Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 24 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,8 +3,16 @@ 3 3 4 4 5 5 6 -**Contents:** 7 7 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 +**Table of Contents:** 15 + 8 8 {{toc/}} 9 9 10 10 ... ... @@ -12,63 +12,82 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 -= =1.1Whatis LoRaWAN Soil Moisture & EC Sensor==24 += 1. Introduction = 18 18 26 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 27 + 19 19 ((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 29 + 22 22 23 23 ((( 24 - Itdetects (% style="color:#4f81bd" %)**SoilMoisture**(%%),(%style="color:#4f81bd"%)**Soil Temperature**(%%)and(%style="color:#4f81bd"%)**SoilConductivity**(%%),anduploadsthevalueviawirelesstoLoRaWANIoT Server.32 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 25 25 ))) 26 26 27 27 ((( 28 - TheLoRawirelesstechnologyusedin LES01 allows devicetoend data andreachextremely longrangesatlowdata-rates. It provides ultra-longrangespreadspectrumcommunicationandhighinterferenceimmunitywhilst minimizing current consumption.36 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 29 29 ))) 30 30 31 31 ((( 32 - LES01is powered by (%style="color:#4f81bd"%)**4000mAor8500mAhLi-SOCI2battery**(%%),Itisdesignedfor long termuseup to10 years.40 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 33 ))) 34 34 35 35 ((( 36 - Each LES01ispre-loadwithasetfuniquekeys for LoRaWANregistrations,register thesekeys to localLoRaWANserver anditwill autoconnectafterpower on.44 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 37 37 ))) 38 38 47 + 48 +))) 39 39 40 40 [[image:1654503236291-817.png]] 41 41 42 42 43 -[[image:16545 03265560-120.png]]53 +[[image:1657245163077-232.png]] 44 44 45 45 46 46 47 -== 1.2 Features == 57 +== 1.2 Features == 48 48 49 -* LoRaWAN 1.0.3 Class A 50 -* Ultra low power consumption 59 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 51 51 * Monitor Soil Moisture 52 52 * Monitor Soil Temperature 53 53 * Monitor Soil Conductivity 54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 55 55 * AT Commands to change parameters 56 56 * Uplink on periodically 57 57 * Downlink to change configure 58 58 * IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 67 +* Ultra-Low Power consumption 68 +* AT Commands to change parameters 69 +* Micro SIM card slot for NB-IoT SIM 70 +* 8500mAh Battery for long term use 60 60 61 61 73 +== 1.3 Specification == 62 62 63 -== 1.3 Specification == 64 64 76 +(% style="color:#037691" %)**Common DC Characteristics:** 77 + 78 +* Supply Voltage: 2.1v ~~ 3.6v 79 +* Operating Temperature: -40 ~~ 85°C 80 + 81 +(% style="color:#037691" %)**NB-IoT Spec:** 82 + 83 +* - B1 @H-FDD: 2100MHz 84 +* - B3 @H-FDD: 1800MHz 85 +* - B8 @H-FDD: 900MHz 86 +* - B5 @H-FDD: 850MHz 87 +* - B20 @H-FDD: 800MHz 88 +* - B28 @H-FDD: 700MHz 89 + 90 +Probe(% style="color:#037691" %)** Specification:** 91 + 65 65 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 66 66 67 -[[image:image-20220 606162220-5.png]]94 +[[image:image-20220708101224-1.png]] 68 68 69 69 70 70 71 -== 1.4 Applications == 98 +== 1.4 Applications == 72 72 73 73 * Smart Agriculture 74 74 ... ... @@ -75,953 +75,744 @@ 75 75 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 76 76 77 77 78 -== 1.5 Firmware Changelog==105 +== 1.5 Pin Definitions == 79 79 80 80 81 - **LSE01v1.0 :** Release108 +[[image:1657246476176-652.png]] 82 82 83 83 84 84 85 -= 2. ConfigureLSE01 to connect toLoRaWANnetwork=112 += 2. Use NSE01 to communicate with IoT Server = 86 86 87 -== 2.1 How it works == 114 +== 2.1 How it works == 88 88 116 + 89 89 ((( 90 -The LSE01 isconfiguredasLoRaWANOTAAClass Amodebydefault.IthasOTAAkeystojoinLoRaWANnetwork.Toconnect a localLoRaWAN network,you need toinputtheOTAAkeysin theLoRaWANserverandpoweronthe LSE0150. It willautomaticallyjointhenetworkviaOTAA and starttosendthesensor value118 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 91 91 ))) 92 92 121 + 93 93 ((( 94 - In case you can’t set the OTAA keys in theLoRaWAN OTAA server,andyouhave tousethe keysfromtheserver, you can [[useAT Commands >>||anchor="H3.UsingtheATCommands"]].123 +The diagram below shows the working flow in default firmware of NSE01: 95 95 ))) 96 96 126 +[[image:image-20220708101605-2.png]] 97 97 98 - 99 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 100 - 101 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 102 - 103 - 104 -[[image:1654503992078-669.png]] 105 - 106 - 107 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 108 - 109 - 110 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 111 - 112 -Each LSE01 is shipped with a sticker with the default device EUI as below: 113 - 114 -[[image:image-20220606163732-6.jpeg]] 115 - 116 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 117 - 118 -**Add APP EUI in the application** 119 - 120 - 121 -[[image:1654504596150-405.png]] 122 - 123 - 124 - 125 -**Add APP KEY and DEV EUI** 126 - 127 -[[image:1654504683289-357.png]] 128 - 129 - 130 - 131 -**Step 2**: Power on LSE01 132 - 133 - 134 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 135 - 136 -[[image:image-20220606163915-7.png]] 137 - 138 - 139 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 140 - 141 -[[image:1654504778294-788.png]] 142 - 143 - 144 - 145 -== 2.3 Uplink Payload == 146 - 147 -=== 2.3.1 MOD~=0(Default Mode) === 148 - 149 -LSE01 will uplink payload via LoRaWAN with below payload format: 150 - 151 - 152 -Uplink payload includes in total 11 bytes. 