -
73 -* Smart Agriculture
74 -
75 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
76 -​
77 -
78 -== 1.5 Firmware Change log ==
79 -
80 -
81 -**LSE01 v1.0 :**  Release
82 -
83 -
84 -
85 -= 2. Configure LSE01 to connect to LoRaWAN network =
86 -
87 -== 2.1 How it works ==
88 -
89 89  (((
90 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
39 +
91 91  )))
92 92  
93 -(((
94 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
95 -)))
96 -
97 -
98 -
99 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
100 -
101 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
102 -
103 -
104 -[[image:1654503992078-669.png]]
105 -
106 -
107 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
108 -
109 -
110 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
111 -
112 -Each LSE01 is shipped with a sticker with the default device EUI as below:
113 -
114 -[[image:image-20220606163732-6.jpeg]]
115 -
116 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
117 -
118 -**Add APP EUI in the application**
119 -
120 -
121 -[[image:1654504596150-405.png]]
122 -
123 -
124 -
125 -**Add APP KEY and DEV EUI**
126 -
127 -[[image:1654504683289-357.png]]
128 -
129 -
130 -
131 -**Step 2**: Power on LSE01
132 -
133 -
134 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
135 -
136 -[[image:image-20220606163915-7.png]]
137 -
138 -
139 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
140 -
141 -[[image:1654504778294-788.png]]
142 -
143 -
144 -
145 -== 2.3 Uplink Payload ==
146 -
147 -=== 2.3.1 MOD~=0(Default Mode) ===
148 -
149 -LSE01 will uplink payload via LoRaWAN with below payload format: 
150 -
151 -
152 -Uplink payload includes in total 11 bytes.
153 153  
154 -
155 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
156 -|=(((
157 -**Size**
158 -
159 -**(bytes)**
160 -)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1**
161 -|**Value**|(% style="width:46px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:160px" %)(((
162 -Temperature
163 -
164 -(Reserve, Ignore now)
165 -)))|(% style="width:104px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:126px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:114px" %)(((
166 -MOD & Digital Interrupt
167 -
168 -(Optional)
169 169  )))
170 170  
171 -[[image:1654504881641-514.png]]
45 +[[image:1654503236291-817.png]]
172 172  
173 173  
48 +[[image:1657245163077-232.png]]
174 174  
175 -=== 2.3.2 MOD~=1(Original value) ===
176 176  
177 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
178 178  
179 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
180 -|=(((
181 -**Size**
52 +== 1.2 ​ Features ==
182 182  
183 -**(bytes)**
184 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1**
185 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
186 -Temperature
54 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
55 +* Monitor Soil Moisture
56 +* Monitor Soil Temperature
57 +* Monitor Soil Conductivity
58 +* AT Commands to change parameters
59 +* Uplink on periodically
60 +* Downlink to change configure
61 +* IP66 Waterproof Enclosure
62 +* Ultra-Low Power consumption
63 +* AT Commands to change parameters
64 +* Micro SIM card slot for NB-IoT SIM
65 +* 8500mAh Battery for long term use
187 187  
188 -(Reserve, Ignore now)
189 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
190 -MOD & Digital Interrupt
191 191  
192 -(Optional)
193 -)))
194 194  
195 -[[image:1654504907647-967.png]]
69 +== 1.3  Specification ==
196 196  
197 197  
72 +(% style="color:#037691" %)**Common DC Characteristics:**
198 198  
199 -=== 2.3.3 Battery Info ===
74 +* Supply Voltage: 2.1v ~~ 3.6v
75 +* Operating Temperature: -40 ~~ 85°C
200 200  
201 -Check the battery voltage for LSE01.
77 +(% style="color:#037691" %)**NB-IoT Spec:**
202 202  
203 -Ex1: 0x0B45 = 2885mV
79 +* - B1 @H-FDD: 2100MHz
80 +* - B3 @H-FDD: 1800MHz
81 +* - B8 @H-FDD: 900MHz
82 +* - B5 @H-FDD: 850MHz
83 +* - B20 @H-FDD: 800MHz
84 +* - B28 @H-FDD: 700MHz
204 204  
205 -Ex2: 0x0B49 = 2889mV
86 +Probe(% style="color:#037691" %)** Specification:**
206 206  
88 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
207 207  
90 +[[image:image-20220708101224-1.png]]
208 208  
209 -=== 2.3.4 Soil Moisture ===
210 210  
211 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
212 212  
213 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
94 +== ​1.4  Applications ==
214 214  
96 +* Smart Agriculture
215 215  
216 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
98 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
99 +​
217 217  
101 +== 1.5  Pin Definitions ==
218 218  
219 219  
220 -=== 2.3.5 Soil Temperature ===
104 +[[image:1657246476176-652.png]]
221 221  
222 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
223 223  
224 -**Example**:
225 225  
226 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
108 += 2.  Use NSE01 to communicate with IoT Server =
227 227  
228 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
110 +== 2.1  How it works ==
229 229  
230 230  
231 -
232 -=== 2.3.6 Soil Conductivity (EC) ===
233 -
234 234  (((
235 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
114 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
236 236  )))
237 237  
238 -(((
239 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
240 -)))
241 241  
242 242  (((
243 -Generally, the EC value of irrigation water is less than 800uS / cm.
