Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 24 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220606151504-2.jpeg||height=" 848" width="848"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 ... ... @@ -8,976 +8,825 @@ 8 8 9 9 10 10 11 -= 1. Introduction = 12 12 13 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 14 14 15 -((( 16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 -))) 18 18 19 -((( 20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 21 -))) 14 +**Table of Contents:** 22 22 23 -((( 24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 25 -))) 16 +{{toc/}} 26 26 27 -((( 28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 29 -))) 30 30 31 -((( 32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 -))) 34 34 35 35 36 -[[image:1654503236291-817.png]] 37 37 38 38 39 - [[image:1654503265560-120.png]]23 += 1. Introduction = 40 40 25 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 41 41 42 - 43 -== 1.2 Features == 44 - 45 -* LoRaWAN 1.0.3 Class A 46 -* Ultra low power consumption 47 -* Monitor Soil Moisture 48 -* Monitor Soil Temperature 49 -* Monitor Soil Conductivity 50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 -* AT Commands to change parameters 52 -* Uplink on periodically 53 -* Downlink to change configure 54 -* IP66 Waterproof Enclosure 55 -* 4000mAh or 8500mAh Battery for long term use 56 - 57 -== 1.3 Specification == 58 - 59 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 60 - 61 -[[image:image-20220606162220-5.png]] 62 - 63 - 64 - 65 -== 1.4 Applications == 66 - 67 -* Smart Agriculture 68 - 69 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 70 - 71 - 72 -== 1.5 Firmware Change log == 73 - 74 - 75 -**LSE01 v1.0 :** Release 76 - 77 - 78 - 79 -= 2. Configure LSE01 to connect to LoRaWAN network = 80 - 81 -== 2.1 How it works == 82 - 83 83 ((( 84 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 85 -))) 28 + 86 86 87 -((( 88 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 89 -))) 30 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 90 90 32 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 91 91 34 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 92 92 93 - ==2.2QuickguidetoconnecttoLoRaWANserver(OTAA) ==36 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 94 94 95 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 96 - 97 - 98 -[[image:1654503992078-669.png]] 99 - 100 - 101 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 102 - 103 - 104 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 105 - 106 -Each LSE01 is shipped with a sticker with the default device EUI as below: 107 - 108 -[[image:image-20220606163732-6.jpeg]] 109 - 110 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 111 - 112 -**Add APP EUI in the application** 113 - 114 - 115 -[[image:1654504596150-405.png]] 116 - 117 - 118 - 119 -**Add APP KEY and DEV EUI** 120 - 121 -[[image:1654504683289-357.png]] 122 - 123 - 124 - 125 -**Step 2**: Power on LSE01 126 - 127 - 128 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 129 - 130 -[[image:image-20220606163915-7.png]] 131 - 132 - 133 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 134 - 135 -[[image:1654504778294-788.png]] 136 - 137 - 138 - 139 -== 2.3 Uplink Payload == 140 - 141 -=== 2.3.1 MOD~=0(Default Mode) === 142 - 143 -LSE01 will uplink payload via LoRaWAN with below payload format: 144 - 145 - 146 -Uplink payload includes in total 11 bytes. 147 147 148 - 149 -|((( 150 -**Size** 151 - 152 -**(bytes)** 153 -)))|**2**|**2**|**2**|**2**|**2**|**1** 154 -|**Value**|[[BAT>>path:#bat]]|((( 155 -Temperature 156 - 157 -(Reserve, Ignore now) 158 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|((( 159 -MOD & Digital Interrupt 160 - 161 -(Optional) 162 162 ))) 163 163 164 -[[image:165450 4881641-514.png]]41 +[[image:1654503236291-817.png]] 165 165 166 166 44 +[[image:1657245163077-232.png]] 167 167 168 -=== 2.3.2 MOD~=1(Original value) === 169 169 170 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 171 171 172 -|((( 173 -**Size** 48 +== 1.2 Features == 174 174 175 -**(bytes)** 176 -)))|**2**|**2**|**2**|**2**|**2**|**1** 177 -|**Value**|[[BAT>>path:#bat]]|((( 178 -Temperature 50 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 51 +* Monitor Soil Moisture 52 +* Monitor Soil Temperature 53 +* Monitor Soil Conductivity 54 +* AT Commands to change parameters 55 +* Uplink on periodically 56 +* Downlink to change configure 57 +* IP66 Waterproof Enclosure 58 +* Ultra-Low Power consumption 59 +* AT Commands to change parameters 60 +* Micro SIM card slot for NB-IoT SIM 61 +* 8500mAh Battery for long term use 179 179 180 -(Reserve, Ignore now) 181 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|((( 182 -MOD & Digital Interrupt 183 183 184 -(Optional) 185 -))) 186 186 187 - [[image:1654504907647-967.png]]65 +== 1.3 Specification == 188 188 189 189 68 +(% style="color:#037691" %)**Common DC Characteristics:** 190 190 191 -=== 2.3.3 Battery Info === 70 +* Supply Voltage: 2.1v ~~ 3.6v 71 +* Operating Temperature: -40 ~~ 85°C 192 192 193 -Check the battery voltage for LSE01. 