128 +((( 153 153 154 - 155 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 156 -|=((( 157 -**Size** 158 - 159 -**(bytes)** 160 -)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1** 161 -|**Value**|(% style="width:46px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:160px" %)((( 162 -Temperature 163 - 164 -(Reserve, Ignore now) 165 -)))|(% style="width:104px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:126px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:114px" %)((( 166 -MOD & Digital Interrupt 167 - 168 -(Optional) 169 169 ))) 170 170 171 -[[image:1654504881641-514.png]] 172 172 173 173 134 +== 2.2 Configure the NSE01 == 174 174 175 -=== 2.3.2 MOD~=1(Original value) === 176 176 177 - Thismodecangettheoriginal AD value of moistureand original conductivity (with temperature drift compensation).137 +=== 2.2.1 Test Requirement === 178 178 179 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 180 -|=((( 181 -**Size** 182 182 183 -**(bytes)** 184 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1** 185 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 186 -Temperature 140 +((( 141 +To use NSE01 in your city, make sure meet below requirements: 142 +))) 187 187 188 - (Reserve,Ignorenow)189 - )))|[[SoilMoisture>>||anchor="H2.3.4SoilMoisture"|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[SoilConductivity(EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((190 - MOD&DigitalInterrupt144 +* Your local operator has already distributed a NB-IoT Network there. 145 +* The local NB-IoT network used the band that NSE01 supports. 146 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 191 191 192 -(Optional) 148 +((( 149 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 193 193 ))) 194 194 195 -[[image:1654504907647-967.png]] 196 196 153 +[[image:1657249419225-449.png]] 197 197 198 198 199 -=== 2.3.3 Battery Info === 200 200 201 - Checkthebattery voltageforLSE01.157 +=== 2.2.2 Insert SIM card === 202 202 203 -Ex1: 0x0B45 = 2885mV 159 +((( 160 +Insert the NB-IoT Card get from your provider. 161 +))) 204 204 205 -Ex2: 0x0B49 = 2889mV 163 +((( 164 +User need to take out the NB-IoT module and insert the SIM card like below: 165 +))) 206 206 207 207 168 +[[image:1657249468462-536.png]] 208 208 209 -=== 2.3.4 Soil Moisture === 210 210 211 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 212 212 213 - Forexample,ifthedatayougetfromtheregister is __0x050xDC__,themoisturecontentinthesoil is172 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 214 214 174 +((( 175 +((( 176 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 177 +))) 178 +))) 215 215 216 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 217 217 181 +**Connection:** 218 218 183 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 219 219 220 - ===2.3.5SoilTemperature===185 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 221 221 222 - Getthetemperature in the soil. The value range of the register is-4000 - +800(Decimal), divide this value by 100 toget the temperature in the soil. Forxample, if the data yougetfromtheregisteris 0x09 0xEC, the temperature content in the soil is187 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 223 223 224 -**Example**: 225 225 226 -I fpayload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp=0105(H)/100=2.61°C190 +In the PC, use below serial tool settings: 227 227 228 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 192 +* Baud: (% style="color:green" %)**9600** 193 +* Data bits:** (% style="color:green" %)8(%%)** 194 +* Stop bits: (% style="color:green" %)**1** 195 +* Parity: (% style="color:green" %)**None** 196 +* Flow Control: (% style="color:green" %)**None** 229 229 230 - 231 - 232 -=== 2.3.6 Soil Conductivity (EC) === 233 - 234 234 ((( 235 - Obtain(%style="color:#4f81bd"%)**__solublesaltconcentration__**(%%)insoil or(%style="color:#4f81bd" %)**__soluble ionconcentrationinliquidfertilizer__**(%%)or(% style="color:#4f81bd" %)**__planting medium__**(%%).Thevaluerange of the register is0- 20000(Decimal)( Canbe greater than20000).199 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 236 236 ))) 237 237 238 -((( 239 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 240 -))) 202 +[[image:image-20220708110657-3.png]] 241 241 242 242 ((( 243 - Generally,theECvalueofirrigationwaterisless than800uS/205 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 244 244 ))) 245 245 246 -((( 247 - 248 -))) 249 249 250 -((( 251 - 252 -))) 253 253 254 -=== 2. 