119 +The diagram below shows the working flow in default firmware of NSE01:
244 244  )))
245 245  
246 -(((
247 -
248 -)))
122 +[[image:image-20220708101605-2.png]]
249 249  
250 250  (((
251 251  
252 252  )))
253 253  
254 -=== 2.3.7 MOD ===
255 255  
256 -Firmware version at least v2.1 supports changing mode.
257 257  
258 -For example, bytes[10]=90
130 +== 2.2 ​ Configure the NSE01 ==
259 259  
260 -mod=(bytes[10]>>7)&0x01=1.
261 261  
133 +=== 2.2.1 Test Requirement ===
262 262  
263 -Downlink Command:
264 264  
265 -If payload = 0x0A00, workmode=0
136 +(((
137 +To use NSE01 in your city, make sure meet below requirements:
138 +)))
266 266  
267 -If** **payload =** **0x0A01, workmode=1
140 +* Your local operator has already distributed a NB-IoT Network there.
141 +* The local NB-IoT network used the band that NSE01 supports.
142 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
268 268  
144 +(((
145 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
146 +)))
269 269  
270 270  
271 -=== 2.3.8 ​Decode payload in The Things Network ===
149 +[[image:1657249419225-449.png]]
272 272  
273 -While using TTN network, you can add the payload format to decode the payload.
274 274  
275 275  
276 -[[image:1654505570700-128.png]]
153 +=== 2.2.2 Insert SIM card ===
277 277  
278 -The payload decoder function for TTN is here:
155 +(((
156 +Insert the NB-IoT Card get from your provider.
157 +)))
279 279  
280 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
159 +(((
160 +User need to take out the NB-IoT module and insert the SIM card like below:
161 +)))
281 281  
282 282  
283 -== 2.4 Uplink Interval ==
164 +[[image:1657249468462-536.png]]
284 284  
285 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
286 286  
287 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
288 288  
168 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
289 289  
170 +(((
171 +(((
172 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
173 +)))
174 +)))
290 290  
291 -== 2.5 Downlink Payload ==
292 292  
293 -By default, LSE50 prints the downlink payload to console port.
177 +**Connection:**
294 294  
295 -[[image:image-20220606165544-8.png]]
179 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
296 296  
181 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
297 297  
298 -**Examples:**
183 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
299 299  
300 300  
301 -* **Set TDC**
186 +In the PC, use below serial tool settings:
302 302  
303 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
188 +* Baud:  (% style="color:green" %)**9600**
189 +* Data bits:** (% style="color:green" %)8(%%)**
190 +* Stop bits: (% style="color:green" %)**1**
191 +* Parity:  (% style="color:green" %)**None**
192 +* Flow Control: (% style="color:green" %)**None**
304 304  
305 -Payload:    01 00 00 1E    TDC=30S
194 +(((
195 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
196 +)))
306 306  
307 -Payload:    01 00 00 3C    TDC=60S
198 +[[image:image-20220708110657-3.png]]
308 308  
200 +(((
201 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
202 +)))
309 309  
310 -* **Reset**
311 311  
312 -If payload = 0x04FF, it will reset the LSE01
313 313  
206 +=== 2.2.4 Use CoAP protocol to uplink data ===
314 314  
315 -* **CFM**
208 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
316 316  
317 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
318 318  
211 +**Use below commands:**
319 319  
213 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
214 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
215 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
320 320  
321 -== 2.6 ​Show Data in DataCake IoT Server ==
217 +For parameter description, please refer to AT command set
322 322  
323 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
219 +[[image:1657249793983-486.png]]
324 324  
325 325  
326 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
222 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
327 327  
328 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
224 +[[image:1657249831934-534.png]]
329 329  
330 330  
331 -[[image:1654505857935-743.png]]
332 332  
228 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
333 333  
334 -[[image:1654505874829-548.png]]
230 +This feature is supported since firmware version v1.0.1
335 335  
336 -Step 3: Create an account or log in Datacake.