194 194 195 - Ex1:0x0B45= 2885mV74 +(% style="color:#037691" %)**NB-IoT Spec:** 196 196 197 -Ex2: 0x0B49 = 2889mV 76 +* - B1 @H-FDD: 2100MHz 77 +* - B3 @H-FDD: 1800MHz 78 +* - B8 @H-FDD: 900MHz 79 +* - B5 @H-FDD: 850MHz 80 +* - B20 @H-FDD: 800MHz 81 +* - B28 @H-FDD: 700MHz 198 198 199 199 84 +Probe(% style="color:#037691" %)** Specification:** 200 200 201 - ===2.3.4 SoilMoisture===86 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 202 202 203 - Get the moisturecontent of the soil. The value rangeof the register is 0-10000(Decimal), divide this value by100 to get thepercentage of moisture in the soil.88 +[[image:image-20220708101224-1.png]] 204 204 205 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 206 206 207 207 208 - (% style="color:#4f81bd" %)**05DC(H)= 1500(D)/100=15%.**92 +== 1.4 Applications == 209 209 94 +* Smart Agriculture 210 210 96 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 97 + 211 211 212 -== =2.3.5SoilTemperature===99 +== 1.5 Pin Definitions == 213 213 214 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 215 215 216 - **Example**:102 +[[image:1657246476176-652.png]] 217 217 218 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 219 219 220 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 221 221 106 += 2. Use NSE01 to communicate with IoT Server = 222 222 108 +== 2.1 How it works == 223 223 224 -=== 2.3.6 Soil Conductivity (EC) === 225 225 226 226 ((( 227 - Obtain(%style="color:#4f81bd"%)**__solublesaltconcentration__**(%%)insoil or (% style="color:#4f81bd"%)**__soluble ionconcentrationinliquidfertilizer__**(%%)or(% style="color:#4f81bd"%)**__plantingmedium__**(%%). Thevaluerangeftheregister is0 - 20000(Decimal)(Canbegreaterthan20000).112 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 228 228 ))) 229 229 230 -((( 231 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 232 -))) 233 233 234 234 ((( 235 - Generally,theEC valueof irrigationwateris lessthan800uS/ cm.117 +The diagram below shows the working flow in default firmware of NSE01: 236 236 ))) 237 237 238 -((( 239 - 240 -))) 120 +[[image:image-20220708101605-2.png]] 241 241 242 242 ((( 243 243 244 244 ))) 245 245 246 -=== 2.3.7 MOD === 247 247 248 -Firmware version at least v2.1 supports changing mode. 249 249 250 - Forxample,bytes[10]=90128 +== 2.2 Configure the NSE01 == 251 251 252 -mod=(bytes[10]>>7)&0x01=1. 253 253 131 +=== 2.2.1 Test Requirement === 254 254 255 -Downlink Command: 256 256 257 - If payload=0x0A00,workmode=0134 +To use NSE01 in your city, make sure meet below requirements: 258 258 259 -If** **payload =** **0x0A01, workmode=1 136 +* Your local operator has already distributed a NB-IoT Network there. 137 +* The local NB-IoT network used the band that NSE01 supports. 138 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 260 260 140 +((( 141 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 142 +))) 261 261 262 262 263 - ===2.3.8 Decodepayload inThe Things Network ===145 +[[image:1657249419225-449.png]] 264 264 265 -While using TTN network, you can add the payload format to decode the payload. 266 266 267 267 268 - [[image:1654505570700-128.png]]149 +=== 2.2.2 Insert SIM card === 269 269 270 - ThepayloaddecoderfunctionforTTNis here:151 +Insert the NB-IoT Card get from your provider. 