3.7MOD===210 +=== 2.2.4 Use CoAP protocol to uplink data === 255 255 256 - Firmwareversion atleastv2.1supportschangingmode.212 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 257 257 258 -For example, bytes[10]=90 259 259 260 - mod=(bytes[10]>>7)&0x01=1.215 +**Use below commands:** 261 261 217 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 218 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 219 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 262 262 263 - DownlinkCommand:221 +For parameter description, please refer to AT command set 264 264 265 - If payload = 0x0A00, workmode=0223 +[[image:1657249793983-486.png]] 266 266 267 -If** **payload =** **0x0A01, workmode=1 268 268 226 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 269 269 228 +[[image:1657249831934-534.png]] 270 270 271 -=== 2.3.8 Decode payload in The Things Network === 272 272 273 -While using TTN network, you can add the payload format to decode the payload. 274 274 232 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 275 275 276 - [[image:1654505570700-128.png]]234 +This feature is supported since firmware version v1.0.1 277 277 278 -The payload decoder function for TTN is here: 279 279 280 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 237 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 238 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 239 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 281 281 241 +[[image:1657249864775-321.png]] 282 282 283 -== 2.4 Uplink Interval == 284 284 285 - The LSE01 by default uplink the sensor dataevery20minutes.User canchange this interval by AT Command or LoRaWAN Downlink Command. See this link:244 +[[image:1657249930215-289.png]] 286 286 287 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 288 288 289 289 248 +=== 2.2.6 Use MQTT protocol to uplink data === 290 290 291 - ==2.5DownlinkPayload==250 +This feature is supported since firmware version v110 292 292 293 -By default, LSE50 prints the downlink payload to console port. 294 294 295 -[[image:image-20220606165544-8.png]] 253 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 254 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 255 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 256 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 257 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 258 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 259 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 296 296 261 +[[image:1657249978444-674.png]] 297 297 298 -**Examples:** 299 299 264 +[[image:1657249990869-686.png]] 300 300 301 -* **Set TDC** 302 302 303 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 267 +((( 268 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 269 +))) 304 304 305 -Payload: 01 00 00 1E TDC=30S 306 306 307 -Payload: 01 00 00 3C TDC=60S 308 308 273 +=== 2.2.7 Use TCP protocol to uplink data === 309 309 310 - ***Reset**275 +This feature is supported since firmware version v110 311 311 312 -If payload = 0x04FF, it will reset the LSE01 313 313 278 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 279 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 314 314 315 - * **CFM**281 +[[image:1657250217799-140.png]] 316 316 317 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 318 318 284 +[[image:1657250255956-604.png]] 319 319 320 320 321 -== 2.6 Show Data in DataCake IoT Server == 322 322 323 - [[DATACAKE>>url:https://datacake.co/]]providesahumanfriendlyinterface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]]to connectto TTN and see the data in DATACAKE. Beloware the steps:288 +=== 2.2.8 Change Update Interval === 324 324 290 +User can use below command to change the (% style="color:green" %)**uplink interval**. 325 325 326 -* *Step1**:Besurethatyour device is programmedandproperlyconnectedto the networkatthistime.292 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 327 327 328 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 294 +((( 295 +(% style="color:red" %)**NOTE:** 296 +))) 329 329 298 +((( 299 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 300 +))) 330 330 331 -[[image:1654505857935-743.png]] 332 332 333 333 334 - [[image:1654505874829-548.png]]304 +== 2.3 Uplink Payload == 335 335 336 - Step3: Createan accountorloginDatacake.306 +In this mode, uplink payload includes in total 18 bytes 337 337 338 -Step 4: Search the LSE01 and add DevEUI. 