337 337  
338 -Step 4: Search the LSE01 and add DevEUI.
233 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
234 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
235 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
339 339  
237 +[[image:1657249864775-321.png]]
340 340  
341 -[[image:1654505905236-553.png]]
342 342  
240 +[[image:1657249930215-289.png]]
343 343  
344 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
345 345  
346 -[[image:1654505925508-181.png]]
347 347  
244 +=== 2.2.6 Use MQTT protocol to uplink data ===
348 348  
246 +This feature is supported since firmware version v110
349 349  
350 -== 2.7 Frequency Plans ==
351 351  
352 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
249 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
250 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
251 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
252 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
253 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
254 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
255 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
353 353  
257 +[[image:1657249978444-674.png]]
354 354  
355 -=== 2.7.1 EU863-870 (EU868) ===
356 356  
357 -(% style="color:#037691" %)** Uplink:**
260 +[[image:1657249990869-686.png]]
358 358  
359 -868.1 - SF7BW125 to SF12BW125
360 360  
361 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
263 +(((
264 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
265 +)))
362 362  
363 -868.5 - SF7BW125 to SF12BW125
364 364  
365 -867.1 - SF7BW125 to SF12BW125
366 366  
367 -867.3 - SF7BW125 to SF12BW125
269 +=== 2.2.7 Use TCP protocol to uplink data ===
368 368  
369 -867.5 - SF7BW125 to SF12BW125
271 +This feature is supported since firmware version v110
370 370  
371 -867.7 - SF7BW125 to SF12BW125
372 372  
373 -867.9 - SF7BW125 to SF12BW125
274 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
275 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
374 374  
375 -868.8 - FSK
277 +[[image:1657250217799-140.png]]
376 376  
377 377  
378 -(% style="color:#037691" %)** Downlink:**
280 +[[image:1657250255956-604.png]]
379 379  
380 -Uplink channels 1-9 (RX1)
381 381  
382 -869.525 - SF9BW125 (RX2 downlink only)
383 383  
284 +=== 2.2.8 Change Update Interval ===
384 384  
286 +User can use below command to change the (% style="color:green" %)**uplink interval**.
385 385  
386 -=== 2.7.2 US902-928(US915) ===
288 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
387 387  
388 -Used in USA, Canada and South America. Default use CHE=2
290 +(((
291 +(% style="color:red" %)**NOTE:**
292 +)))
389 389  
390 -(% style="color:#037691" %)**Uplink:**
294 +(((
295 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
296 +)))
391 391  
392 -903.9 - SF7BW125 to SF10BW125
393 393  
394 -904.1 - SF7BW125 to SF10BW125
395 395  
396 -904.3 - SF7BW125 to SF10BW125
300 +== 2.3  Uplink Payload ==
397 397  
398 -904.5 - SF7BW125 to SF10BW125
302 +In this mode, uplink payload includes in total 18 bytes
399 399  
400 -904.7 - SF7BW125 to SF10BW125
304 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
305 +|=(% style="width: 60px;" %)(((
306 +**Size(bytes)**
307 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
308 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
401 401  
402 -904.9 - SF7BW125 to SF10BW125
310 +(((
311 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
312 +)))
403 403  
404 -905.1 - SF7BW125 to SF10BW125
405 405  
406 -905.3 - SF7BW125 to SF10BW125
315 +[[image:image-20220708111918-4.png]]
407 407  
408 408  
409 -(% style="color:#037691" %)**Downlink:**
318 +The payload is ASCII string, representative same HEX:
410 410  
411 -923.3 - SF7BW500 to SF12BW500
320 +0x72403155615900640c7817075e0a8c02f900 where:
412 412  
413 -923.9 - SF7BW500 to SF12BW500
322 +* Device ID: 0x 724031556159 = 724031556159
323 +* Version: 0x0064=100=1.0.0
414 414  
415 -924.5 - SF7BW500 to SF12BW500
325 +* BAT: 0x0c78 = 3192 mV = 3.192V
326 +* Singal: 0x17 = 23
327 +* Soil Moisture: 0x075e= 1886 = 18.86  %
328 +* Soil Temperature:0x0a8c =2700=27 °C
329 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
330 +* Interrupt: 0x00 = 0
416 416  
417 -925.1 - SF7BW500 to SF12BW500
418 418  
419 -925.7 - SF7BW500 to SF12BW500
420 420  
421 -926.3 - SF7BW500 to SF12BW500
334 +== 2. Payload Explanation and Sensor Interface ==
422 422  
423 -926.9 - SF7BW500 to SF12BW500
424 424  
425 -927.5 - SF7BW500 to SF12BW500
337 +=== 2.4.1  Device ID ===
426 426  
427 -923.3 - SF12BW500(RX2 downlink only)
339 +(((
340 +By default, the Device ID equal to the last 6 bytes of IMEI.