271 271 272 - LSE01 TTN Payload Decoder:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]153 +User need to take out the NB-IoT module and insert the SIM card like below: 273 273 274 274 275 - ==2.4Uplink Interval ==156 +[[image:1657249468462-536.png]] 276 276 277 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: 278 278 279 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 280 280 160 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 281 281 162 +((( 163 +((( 164 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 165 +))) 166 +))) 282 282 283 -== 2.5 Downlink Payload == 284 284 285 - By default, LSE50 prints the downlink payloadtoconsole port.169 +**Connection:** 286 286 287 - [[image:image-20220606165544-8.png]]171 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 288 288 173 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 289 289 290 - **Examples:**175 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 291 291 292 292 293 - ***SetTDC**178 +In the PC, use below serial tool settings: 294 294 295 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 180 +* Baud: (% style="color:green" %)**9600** 181 +* Data bits:** (% style="color:green" %)8(%%)** 182 +* Stop bits: (% style="color:green" %)**1** 183 +* Parity: (% style="color:green" %)**None** 184 +* Flow Control: (% style="color:green" %)**None** 296 296 297 -Payload: 01 00 00 1E TDC=30S 186 +((( 187 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 188 +))) 298 298 299 - Payload:1000 3C TDC=60S190 +[[image:image-20220708110657-3.png]] 300 300 192 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 301 301 302 -* **Reset** 303 303 304 -If payload = 0x04FF, it will reset the LSE01 305 305 196 +=== 2.2.4 Use CoAP protocol to uplink data === 306 306 307 - ***CFM**198 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 308 308 309 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 310 310 201 +**Use below commands:** 311 311 203 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 204 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 205 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 312 312 313 - == 2.6 ShowData inDataCakeIoT Server==207 +For parameter description, please refer to AT command set 314 314 315 -[[ DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]]to connect to TTN and see the data in DATACAKE. Below are the steps:209 +[[image:1657249793983-486.png]] 316 316 317 317 318 - **Step1**: Be sure thatyour deviceis programmed andproperlyconnectedtothenetworkat this time.212 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 319 319 320 - **Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add theDATACAKE integration,perform the followingsteps:214 +[[image:1657249831934-534.png]] 321 321 322 322 323 -[[image:1654505857935-743.png]] 324 324 218 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 325 325 326 - [[image:1654505874829-548.png]]220 +This feature is supported since firmware version v1.0.1 327 327 328 -Step 3: Create an account or log in Datacake. 329 329 330 -Step 4: Search the LSE01 and add DevEUI. 223 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 224 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 225 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 331 331 227 +[[image:1657249864775-321.png]] 332 332 333 -[[image:1654505905236-553.png]] 334 334 230 +[[image:1657249930215-289.png]] 335 335 336 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 337 337 338 -[[image:1654505925508-181.png]] 339 339 234 +=== 2.2.6 Use MQTT protocol to uplink data === 340 340 236 +This feature is supported since firmware version v110 341 341 342 -== 2.7 Frequency Plans == 343 343 344 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 239 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 240 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 241 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 242 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 243 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 244 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 245 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 345 345 247 +[[image:1657249978444-674.png]] 346 346 347 -=== 2.7.1 EU863-870 (EU868) === 348 348 349 - (% style="color:#037691" %)** Uplink:**250 +[[image:1657249990869-686.png]] 350 350 351 -868.1 - SF7BW125 to SF12BW125 352 352 353 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 253 +((( 254 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 255 +))) 354 354 355 -868.5 - SF7BW125 to SF12BW125 356 356 357 -867.1 - SF7BW125 to SF12BW125 358 358 359 - 867.3-SF7BW125toSF12BW125259 +=== 2.2.7 Use TCP protocol to uplink data === 360 360 361 - 867.5-SF7BW125toSF12BW125261 +This feature is supported since firmware version v110 362 362 363 -867.7 - SF7BW125 to SF12BW125 364 364 365 -867.9 - SF7BW125 to SF12BW125 264 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 265 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 366 366 367 - 868.8-FSK267 +[[image:1657250217799-140.png]] 368 368 369 369 370 - (% style="color:#037691" %)** Downlink:**270 +[[image:1657250255956-604.png]] 371 371 372 -Uplink channels 1-9 (RX1) 373 373 374 -869.525 - SF9BW125 (RX2 downlink only) 375 375 274 +=== 2.2.8 Change Update Interval === 376 376 276 +User can use below command to change the (% style="color:green" %)**uplink interval**. 