308 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 309 +|=(% style="width: 60px;" %)((( 310 +**Size(bytes)** 311 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 312 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 339 339 314 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 340 340 341 -[[image:1654505905236-553.png]] 342 342 317 +[[image:image-20220708111918-4.png]] 343 343 344 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 345 345 346 - [[image:1654505925508-181.png]]320 +The payload is ASCII string, representative same HEX: 347 347 322 +0x72403155615900640c7817075e0a8c02f900 where: 348 348 324 +* Device ID: 0x 724031556159 = 724031556159 325 +* Version: 0x0064=100=1.0.0 349 349 350 -== 2.7 Frequency Plans == 327 +* BAT: 0x0c78 = 3192 mV = 3.192V 328 +* Singal: 0x17 = 23 329 +* Soil Moisture: 0x075e= 1886 = 18.86 % 330 +* Soil Temperature:0x0a8c =2700=27 °C 331 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 332 +* Interrupt: 0x00 = 0 351 351 352 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 353 353 335 +== 2.4 Payload Explanation and Sensor Interface == 354 354 355 -=== 2.7.1 EU863-870 (EU868) === 356 356 357 - (%style="color:#037691"%)**Uplink:**338 +=== 2.4.1 Device ID === 358 358 359 - 868.1-SF7BW125toSF12BW125340 +By default, the Device ID equal to the last 6 bytes of IMEI. 360 360 361 - 868.3-SF7BW125toSF12BW125andSF7BW250342 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 362 362 363 - 868.5 - SF7BW125 to SF12BW125344 +**Example:** 364 364 365 -8 67.1- SF7BW125to SF12BW125346 +AT+DEUI=A84041F15612 366 366 367 - 867.3-SF7BW125toSF12BW125348 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 368 368 369 -867.5 - SF7BW125 to SF12BW125 370 370 371 -867.7 - SF7BW125 to SF12BW125 372 372 373 - 867.9- SF7BW125toSF12BW125352 +=== 2.4.2 Version Info === 374 374 375 - 868.8 -FSK354 +Specify the software version: 0x64=100, means firmware version 1.00. 376 376 356 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 377 377 378 -(% style="color:#037691" %)** Downlink:** 379 379 380 -Uplink channels 1-9 (RX1) 381 381 382 - 869.525- SF9BW125(RX2 downlinkonly)360 +=== 2.4.3 Battery Info === 383 383 362 +((( 363 +Check the battery voltage for LSE01. 364 +))) 384 384 366 +((( 367 +Ex1: 0x0B45 = 2885mV 368 +))) 385 385 386 -=== 2.7.2 US902-928(US915) === 370 +((( 371 +Ex2: 0x0B49 = 2889mV 372 +))) 387 387 388 -Used in USA, Canada and South America. Default use CHE=2 389 389 390 -(% style="color:#037691" %)**Uplink:** 391 391 392 - 903.9-SF7BW125toSF10BW125376 +=== 2.4.4 Signal Strength === 393 393 394 - 904.1-SF7BW125to SF10BW125378 +NB-IoT Network signal Strength. 395 395 396 - 904.3 - SF7BW125to SF10BW125380 +**Ex1: 0x1d = 29** 397 397 398 - 904.5-SF7BW125toSF10BW125382 +(% style="color:blue" %)**0**(%%) -113dBm or less 399 399 400 - 904.7-SF7BW125toSF10BW125384 +(% style="color:blue" %)**1**(%%) -111dBm 401 401 402 - 904.9- SF7BW125toSF10BW125386 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 403 403 404 - 905.1-SF7BW125toSF10BW125388 +(% style="color:blue" %)**31** (%%) -51dBm or greater 405 405 406 -9 05.3-SF7BW125toSF10BW125390 +(% style="color:blue" %)**99** (%%) Not known or not detectable 407 407 408 408 409 -(% style="color:#037691" %)**Downlink:** 410 410 411 - 923.3-SF7BW500toSF12BW500394 +=== 2.4.5 Soil Moisture === 412 412 413 -923.9 - SF7BW500 to SF12BW500 396 +((( 397 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 398 +))) 414 414 415 -924.5 - SF7BW500 to SF12BW500 400 +((( 401 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 402 +))) 416 416 417 -925.1 - SF7BW500 to SF12BW500 404 +((( 405 + 406 +))) 418 418 419 -925.7 - SF7BW500 to SF12BW500 408 +((( 409 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 410 +))) 420 420 421 -926.3 - SF7BW500 to SF12BW500 422 422 423 -926.9 - SF7BW500 to SF12BW500 424 424 425 - 927.5-SF7BW500toSF12BW500414 +=== 2.4.6 Soil Temperature === 426 426 427 -923.3 - SF12BW500(RX2 downlink only) 416 +((( 417 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 418 +))) 428 428 420 +((( 421 +**Example**: 422 +))) 429 429 424 +((( 425 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 426 +))) 430 430 431 -=== 2.7.3 CN470-510 (CN470) === 428 +((( 429 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 430 +))) 432 432 433 -Used in China, Default use CHE=1 434 434 435 -(% style="color:#037691" %)**Uplink:** 436 436 437 -4 86.3-SF7BW125toSF12BW125434 +=== 2.4.7 Soil Conductivity (EC) === 438 438 439 -486.5 - SF7BW125 to SF12BW125 436 +((( 437 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 438 +))) 440 440 441 -486.7 - SF7BW125 to SF12BW125 440 +((( 441 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 442 +))) 442 442 443 -486.9 - SF7BW125 to SF12BW125 444 +((( 445 +Generally, the EC value of irrigation water is less than 800uS / cm. 446 +))) 444 444 445 -487.1 - SF7BW125 to SF12BW125 448 +((( 449 + 450 +))) 446 446 447 -487.3 - SF7BW125 to SF12BW125 452 +((( 453 + 454 +))) 448 448 449 -4 87.5-SF7BW125toSF12BW125456 +=== 2.4.8 Digital Interrupt === 450 450 451 - 487.7-SF7BW125toSF12BW125458 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 452 452 460 +The command is: 453 453 454 -(% style="color: #037691" %)**Downlink:**462 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 455 455 456 -506.7 - SF7BW125 to SF12BW125 457 457 458 - 506.9-SF7BW125toSF12BW125465 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 459 459 460 -507.1 - SF7BW125 to SF12BW125 461 461 462 - 507.3 - SF7BW125 to SF12BW125468 +Example: 463 463 464 - 507.5-SF7BW125to SF12BW125470 +0x(00): Normal uplink packet. 