341 +)))
428 428  
343 +(((
344 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
345 +)))
429 429  
347 +(((
348 +**Example:**
349 +)))
430 430  
431 -=== 2.7.3 CN470-510 (CN470) ===
351 +(((
352 +AT+DEUI=A84041F15612
353 +)))
432 432  
433 -Used in China, Default use CHE=1
355 +(((
356 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
357 +)))
434 434  
435 -(% style="color:#037691" %)**Uplink:**
436 436  
437 -486.3 - SF7BW125 to SF12BW125
438 438  
439 -486.5 - SF7BW125 to SF12BW125
361 +=== 2.4.2  Version Info ===
440 440  
441 -486.7 - SF7BW125 to SF12BW125
363 +(((
364 +Specify the software version: 0x64=100, means firmware version 1.00.
365 +)))
442 442  
443 -486.9 - SF7BW125 to SF12BW125
367 +(((
368 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
369 +)))
444 444  
445 -487.1 - SF7BW125 to SF12BW125
446 446  
447 -487.3 - SF7BW125 to SF12BW125
448 448  
449 -487.5 - SF7BW125 to SF12BW125
373 +=== 2.4. Battery Info ===
450 450  
451 -487.7 - SF7BW125 to SF12BW125
375 +(((
376 +Check the battery voltage for LSE01.
377 +)))
452 452  
379 +(((
380 +Ex1: 0x0B45 = 2885mV
381 +)))
453 453  
454 -(% style="color:#037691" %)**Downlink:**
383 +(((
384 +Ex2: 0x0B49 = 2889mV
385 +)))
455 455  
456 -506.7 - SF7BW125 to SF12BW125
457 457  
458 -506.9 - SF7BW125 to SF12BW125
459 459  
460 -507.1 - SF7BW125 to SF12BW125
389 +=== 2.4.4  Signal Strength ===
461 461  
462 -507.3 - SF7BW125 to SF12BW125
391 +(((
392 +NB-IoT Network signal Strength.
393 +)))
463 463  
464 -507.5 - SF7BW125 to SF12BW125
395 +(((
396 +**Ex1: 0x1d = 29**
397 +)))
465 465  
466 -507.7 - SF7BW125 to SF12BW125
399 +(((
400 +(% style="color:blue" %)**0**(%%)  -113dBm or less
401 +)))
467 467  
468 -507.9 - SF7BW125 to SF12BW125
403 +(((
404 +(% style="color:blue" %)**1**(%%)  -111dBm
405 +)))
469 469  
470 -508.1 - SF7BW125 to SF12BW125
407 +(((
408 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
409 +)))
471 471  
472 -505.3 - SF12BW125 (RX2 downlink only)
411 +(((
412 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
413 +)))
473 473  
415 +(((
416 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
417 +)))
474 474  
475 475  
476 -=== 2.7.4 AU915-928(AU915) ===
477 477  
478 -Default use CHE=2
421 +=== 2.4.5  Soil Moisture ===
479 479  
480 -(% style="color:#037691" %)**Uplink:**
423 +(((
424 +(((
425 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
426 +)))
427 +)))
481 481  
482 -916.8 - SF7BW125 to SF12BW125
429 +(((
430 +(((
431 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
432 +)))
433 +)))
483 483  
484 -917.0 - SF7BW125 to SF12BW125
435 +(((
436 +
437 +)))
485 485  
486 -917.2 - SF7BW125 to SF12BW125
439 +(((
440 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
441 +)))
487 487  
488 -917.4 - SF7BW125 to SF12BW125
489 489  
490 -917.6 - SF7BW125 to SF12BW125
491 491  
492 -917.8 - SF7BW125 to SF12BW125
445 +=== 2.4.6  Soil Temperature ===
493 493  
494 -918.0 - SF7BW125 to SF12BW125
447 +(((
448 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
449 +)))
495 495  
496 -918.2 - SF7BW125 to SF12BW125
451 +(((
452 +**Example**:
453 +)))
497 497  
455 +(((
456 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
457 +)))
498 498  
499 -(% style="color:#037691" %)**Downlink:**
459 +(((
460 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
461 +)))
500 500  
501 -923.3 - SF7BW500 to SF12BW500
502 502  
503 -923.9 - SF7BW500 to SF12BW500
504 504  
505 -924.5 - SF7BW500 to SF12BW500
465 +=== 2.4. Soil Conductivity (EC) ===
506 506  
507 -925.1 - SF7BW500 to SF12BW500
467 +(((
468 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
469 +)))
508 508  
509 -925.7 - SF7BW500 to SF12BW500
471 +(((
472 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
473 +)))
510 510  
511 -926.3 - SF7BW500 to SF12BW500
475 +(((
476 +Generally, the EC value of irrigation water is less than 800uS / cm.