377 377 378 -== =2.7.2US902-928(US915)===278 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 379 379 380 -Used in USA, Canada and South America. Default use CHE=2 280 +((( 281 +(% style="color:red" %)**NOTE:** 282 +))) 381 381 382 -(% style="color:#037691" %)**Uplink:** 284 +((( 285 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 286 +))) 383 383 384 -903.9 - SF7BW125 to SF10BW125 385 385 386 -904.1 - SF7BW125 to SF10BW125 387 387 388 - 904.3-SF7BW125 toSF10BW125290 +== 2.3 Uplink Payload == 389 389 390 - 904.5-SF7BW125toSF10BW125292 +In this mode, uplink payload includes in total 18 bytes 391 391 392 -904.7 - SF7BW125 to SF10BW125 294 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 295 +|=(% style="width: 50px;" %)((( 296 +**Size(bytes)** 297 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 298 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 393 393 394 - 904.9-SF7BW125to SF10BW125300 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 395 395 396 -905.1 - SF7BW125 to SF10BW125 397 397 398 - 905.3-SF7BW125 to SF10BW125303 +[[image:image-20220708111918-4.png]] 399 399 400 400 401 - (%style="color:#037691"%)**Downlink:**306 +The payload is ASCII string, representative same HEX: 402 402 403 - 923.3 - SF7BW500to SF12BW500308 +0x72403155615900640c7817075e0a8c02f900 where: 404 404 405 -923.9 - SF7BW500 to SF12BW500 310 +* Device ID: 0x 724031556159 = 724031556159 311 +* Version: 0x0064=100=1.0.0 406 406 407 -924.5 - SF7BW500 to SF12BW500 313 +* BAT: 0x0c78 = 3192 mV = 3.192V 314 +* Singal: 0x17 = 23 315 +* Soil Moisture: 0x075e= 1886 = 18.86 % 316 +* Soil Temperature:0x0a8c =2700=27 °C 317 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 318 +* Interrupt: 0x00 = 0 408 408 409 -925.1 - SF7BW500 to SF12BW500 410 410 411 -925.7 - SF7BW500 to SF12BW500 412 412 413 - 926.3-SF7BW500to SF12BW500322 +== 2.4 Payload Explanation and Sensor Interface == 414 414 415 -926.9 - SF7BW500 to SF12BW500 416 416 417 - 927.5-SF7BW500 to SF12BW500325 +=== 2.4.1 Device ID === 418 418 419 - 923.3 - SF12BW500(RX2downlinkonly)327 +By default, the Device ID equal to the last 6 bytes of IMEI. 420 420 329 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 421 421 331 +**Example:** 422 422 423 -= == 2.7.3 CN470-510 (CN470) ===333 +AT+DEUI=A84041F15612 424 424 425 - Used inChina,DefaultuseCHE=1335 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 426 426 427 -(% style="color:#037691" %)**Uplink:** 428 428 429 -486.3 - SF7BW125 to SF12BW125 430 430 431 -4 86.5 - SF7BW125toSF12BW125339 +=== 2.4.2 Version Info === 432 432 433 - 486.7-SF7BW125toSF12BW125341 +Specify the software version: 0x64=100, means firmware version 1.00. 434 434 435 - 486.9-SF7BW125toSF12BW125343 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 436 436 437 -487.1 - SF7BW125 to SF12BW125 438 438 439 -487.3 - SF7BW125 to SF12BW125 440 440 441 -4 87.5- SF7BW125toSF12BW125347 +=== 2.4.3 Battery Info === 442 442 443 -487.7 - SF7BW125 to SF12BW125 349 +((( 350 +Check the battery voltage for LSE01. 351 +))) 444 444 353 +((( 354 +Ex1: 0x0B45 = 2885mV 355 +))) 445 445 446 -(% style="color:#037691" %)**Downlink:** 357 +((( 358 +Ex2: 0x0B49 = 2889mV 359 +))) 447 447 448 -506.7 - SF7BW125 to SF12BW125 449 449 450 -506.9 - SF7BW125 to SF12BW125 451 451 452 - 507.1-SF7BW125toSF12BW125363 +=== 2.4.4 Signal Strength === 453 453 454 - 507.3-SF7BW125to SF12BW125365 +NB-IoT Network signal Strength. 455 455 456 - 507.5- SF7BW125toSF12BW125367 +**Ex1: 0x1d = 29** 457 457 458 - 507.7-SF7BW125toSF12BW125369 +(% style="color:blue" %)**0**(%%) -113dBm or less 459 459 460 - 507.9-SF7BW125toSF12BW125371 +(% style="color:blue" %)**1**(%%) -111dBm 461 461 462 - 508.1- SF7BW125toSF12BW125373 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 463 463 464 - 505.3-SF12BW125(RX2downlinkonly)375 +(% style="color:blue" %)**31** (%%) -51dBm or greater 465 465 377 +(% style="color:blue" %)**99** (%%) Not known or not detectable 466 466 467 467 468 -=== 2.7.4 AU915-928(AU915) === 469 469 470 - DefaultuseCHE=2381 +=== 2.4.5 Soil Moisture === 471 471 472 -(% style="color:#037691" %)**Uplink:** 383 +((( 384 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 