465 465 466 - 507.7 - SF7BW125toSF12BW125472 +0x(01): Interrupt Uplink Packet. 467 467 468 -507.9 - SF7BW125 to SF12BW125 469 469 470 -508.1 - SF7BW125 to SF12BW125 471 471 472 - 505.3- SF12BW125(RX2downlink only)476 +=== 2.4.9 +5V Output === 473 473 478 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 474 474 475 475 476 - ===2.7.4AU915-928(AU915)===481 +The 5V output time can be controlled by AT Command. 477 477 478 - DefaultuseCHE=2483 +(% style="color:blue" %)**AT+5VT=1000** 479 479 480 - (%style="color:#037691"%)**Uplink:**485 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 481 481 482 -916.8 - SF7BW125 to SF12BW125 483 483 484 -917.0 - SF7BW125 to SF12BW125 485 485 486 - 917.2- SF7BW125toSF12BW125489 +== 2.5 Downlink Payload == 487 487 488 - 917.4-SF7BW125toSF12BW125491 +By default, NSE01 prints the downlink payload to console port. 489 489 490 - 917.6-SF7BW125 to SF12BW125493 +[[image:image-20220708133731-5.png]] 491 491 492 -917.8 - SF7BW125 to SF12BW125 493 493 494 -918.0 - SF7BW125 to SF12BW125 496 +((( 497 +(% style="color:blue" %)**Examples:** 498 +))) 495 495 496 -918.2 - SF7BW125 to SF12BW125 500 +((( 501 + 502 +))) 497 497 504 +* ((( 505 +(% style="color:blue" %)**Set TDC** 506 +))) 498 498 499 -(% style="color:#037691" %)**Downlink:** 508 +((( 509 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 510 +))) 500 500 501 -923.3 - SF7BW500 to SF12BW500 512 +((( 513 +Payload: 01 00 00 1E TDC=30S 514 +))) 502 502 503 -923.9 - SF7BW500 to SF12BW500 516 +((( 517 +Payload: 01 00 00 3C TDC=60S 518 +))) 504 504 505 -924.5 - SF7BW500 to SF12BW500 520 +((( 521 + 522 +))) 506 506 507 -925.1 - SF7BW500 to SF12BW500 524 +* ((( 525 +(% style="color:blue" %)**Reset** 526 +))) 508 508 509 -925.7 - SF7BW500 to SF12BW500 528 +((( 529 +If payload = 0x04FF, it will reset the NSE01 530 +))) 510 510 511 -926.3 - SF7BW500 to SF12BW500 512 512 513 - 926.9-SF7BW500toSF12BW500533 +* (% style="color:blue" %)**INTMOD** 514 514 515 - 927.5-SF7BW500 toSF12BW500535 +Downlink Payload: 06000003, Set AT+INTMOD=3 516 516 517 -923.3 - SF12BW500(RX2 downlink only) 518 518 519 519 539 +== 2.6 LED Indicator == 520 520 521 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 541 +((( 542 +The NSE01 has an internal LED which is to show the status of different state. 522 522 523 -(% style="color:#037691" %)**Default Uplink channel:** 524 524 525 -923.2 - SF7BW125 to SF10BW125 545 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 546 +* Then the LED will be on for 1 second means device is boot normally. 547 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 548 +* For each uplink probe, LED will be on for 500ms. 549 +))) 526 526 527 -923.4 - SF7BW125 to SF10BW125 528 528 529 529 530 -(% style="color:#037691" %)**Additional Uplink Channel**: 531 531 532 - (OTAAmode,channelddedbyJoinAcceptmessage)554 +== 2.7 Installation in Soil == 533 533 534 - (% style="color:#037691" %)**AS920~~AS923 for Japan,Malaysia,Singapore**:556 +__**Measurement the soil surface**__ 535 535 536 - 922.2-SF7BW125SF10BW125558 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 537 537 538 - 922.4 - SF7BW125to SF10BW125560 +[[image:1657259653666-883.png]] 539 539 540 -922.6 - SF7BW125 to SF10BW125 541 541 542 -922.8 - SF7BW125 to SF10BW125 563 +((( 564 + 543 543 544 -923.0 - SF7BW125 to SF10BW125 566 +((( 567 +Dig a hole with diameter > 20CM. 568 +))) 545 545 546 -922.0 - SF7BW125 to SF10BW125 570 +((( 571 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 572 +))) 573 +))) 547 547 575 +[[image:1654506665940-119.png]] 548 548 549 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 577 +((( 578 + 579 +))) 550 550 551 -923.6 - SF7BW125 to SF10BW125 552 552 553 - 923.8- SF7BW125toSF10BW125582 +== 2.8 Firmware Change Log == 554 554 555 -924.0 - SF7BW125 to SF10BW125 556 556 557 - 924.2-SF7BW125toSF10BW125585 +Download URL & Firmware Change log 558 558 559 - 924.4-F7BW125toSF10BW125587 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 560 560 561 -924.6 - SF7BW125 to SF10BW125 562 562 590 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 563 563 564 -(% style="color:#037691" %)** Downlink:** 565 565 566 -Uplink channels 1-8 (RX1) 567 567 568 - 923.2- SF10BW125(RX2)594 +== 2.9 Battery Analysis == 569 569 596 +=== 2.9.1 Battery Type === 570 570 571 571 572 - ===2.7.6KR920-923(KR920)===599 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 573 573 574 -Default channel: 575 575 576 - 922.1-SF7BW125toSF12BW125602 +The battery is designed to last for several years depends on the actually use environment and update interval. 