477 +)))
512 512  
513 -926.9 - SF7BW500 to SF12BW500
479 +(((
480 +
481 +)))
514 514  
515 -927.5 - SF7BW500 to SF12BW500
483 +(((
484 +
485 +)))
516 516  
517 -923.3 - SF12BW500(RX2 downlink only)
487 +=== 2.4.8  Digital Interrupt ===
518 518  
489 +(((
490 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
491 +)))
519 519  
493 +(((
494 +The command is:
495 +)))
520 520  
521 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
497 +(((
498 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
499 +)))
522 522  
523 -(% style="color:#037691" %)**Default Uplink channel:**
524 524  
525 -923.2 - SF7BW125 to SF10BW125
502 +(((
503 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
504 +)))
526 526  
527 -923.4 - SF7BW125 to SF10BW125
528 528  
507 +(((
508 +Example:
509 +)))
529 529  
530 -(% style="color:#037691" %)**Additional Uplink Channel**:
511 +(((
512 +0x(00): Normal uplink packet.
513 +)))
531 531  
532 -(OTAA mode, channel added by JoinAccept message)
515 +(((
516 +0x(01): Interrupt Uplink Packet.
517 +)))
533 533  
534 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
535 535  
536 -922.2 - SF7BW125 to SF10BW125
537 537  
538 -922.4 - SF7BW125 to SF10BW125
521 +=== 2.4.9  ​+5V Output ===
539 539  
540 -922.6 - SF7BW125 to SF10BW125
523 +(((
524 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
525 +)))
541 541  
542 -922.8 - SF7BW125 to SF10BW125
543 543  
544 -923.0 - SF7BW125 to SF10BW125
528 +(((
529 +The 5V output time can be controlled by AT Command.
530 +)))
545 545  
546 -922.0 - SF7BW125 to SF10BW125
532 +(((
533 +(% style="color:blue" %)**AT+5VT=1000**
534 +)))
547 547  
536 +(((
537 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
538 +)))
548 548  
549 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
550 550  
551 -923.6 - SF7BW125 to SF10BW125
552 552  
553 -923.8 - SF7BW125 to SF10BW125
542 +== 2.5  Downlink Payload ==
554 554  
555 -924.0 - SF7BW125 to SF10BW125
544 +By default, NSE01 prints the downlink payload to console port.
556 556  
557 -924.2 - SF7BW125 to SF10BW125
546 +[[image:image-20220708133731-5.png]]
558 558  
559 -924.4 - SF7BW125 to SF10BW125
560 560  
561 -924.6 - SF7BW125 to SF10BW125
549 +(((
550 +(% style="color:blue" %)**Examples:**
551 +)))
562 562  
553 +(((
554 +
555 +)))
563 563  
564 -(% style="color:#037691" %)** Downlink:**
557 +* (((
558 +(% style="color:blue" %)**Set TDC**
559 +)))
565 565  
566 -Uplink channels 1-8 (RX1)
561 +(((
562 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
563 +)))
567 567  
568 -923.2 - SF10BW125 (RX2)
565 +(((
566 +Payload:    01 00 00 1E    TDC=30S
567 +)))
569 569  
569 +(((
570 +Payload:    01 00 00 3C    TDC=60S
571 +)))
570 570  
573 +(((
574 +
575 +)))
571 571  
572 -=== 2.7.6 KR920-923 (KR920) ===
577 +* (((
578 +(% style="color:blue" %)**Reset**
579 +)))
573 573  
574 -Default channel:
581 +(((
582 +If payload = 0x04FF, it will reset the NSE01
583 +)))
575 575  
576 -922.1 - SF7BW125 to SF12BW125
577 577  
578 -922.3 - SF7BW125 to SF12BW125
586 +* (% style="color:blue" %)**INTMOD**
579 579  
580 -922.5 - SF7BW125 to SF12BW125
588 +(((
589 +Downlink Payload: 06000003, Set AT+INTMOD=3
590 +)))
581 581  
582 582  
583 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
584 584  
585 -922.1 - SF7BW125 to SF12BW125
594 +== 2. ​LED Indicator ==
586 586  
587 -922.3 - SF7BW125 to SF12BW125
596 +(((
597 +The NSE01 has an internal LED which is to show the status of different state.