385 +))) 473 473 474 -916.8 - SF7BW125 to SF12BW125 387 +((( 388 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 389 +))) 475 475 476 -917.0 - SF7BW125 to SF12BW125 391 +((( 392 + 393 +))) 477 477 478 -917.2 - SF7BW125 to SF12BW125 395 +((( 396 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 397 +))) 479 479 480 -917.4 - SF7BW125 to SF12BW125 481 481 482 -917.6 - SF7BW125 to SF12BW125 483 483 484 - 917.8-SF7BW125toSF12BW125401 +=== 2.4.6 Soil Temperature === 485 485 486 -918.0 - SF7BW125 to SF12BW125 403 +((( 404 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 405 +))) 487 487 488 -918.2 - SF7BW125 to SF12BW125 407 +((( 408 +**Example**: 409 +))) 489 489 411 +((( 412 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 413 +))) 490 490 491 -(% style="color:#037691" %)**Downlink:** 415 +((( 416 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 417 +))) 492 492 493 -923.3 - SF7BW500 to SF12BW500 494 494 495 -923.9 - SF7BW500 to SF12BW500 496 496 497 - 924.5-SF7BW500toSF12BW500421 +=== 2.4.7 Soil Conductivity (EC) === 498 498 499 -925.1 - SF7BW500 to SF12BW500 423 +((( 424 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 425 +))) 500 500 501 -925.7 - SF7BW500 to SF12BW500 427 +((( 428 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 429 +))) 502 502 503 -926.3 - SF7BW500 to SF12BW500 431 +((( 432 +Generally, the EC value of irrigation water is less than 800uS / cm. 433 +))) 504 504 505 -926.9 - SF7BW500 to SF12BW500 435 +((( 436 + 437 +))) 506 506 507 -927.5 - SF7BW500 to SF12BW500 439 +((( 440 + 441 +))) 508 508 509 - 923.3- SF12BW500(RX2 downlinkonly)443 +=== 2.4.8 Digital Interrupt === 510 510 445 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 511 511 447 +The command is: 512 512 513 -= ==2.7.5AS920-923&AS923-925(AS923)===449 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 514 514 515 -(% style="color:#037691" %)**Default Uplink channel:** 516 516 517 - 923.2-SF7BW125toSF10BW125452 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 518 518 519 -923.4 - SF7BW125 to SF10BW125 520 520 455 +Example: 521 521 522 -( % style="color:#037691" %)**AdditionalUplinkChannel**:457 +0x(00): Normal uplink packet. 523 523 524 -( OTAAmode, channeladded by JoinAcceptmessage)459 +0x(01): Interrupt Uplink Packet. 525 525 526 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 527 527 528 -922.2 - SF7BW125 to SF10BW125 529 529 530 - 922.4- SF7BW125 toSF10BW125463 +=== 2.4.9 +5V Output === 531 531 532 - 922.6 -SF7BW125 toSF10BW125465 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 533 533 534 -922.8 - SF7BW125 to SF10BW125 535 535 536 - 923.0- SF7BW125 toSF10BW125468 +The 5V output time can be controlled by AT Command. 537 537 538 - 922.0- SF7BW125toSF10BW125470 +(% style="color:blue" %)**AT+5VT=1000** 539 539 472 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 540 540 541 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 542 542 543 -923.6 - SF7BW125 to SF10BW125 544 544 545 - 923.8- SF7BW125toSF10BW125476 +== 2.5 Downlink Payload == 546 546 547 - 924.0-SF7BW125toSF10BW125478 +By default, NSE01 prints the downlink payload to console port. 548 548 549 - 924.2- SF7BW125 to SF10BW125480 +[[image:image-20220708133731-5.png]] 550 550 551 -924.4 - SF7BW125 to SF10BW125 552 552 553 -924.6 - SF7BW125 to SF10BW125 483 +((( 484 +(% style="color:blue" %)**Examples:** 485 +))) 554 554 487 +((( 488 + 489 +))) 555 555 556 -(% style="color:#037691" %)** Downlink:** 491 +* ((( 492 +(% style="color:blue" %)**Set TDC** 493 +))) 557 557 558 -Uplink channels 1-8 (RX1) 495 +((( 496 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 497 +))) 559 559 560 -923.2 - SF10BW125 (RX2) 499 +((( 500 +Payload: 01 00 00 1E TDC=30S 501 +))) 561 561 503 +((( 504 +Payload: 01 00 00 3C TDC=60S 505 +))) 562 562 507 +((( 508 + 509 +))) 563 563 564 -=== 2.7.6 KR920-923 (KR920) === 511 +* ((( 512 +(% style="color:blue" %)**Reset** 513 +))) 565 565 566 -Default channel: 515 +((( 516 +If payload = 0x04FF, it will reset the NSE01 517 +))) 567 567 568 -922.1 - SF7BW125 to SF12BW125 569 569 570 - 922.3-SF7BW125toSF12BW125520 +* (% style="color:blue" %)**INTMOD** 571 571 572 - 922.5-SF7BW125toSF12BW125522 +Downlink Payload: 06000003, Set AT+INTMOD=3 573 573 574 574 575 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 576 576 577 - 922.1-SF7BW125toSF12BW125526 +== 2.6 LED Indicator == 578 578 579 -922.3 - SF7BW125 to SF12BW125 528 +((( 529 +The NSE01 has an internal LED which is to show the status of different state. 