577 577 578 -922.3 - SF7BW125 to SF12BW125 579 579 580 - 922.5-SF7BW125toSF12BW125605 +The battery related documents as below: 581 581 607 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 608 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 609 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 582 582 583 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 584 - 585 -922.1 - SF7BW125 to SF12BW125 586 - 587 -922.3 - SF7BW125 to SF12BW125 588 - 589 -922.5 - SF7BW125 to SF12BW125 590 - 591 -922.7 - SF7BW125 to SF12BW125 592 - 593 -922.9 - SF7BW125 to SF12BW125 594 - 595 -923.1 - SF7BW125 to SF12BW125 596 - 597 -923.3 - SF7BW125 to SF12BW125 598 - 599 - 600 -(% style="color:#037691" %)**Downlink:** 601 - 602 -Uplink channels 1-7(RX1) 603 - 604 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 605 - 606 - 607 - 608 -=== 2.7.7 IN865-867 (IN865) === 609 - 610 -(% style="color:#037691" %)** Uplink:** 611 - 612 -865.0625 - SF7BW125 to SF12BW125 613 - 614 -865.4025 - SF7BW125 to SF12BW125 615 - 616 -865.9850 - SF7BW125 to SF12BW125 617 - 618 - 619 -(% style="color:#037691" %) **Downlink:** 620 - 621 -Uplink channels 1-3 (RX1) 622 - 623 -866.550 - SF10BW125 (RX2) 624 - 625 - 626 - 627 - 628 -== 2.8 LED Indicator == 629 - 630 -The LSE01 has an internal LED which is to show the status of different state. 631 - 632 -* Blink once when device power on. 633 -* Solid ON for 5 seconds once device successful Join the network. 634 -* Blink once when device transmit a packet. 635 - 636 -== 2.9 Installation in Soil == 637 - 638 -**Measurement the soil surface** 639 - 640 - 641 -[[image:1654506634463-199.png]] 642 - 643 643 ((( 644 -((( 645 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 612 +[[image:image-20220708140453-6.png]] 646 646 ))) 647 -))) 648 648 649 649 650 -[[image:1654506665940-119.png]] 651 651 652 -((( 653 -Dig a hole with diameter > 20CM. 654 -))) 617 +=== 2.9.2 Power consumption Analyze === 655 655 656 656 ((( 657 - Horizontalinsertthe probeto the soil andfill the holefor longtermmeasurement.620 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 658 658 ))) 659 659 660 660 661 -== 2.10 Firmware Change Log == 662 - 663 663 ((( 664 - **Firmware downloadlink:**625 +Instruction to use as below: 665 665 ))) 666 666 667 667 ((( 668 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/ LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]629 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 669 669 ))) 670 670 671 -((( 672 - 673 -))) 674 674 675 675 ((( 676 - **FirmwareUpgradeMethod: **[[FirmwareUpgradeInstruction>>doc:Main.FirmwareUpgradeInstruction for STM32 baseproducts.WebHome]]634 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 677 677 ))) 678 678 679 -((( 680 - 637 +* ((( 638 +Product Model 681 681 ))) 682 - 683 -((( 684 -**V1.0.** 640 +* ((( 641 +Uplink Interval 685 685 ))) 643 +* ((( 644 +Working Mode 645 +))) 686 686 687 687 ((( 688 - Release648 +And the Life expectation in difference case will be shown on the right. 689 689 ))) 690 690 651 +[[image:image-20220708141352-7.jpeg]] 691 691 692 -== 2.11 Battery Analysis == 693 693 694 -=== 2.11.1 Battery Type === 695 695 696 -((( 697 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 698 -))) 655 +=== 2.9.3 Battery Note === 699 699 700 700 ((( 701 -The battery is designed to last for more than5 yearsfor theLSN50.658 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 702 702 ))) 703 703 704 -((( 705 -((( 706 -The battery-related documents are as below: 707 -))) 708 -))) 709 709 710 -* ((( 711 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 712 -))) 713 -* ((( 714 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 715 -))) 716 -* ((( 717 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 718 -))) 719 719 720 - [[image:image-20220606171726-9.png]]663 +=== 2.9.4 Replace the battery === 721 721 722 - 723 - 724 -=== 2.11.2 Battery Note === 725 - 726 726 ((( 727 -The Li-SICObatteryisdesigned forsmallcurrent/longperiodapplication. Itis notgood to use ahigh current,shortperiodtransmitmethod. Therecommendedminimum periodfor use ofthisbatteryis5minutes.If you useahorterperiodtimeto transmitLoRa, then the battery lifemaybe decreased.666 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 728 728 ))) 729 729 730 730 731 731 732 -= ==2.11.3Replacethebattery===671 += 3. Access NB-IoT Module = 733 733 734 734 ((( 735 - If Battery islower than2.7v, user shouldplace thebatteryofLSE01.674 +Users can directly access the AT command set of the NB-IoT module. 736 736 ))) 737 737 738 738 ((( 739 - Youcan changethebatteryintheLSE01.Thetypeofbattery is notlimitedaslongas the outputisbetween3v to3.6v. On themainboard, there isa diode(D1) between the battery andthe main circuit. If you needo usea battery with lessthan 3.3v, pleaseremovethe D1 andshortcut thetwopadsofit sothere won’t be voltageop between battery andmain board.678 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 740 740 ))) 741 741 742 -((( 743 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 744 -))) 681 +[[image:1657261278785-153.png]] 745 745 746 746 747 747 748 -= 3.Using the AT Commands =685 += 4. Using the AT Commands = 749 749 750 -== 3.1 Access AT Commands ==687 +== 4.1 Access AT Commands == 751 751 689 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 