588 588  
589 -922.5 - SF7BW125 to SF12BW125
590 590  
591 -922.7 - SF7BW125 to SF12BW125
600 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
601 +* Then the LED will be on for 1 second means device is boot normally.
602 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
603 +* For each uplink probe, LED will be on for 500ms.
604 +)))
592 592  
593 -922.9 - SF7BW125 to SF12BW125
594 594  
595 -923.1 - SF7BW125 to SF12BW125
596 596  
597 -923.3 - SF7BW125 to SF12BW125
598 598  
609 +== 2.7  Installation in Soil ==
599 599  
600 -(% style="color:#037691" %)**Downlink:**
611 +__**Measurement the soil surface**__
601 601  
602 -Uplink channels 1-7(RX1)
613 +(((
614 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
615 +)))
603 603  
604 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
617 +[[image:1657259653666-883.png]] ​
605 605  
606 606  
620 +(((
621 +
607 607  
608 -=== 2.7.7 IN865-867 (IN865) ===
623 +(((
624 +Dig a hole with diameter > 20CM.
625 +)))
609 609  
610 -(% style="color:#037691" %)** Uplink:**
627 +(((
628 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
629 +)))
630 +)))
611 611  
612 -865.0625 - SF7BW125 to SF12BW125
632 +[[image:1654506665940-119.png]]
613 613  
614 -865.4025 - SF7BW125 to SF12BW125
634 +(((
635 +
636 +)))
615 615  
616 -865.9850 - SF7BW125 to SF12BW125
617 617  
639 +== 2.8  ​Firmware Change Log ==
618 618  
619 -(% style="color:#037691" %) **Downlink:**
620 620  
621 -Uplink channels 1-3 (RX1)
642 +Download URL & Firmware Change log
622 622  
623 -866.550 - SF10BW125 (RX2)
644 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
624 624  
625 625  
647 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
626 626  
627 627  
628 -== 2.8 LED Indicator ==
629 629  
630 -The LSE01 has an internal LED which is to show the status of different state.
651 +== 2.9  ​Battery Analysis ==
631 631  
632 -* Blink once when device power on.
633 -* Solid ON for 5 seconds once device successful Join the network.
634 -* Blink once when device transmit a packet.
653 +=== 2.9.1  ​Battery Type ===
635 635  
636 -== 2.9 Installation in Soil ==
637 637  
638 -**Measurement the soil surface**
639 -
640 -
641 -[[image:1654506634463-199.png]] ​
642 -
643 643  (((
644 -(((
645 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
657 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
646 646  )))
647 -)))
648 648  
649 649  
650 -[[image:1654506665940-119.png]]
651 -
652 652  (((
653 -Dig a hole with diameter > 20CM.
662 +The battery is designed to last for several years depends on the actually use environment and update interval. 
654 654  )))
655 655  
656 -(((
657 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
658 -)))
659 659  
660 -
661 -== 2.10 ​Firmware Change Log ==
662 -
663 663  (((
664 -**Firmware download link:**
667 +The battery related documents as below:
665 665  )))
666 666  
667 -(((
668 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
669 -)))
670 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
671 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
672 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
670 670  
671 671  (((
672 -
675 +[[image:image-20220708140453-6.png]]
673 673  )))
674 674  
675 -(((
676 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
677 -)))
678 678  
679 -(((
680 -
681 -)))
682 682  
683 -(((
684 -**V1.0.**
685 -)))
680 +=== 2.9.2  Power consumption Analyze ===
686 686  
687 687  (((
688 -Release
683 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
689 689  )))
690 690  
691 691  
692 -== 2.11 ​Battery Analysis ==
693 -
694 -=== 2.11.1 ​Battery Type ===
695 -
696 696  (((
697 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
688 +Instruction to use as below:
698 698  )))
699 699  
700 700  (((
701 -The battery is designed to last for more than 5 years for the LSN50.
692 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
702 702  )))
703 703  
695 +
704 704  (((
705 -(((
706 -The battery-related documents are as below:
697 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
707 707  )))
708 -)))
709 709  
710 710  * (((
711 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
701 +Product Model
712 712  )))
713 713  * (((
714 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
704 +Uplink Interval
715 715  )))
716 716  * (((
717 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
707 +Working Mode
718 718  )))
719 719  
720 - [[image:image-20220606171726-9.png]]
710 +(((
711 +And the Life expectation in difference case will be shown on the right.