580 580 581 -922.5 - SF7BW125 to SF12BW125 582 582 583 -922.7 - SF7BW125 to SF12BW125 532 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 533 +* Then the LED will be on for 1 second means device is boot normally. 534 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 535 +* For each uplink probe, LED will be on for 500ms. 536 +))) 584 584 585 -922.9 - SF7BW125 to SF12BW125 586 586 587 -923.1 - SF7BW125 to SF12BW125 588 588 589 -923.3 - SF7BW125 to SF12BW125 590 590 541 +== 2.7 Installation in Soil == 591 591 592 - (%style="color:#037691"%)**Downlink:**543 +__**Measurement the soil surface**__ 593 593 594 - Uplink channels 1-7(RX1)545 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 595 595 596 - 921.9 - SF12BW125 (RX2 downlink only; SF12BW125might be changed to SF9BW125)547 +[[image:1657259653666-883.png]] 597 597 598 598 550 +((( 551 + 599 599 600 -=== 2.7.7 IN865-867 (IN865) === 553 +((( 554 +Dig a hole with diameter > 20CM. 555 +))) 601 601 602 -(% style="color:#037691" %)** Uplink:** 557 +((( 558 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 559 +))) 560 +))) 603 603 604 - 865.0625SF7BW125 to SF12BW125562 +[[image:1654506665940-119.png]] 605 605 606 -865.4025 - SF7BW125 to SF12BW125 564 +((( 565 + 566 +))) 607 607 608 -865.9850 - SF7BW125 to SF12BW125 609 609 569 +== 2.8 Firmware Change Log == 610 610 611 -(% style="color:#037691" %) **Downlink:** 612 612 613 - Uplinkchannels1-3 (RX1)572 +Download URL & Firmware Change log 614 614 615 - 866.550-F10BW125(RX2)574 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 616 616 617 617 577 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 618 618 619 619 620 -== 2.8 LED Indicator == 621 621 622 - TheLSE01has an internalLED which isto show the status of differentstate.581 +== 2.9 Battery Analysis == 623 623 624 -* Blink once when device power on. 625 -* Solid ON for 5 seconds once device successful Join the network. 626 -* Blink once when device transmit a packet. 583 +=== 2.9.1 Battery Type === 627 627 628 628 629 - ==2.9Installation inSoil==586 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 630 630 631 -**Measurement the soil surface** 632 632 589 +The battery is designed to last for several years depends on the actually use environment and update interval. 633 633 634 -[[image:1654506634463-199.png]] 635 635 592 +The battery related documents as below: 593 + 594 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 595 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 596 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 597 + 636 636 ((( 637 - Choose the propermeasuringposition. Avoid theprobe to touch rocks or hard things. Split the surface soil according to themeasured deep. Keep the measured as original density.Vertical insert theprobe into the soil to be measured. Make sure not shake when inserting.599 +[[image:image-20220708140453-6.png]] 638 638 ))) 639 639 640 640 641 641 642 - [[image:1654506665940-119.png]]604 +=== 2.9.2 Power consumption Analyze === 643 643 644 -Dig a hole with diameter > 20CM. 606 +((( 607 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 608 +))) 645 645 646 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 647 647 611 +((( 612 +Instruction to use as below: 613 +))) 648 648 649 -== 2.10 Firmware Change Log == 615 +((( 616 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 617 +))) 650 650 651 -**Firmware download link:** 652 652 653 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 654 - 655 - 656 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 657 - 658 - 659 -**V1.0.** 660 - 661 -Release 662 - 663 - 664 -== 2.11 Battery Analysis == 665 - 666 -=== 2.11.1 Battery Type === 667 - 668 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 669 - 670 - 671 -The battery is designed to last for more than 5 years for the LSN50. 672 - 673 - 674 674 ((( 675 - Thebattery-relateddocumentsareasbelow:621 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 676 676 ))) 677 677 678 678 * ((( 679 - [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],625 +Product Model 680 680 ))) 681 681 * ((( 682 - [[Lithium-ThionylChloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],628 +Uplink Interval 683 683 ))) 684 684 * ((( 685 - [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]],[[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]631 +Working Mode 686 686 ))) 687 687 688 - [[image:image-20220606171726-9.png]] 634 +((( 635 +And the Life expectation in difference case will be shown on the right. 