752 752 753 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 754 754 755 - [[image:1654501986557-872.png]]692 +AT+<CMD>? : Help on <CMD> 756 756 694 +AT+<CMD> : Run <CMD> 757 757 758 - Orifyouhavebelowboard,usebelowconnection:696 +AT+<CMD>=<value> : Set the value 759 759 698 +AT+<CMD>=? : Get the value 760 760 761 -[[image:1654502005655-729.png]] 762 762 763 - 764 - 765 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 766 - 767 - 768 - [[image:1654502050864-459.png]] 769 - 770 - 771 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 772 - 773 - 774 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 775 - 776 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 777 - 778 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 779 - 780 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 781 - 782 - 783 783 (% style="color:#037691" %)**General Commands**(%%) 784 784 785 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention703 +AT : Attention 786 786 787 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help705 +AT? : Short Help 788 788 789 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset707 +ATZ : MCU Reset 790 790 791 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval709 +AT+TDC : Application Data Transmission Interval 792 792 711 +AT+CFG : Print all configurations 793 793 794 - (%style="color:#037691"%)**Keys,IDsand EUIs management**713 +AT+CFGMOD : Working mode selection 795 795 796 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI715 +AT+INTMOD : Set the trigger interrupt mode 797 797 798 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey717 +AT+5VT : Set extend the time of 5V power 799 799 800 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key719 +AT+PRO : Choose agreement 801 801 802 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress721 +AT+WEIGRE : Get weight or set weight to 0 803 803 804 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI723 +AT+WEIGAP : Get or Set the GapValue of weight 805 805 806 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)725 +AT+RXDL : Extend the sending and receiving time 807 807 808 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network727 +AT+CNTFAC : Get or set counting parameters 809 809 810 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode729 +AT+SERVADDR : Server Address 811 811 812 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 813 813 814 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network732 +(% style="color:#037691" %)**COAP Management** 815 815 816 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode734 +AT+URI : Resource parameters 817 817 818 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 819 819 820 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format737 +(% style="color:#037691" %)**UDP Management** 821 821 822 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat739 +AT+CFM : Upload confirmation mode (only valid for UDP) 823 823 824 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 825 825 826 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data742 +(% style="color:#037691" %)**MQTT Management** 827 827 744 +AT+CLIENT : Get or Set MQTT client 828 828 829 - (%style="color:#037691"%)**LoRaNetworkManagement**746 +AT+UNAME : Get or Set MQTT Username 830 830 831 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate748 +AT+PWD : Get or Set MQTT password 832 832 833 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA750 +AT+PUBTOPIC : Get or Set MQTT publish topic 834 834 835 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting752 +AT+SUBTOPIC : Get or Set MQTT subscription topic 836 836 837 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 838 838 839 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink755 +(% style="color:#037691" %)**Information** 840 840 841 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink757 +AT+FDR : Factory Data Reset 842 842 843 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1759 +AT+PWORD : Serial Access Password 844 844 845 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 846 846 847 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 848 848 849 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1763 += 5. FAQ = 850 850 851 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2765 +== 5.1 How to Upgrade Firmware == 852 852 853 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 854 854 855 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 768 +((( 769 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 770 +))) 856 856 857 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 858 - 859 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 860 - 861 - 862 -(% style="color:#037691" %)**Information** 863 - 864 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 865 - 866 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 867 - 868 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 869 - 870 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 871 - 872 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 873 - 874 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 875 - 876 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 877 - 878 - 879 -= 4. FAQ = 880 - 881 -== 4.1 How to change the LoRa Frequency Bands/Region? == 882 - 883 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10FirmwareChangeLog"]]. 