712 +)))
721 721  
714 +[[image:image-20220708141352-7.jpeg]]
722 722  
723 723  
724 -=== 2.11.2 ​Battery Note ===
725 725  
718 +=== 2.9.3  ​Battery Note ===
719 +
726 726  (((
727 727  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
728 728  )))
... ... @@ -729,299 +729,195 @@
729 729  
730 730  
731 731  
732 -=== 2.11.3 Replace the battery ===
726 +=== 2.9. Replace the battery ===
733 733  
734 734  (((
735 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
729 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
736 736  )))
737 737  
732 +
733 +
734 += 3. ​ Access NB-IoT Module =
735 +
738 738  (((
739 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
737 +Users can directly access the AT command set of the NB-IoT module.
740 740  )))
741 741  
742 742  (((
743 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
741 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
744 744  )))
745 745  
744 +[[image:1657261278785-153.png]]
746 746  
747 747  
748 -= 3. ​Using the AT Commands =
749 749  
750 -== 3.1 Access AT Commands ==
748 += 4.  Using the AT Commands =
751 751  
750 +== 4.1  Access AT Commands ==
752 752  
753 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
752 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
754 754  
755 -[[image:1654501986557-872.png]]
756 756  
755 +AT+<CMD>?  : Help on <CMD>
757 757  
758 -Or if you have below board, use below connection:
757 +AT+<CMD>         : Run <CMD>
759 759  
759 +AT+<CMD>=<value> : Set the value
760 760  
761 -[[image:1654502005655-729.png]]
761 +AT+<CMD>=?  : Get the value
762 762  
763 763  
764 -
765 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
766 -
767 -
768 - [[image:1654502050864-459.png]]
769 -
770 -
771 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
772 -
773 -
774 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
775 -
776 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
777 -
778 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
779 -
780 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
781 -
782 -
783 783  (% style="color:#037691" %)**General Commands**(%%)      
784 784  
785 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
766 +AT  : Attention       
786 786  
787 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
768 +AT?  : Short Help     
788 788  
789 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
770 +ATZ  : MCU Reset    
790 790  
791 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
772 +AT+TDC  : Application Data Transmission Interval
792 792  
774 +AT+CFG  : Print all configurations
793 793  
794 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
776 +AT+CFGMOD           : Working mode selection
795 795  
796 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
778 +AT+INTMOD            : Set the trigger interrupt mode
797 797  
798 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
780 +AT+5VT  : Set extend the time of 5V power  
799 799  
800 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
782 +AT+PRO  : Choose agreement
801 801  
802 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
784 +AT+WEIGRE  : Get weight or set weight to 0
803 803  
804 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
786 +AT+WEIGAP  : Get or Set the GapValue of weight
805 805  
806 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
788 +AT+RXDL  : Extend the sending and receiving time
807 807  
808 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
790 +AT+CNTFAC  : Get or set counting parameters
809 809  
810 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
792 +AT+SERVADDR  : Server Address
811 811  
812 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
813 813  
814 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
795 +(% style="color:#037691" %)**COAP Management**      
815 815  
816 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
797 +AT+URI            : Resource parameters
817 817  
818 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
819 819  
820 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
800 +(% style="color:#037691" %)**UDP Management**
821 821  
822 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
802 +AT+CFM          : Upload confirmation mode (only valid for UDP)
823 823  
824 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
825 825  
826 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
805 +(% style="color:#037691" %)**MQTT Management**
827 827  
807 +AT+CLIENT               : Get or Set MQTT client
828 828  
829 -(% style="color:#037691" %)**LoRa Network Management**
809 +AT+UNAME  : Get or Set MQTT Username
830 830  
831 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
811 +AT+PWD                  : Get or Set MQTT password
832 832  
833 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
813 +AT+PUBTOPI : Get or Set MQTT publish topic
834 834  
835 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
815 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
836 836  
837 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
838 838  
839 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
818 +(% style="color:#037691" %)**Information**          
840 840  
841 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
820 +AT+FDR  : Factory Data Reset
842 842  
843 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
822 +AT+PWOR : Serial Access Password
844 844  
845 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
846 846  
847 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
848 848  
849 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
826 += ​5.  FAQ =
850 850  
851 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
828 +== 5.1 How to Upgrade Firmware ==
852 852  
853 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
854 854  
855 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
831 +(((
832 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
833 +)))
856 856  
857 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
835 +(((
836 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
837 +)))
858 858  
859 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
839 +(((
840 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
841 +)))
860 860  
861 861  
862 -(% style="color:#037691" %)**Information** 
863 863  
864 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
845 +== 5.2  Can I calibrate NSE01 to different soil types? ==
865 865  
866 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
847 +(((
848 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
849 +)))
867 867  
868 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
869 869  
870 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
852 += 6.  Trouble Shooting =
871 871  
872 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
854 +== 6.1  ​Connection problem when uploading firmware ==
873 873  
874 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
875 875  
876 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
877 -
878 -
879 -= ​4. FAQ =
880 -
881 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
882 -
883 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10FirmwareChangeLog"]].
884 -When downloading the images, choose the required image file for download. ​
885 -
886 -
887 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
888 -
889 -
890 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
891 -
892 -
893 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
894 -
895 -[[image:image-20220606154726-3.png]]
896 -
897 -When you use the TTN network, the US915 frequency bands use are:
898 -
899 -* 903.9 - SF7BW125 to SF10BW125
900 -* 904.1 - SF7BW125 to SF10BW125
901 -* 904.3 - SF7BW125 to SF10BW125
902 -* 904.5 - SF7BW125 to SF10BW125
903 -* 904.7 - SF7BW125 to SF10BW125
904 -* 904.9 - SF7BW125 to SF10BW125
905 -* 905.1 - SF7BW125 to SF10BW125
906 -* 905.3 - SF7BW125 to SF10BW125
907 -* 904.6 - SF8BW500
908 -
909 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
910 -
911 -(% class="box infomessage" %)
912 912  (((
913 -**AT+CHE=2**
858 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
914 914  )))
915 915  
916 -(% class="box infomessage" %)
861 +(% class="wikigeneratedid" %)
917 917  (((
918 -**ATZ**
863 +
919 919  )))
920 920  
921 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
922 922  
867 +== 6.2  AT Command input doesn't work ==
923 923  
924 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
869 +(((
870 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
925 925  
926 -[[image:image-20220606154825-4.png]]
872 +
873 +)))
927 927  
928 928  
876 += 7. ​ Order Info =
929 929  
930 -= 5. Trouble Shooting =
931 931  
932 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
879 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
933 933  
934 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
935 935  
936 -
937 -== 5.2 AT Command input doesn’t work ==
938 -
939 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
940 -
941 -
942 -== 5.3 Device rejoin in at the second uplink packet ==
943 -
944 -(% style="color:#4f81bd" %)**Issue describe as below:**
945 -
946 -[[image:1654500909990-784.png]]
947 -
948 -
949 -(% style="color:#4f81bd" %)**Cause for this issue:**
950 -
951 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
952 -
953 -
954 -(% style="color:#4f81bd" %)**Solution: **
955 -
956 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
957 -
958 -[[image:1654500929571-736.png]]
959 -
960 -
961 -= 6. ​Order Info =
962 -
963 -
964 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
965 -
966 -
967 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
968 -
969 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
970 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
971 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
972 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
973 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
974 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
975 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
976 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
977 -
978 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
979 -
980 -* (% style="color:red" %)**4**(%%): 4000mAh battery
981 -* (% style="color:red" %)**8**(%%): 8500mAh battery
982 -
983 983  (% class="wikigeneratedid" %)
984 984  (((
985 985  
986 986  )))
987 987  
988 -= 7. Packing Info =
887 += 8.  Packing Info =
989 989  
990 990  (((
991 -**Package Includes**:
992 -)))
890 +
993 993  
994 -* (((
995 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
892 +(% style="color:#037691" %)**Package Includes**:
893 +
894 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
895 +* External antenna x 1
996 996  )))
997 997  
998 998  (((
999 999  
1000 -)))
1001 1001  
1002 -(((
1003 -**Dimension and weight**:
1004 -)))
901 +(% style="color:#037691" %)**Dimension and weight**:
1005 1005  
1006 -* (((
1007 -Device Size: cm
903 +* Size: 195 x 125 x 55 mm
904 +* Weight:   420g
1008 1008  )))
1009 -* (((
1010 -Device Weight: g
1011 -)))
1012 -* (((
1013 -Package Size / pcs : cm
1014 -)))
1015 -* (((
1016 -Weight / pcs : g
1017 1017  
907 +(((
908 +
1018 1018  
910 +
1019 1019  
1020 1020  )))
1021 1021  
1022 -= 8. Support =
914 += 9.  Support =
1023 1023  
1024 1024  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1025 1025  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1026 -
1027 -
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content