884 -When downloading the images, choose the required image file for download. 885 - 886 - 887 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 888 - 889 - 890 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 891 - 892 - 893 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 894 - 895 -[[image:image-20220606154726-3.png]] 896 - 897 -When you use the TTN network, the US915 frequency bands use are: 898 - 899 -* 903.9 - SF7BW125 to SF10BW125 900 -* 904.1 - SF7BW125 to SF10BW125 901 -* 904.3 - SF7BW125 to SF10BW125 902 -* 904.5 - SF7BW125 to SF10BW125 903 -* 904.7 - SF7BW125 to SF10BW125 904 -* 904.9 - SF7BW125 to SF10BW125 905 -* 905.1 - SF7BW125 to SF10BW125 906 -* 905.3 - SF7BW125 to SF10BW125 907 -* 904.6 - SF8BW500 908 - 909 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 910 - 911 -(% class="box infomessage" %) 912 912 ((( 913 - **AT+CHE=2**773 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 914 914 ))) 915 915 916 -(% class="box infomessage" %) 917 917 ((( 918 - **ATZ**777 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 919 919 ))) 920 920 921 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 922 922 923 923 924 - The**AU915**band is similar. Beloware the AU915 UplinkChannels.782 += 6. Trouble Shooting = 925 925 926 - [[image:image-20220606154825-4.png]]784 +== 6.1 Connection problem when uploading firmware == 927 927 928 928 787 +(% class="wikigeneratedid" %) 788 +((( 789 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]] 790 +))) 929 929 930 -= 5. Trouble Shooting = 931 931 932 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 933 933 934 - Itis due to channel mapping.Please see the [[Eight Channel Mode>>doc:Main.LoRaWANCommunicationDebug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]sectionabove fordetails.794 +== 6.2 AT Command input doesn't work == 935 935 796 +((( 797 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 798 +))) 936 936 937 -== 5.2 AT Command input doesn’t work == 938 938 939 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 940 940 802 += 7. Order Info = 941 941 942 -== 5.3 Device rejoin in at the second uplink packet == 943 943 944 -(% style="color:#4f81bd" %)** Issue describe as below:**805 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 945 945 946 -[[image:1654500909990-784.png]] 947 947 948 - 949 -(% style="color:#4f81bd" %)**Cause for this issue:** 950 - 951 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 952 - 953 - 954 -(% style="color:#4f81bd" %)**Solution: ** 955 - 956 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 957 - 958 -[[image:1654500929571-736.png]] 959 - 960 - 961 -= 6. Order Info = 962 - 963 - 964 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 965 - 966 - 967 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 968 - 969 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 970 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 971 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 972 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 973 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 974 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 975 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 976 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 977 - 978 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 979 - 980 -* (% style="color:red" %)**4**(%%): 4000mAh battery 981 -* (% style="color:red" %)**8**(%%): 8500mAh battery 982 - 983 983 (% class="wikigeneratedid" %) 984 984 ((( 985 985 986 986 ))) 987 987 988 -= 7. Packing Info =813 += 8. Packing Info = 989 989 990 990 ((( 991 -**Package Includes**: 992 -))) 816 + 993 993 994 -* ((( 995 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 818 +(% style="color:#037691" %)**Package Includes**: 819 + 820 + 821 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 822 +* External antenna x 1 996 996 ))) 997 997 998 998 ((( 999 999 1000 -))) 1001 1001 1002 -((( 1003 -**Dimension and weight**: 1004 -))) 828 +(% style="color:#037691" %)**Dimension and weight**: 1005 1005 1006 -* ((( 1007 -Device Size: cm 830 + 831 +* Size: 195 x 125 x 55 mm 832 +* Weight: 420g 1008 1008 ))) 1009 -* ((( 1010 -Device Weight: g 1011 -))) 1012 -* ((( 1013 -Package Size / pcs : cm 1014 -))) 1015 -* ((( 1016 -Weight / pcs : g 1017 1017 835 +((( 836 + 1018 1018 838 + 1019 1019 1020 1020 ))) 1021 1021 1022 -= 8. Support =842 += 9. Support = 1023 1023 1024 1024 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1025 1025 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1026 - 1027 -
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content