636 +))) 689 689 638 +[[image:image-20220708141352-7.jpeg]] 690 690 691 691 692 -=== 2.11.2 Battery Note === 693 693 642 +=== 2.9.3 Battery Note === 643 + 644 +((( 694 694 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 646 +))) 695 695 696 696 697 697 698 -=== 2. 11.3Replace the battery ===650 +=== 2.9.4 Replace the battery === 699 699 700 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 652 +((( 653 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 654 +))) 701 701 702 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 703 703 704 704 705 - Thedefaultbatterypack of LSE01 includesa ER18505 plussuper capacitor.If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case.TheSPC can enlarge the battery life for high frequency use (update period below 5 minutes)658 += 3. Access NB-IoT Module = 706 706 660 +((( 661 +Users can directly access the AT command set of the NB-IoT module. 662 +))) 707 707 664 +((( 665 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 666 +))) 708 708 668 +[[image:1657261278785-153.png]] 709 709 710 710 711 711 712 -= 3.Using the AT Commands =672 += 4. Using the AT Commands = 713 713 714 -== 3.1 Access AT Commands ==674 +== 4.1 Access AT Commands == 715 715 676 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 716 716 717 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 718 718 719 - [[image:1654501986557-872.png]]679 +AT+<CMD>? : Help on <CMD> 720 720 681 +AT+<CMD> : Run <CMD> 721 721 722 - Orifyouhavebelowboard,usebelowconnection:683 +AT+<CMD>=<value> : Set the value 723 723 685 +AT+<CMD>=? : Get the value 724 724 725 -[[image:1654502005655-729.png]] 726 726 727 - 728 - 729 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 730 - 731 - 732 - [[image:1654502050864-459.png]] 733 - 734 - 735 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 736 - 737 - 738 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 739 - 740 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 741 - 742 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 743 - 744 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 745 - 746 - 747 747 (% style="color:#037691" %)**General Commands**(%%) 748 748 749 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention690 +AT : Attention 750 750 751 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help692 +AT? : Short Help 752 752 753 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset694 +ATZ : MCU Reset 754 754 755 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval696 +AT+TDC : Application Data Transmission Interval 756 756 698 +AT+CFG : Print all configurations 757 757 758 - (%style="color:#037691"%)**Keys,IDsand EUIs management**700 +AT+CFGMOD : Working mode selection 759 759 760 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI702 +AT+INTMOD : Set the trigger interrupt mode 761 761 762 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey704 +AT+5VT : Set extend the time of 5V power 763 763 764 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key706 +AT+PRO : Choose agreement 765 765 766 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress708 +AT+WEIGRE : Get weight or set weight to 0 767 767 768 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI710 +AT+WEIGAP : Get or Set the GapValue of weight 769 769 770 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)712 +AT+RXDL : Extend the sending and receiving time 771 771 772 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network714 +AT+CNTFAC : Get or set counting parameters 773 773 774 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode716 +AT+SERVADDR : Server Address 775 775 776 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 777 777 778 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network719 +(% style="color:#037691" %)**COAP Management** 779 779 780 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode721 +AT+URI : Resource parameters 781 781 782 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 783 783 784 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format724 +(% style="color:#037691" %)**UDP Management** 785 785 786 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat726 +AT+CFM : Upload confirmation mode (only valid for UDP) 787 787 788 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 789 789 790 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data729 +(% style="color:#037691" %)**MQTT Management** 791 791 731 +AT+CLIENT : Get or Set MQTT client 792 792 793 - (%style="color:#037691"%)**LoRaNetworkManagement**733 +AT+UNAME : Get or Set MQTT Username 794 794 795 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate735 +AT+PWD : Get or Set MQTT password 796 796 797 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA737 +AT+PUBTOPIC : Get or Set MQTT publish topic 798 798 799 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting739 +AT+SUBTOPIC : Get or Set MQTT subscription topic 800 800 801 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 802 802 803 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink742 +(% style="color:#037691" %)**Information** 804 804 805 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink744 +AT+FDR : Factory Data Reset 806 806 807 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1746 +AT+PWORD : Serial Access Password 808 808 809 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 810 810 811 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 812 812 813 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1750 += 5. FAQ = 814 814 815 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2752 +== 5.1 How to Upgrade Firmware == 816 816 817 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 818 818 819 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 755 +((( 756 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 757 +))) 820 820 821 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 822 - 823 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 824 - 825 - 826 -(% style="color:#037691" %)**Information** 827 - 828 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 829 - 830 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 831 - 832 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 833 - 834 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 835 - 836 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 837 - 838 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 839 - 840 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 841 - 842 - 843 -= 4. FAQ = 844 - 845 -== 4.1 How to change the LoRa Frequency Bands/Region? == 846 - 847 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]]. 848 -When downloading the images, choose the required image file for download. 849 - 850 - 851 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 852 - 853 - 854 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 855 - 856 - 857 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 858 - 859 -[[image:image-20220606154726-3.png]] 860 - 861 -When you use the TTN network, the US915 frequency bands use are: 862 - 863 -* 903.9 - SF7BW125 to SF10BW125 864 -* 904.1 - SF7BW125 to SF10BW125 865 -* 904.3 - SF7BW125 to SF10BW125 866 -* 904.5 - SF7BW125 to SF10BW125 867 -* 904.7 - SF7BW125 to SF10BW125 868 -* 904.9 - SF7BW125 to SF10BW125 869 -* 905.1 - SF7BW125 to SF10BW125 870 -* 905.3 - SF7BW125 to SF10BW125 871 -* 904.6 - SF8BW500 872 - 873 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 874 - 875 -(% class="box infomessage" %) 876 876 ((( 877 - **AT+CHE=2**760 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 878 878 ))) 879 879 880 -(% class="box infomessage" %) 881 881 ((( 882 - **ATZ**764 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 883 883 ))) 884 884 885 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 886 886 887 887 888 - The**AU915**band is similar. Beloware the AU915 UplinkChannels.769 += 6. Trouble Shooting = 889 889 890 - [[image:image-20220606154825-4.png]]771 +== 6.1 Connection problem when uploading firmware == 891 891 892 892 774 +(% class="wikigeneratedid" %) 775 +((( 776 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]] 777 +))) 893 893 894 -= 5. Trouble Shooting = 895 895 896 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 897 897 898 - Itis due to channel mapping.Please see the [[Eight Channel Mode>>doc:Main.LoRaWANCommunicationDebug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]sectionabove fordetails.781 +== 6.2 AT Command input doesn't work == 899 899 783 +((( 784 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 785 +))) 900 900 901 -== 5.2 AT Command input doesn’t work == 902 902 903 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 904 904 789 += 7. Order Info = 905 905 906 -== 5.3 Device rejoin in at the second uplink packet == 907 907 908 -(% style="color:#4f81bd" %)** Issue describe as below:**792 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 909 909 910 -[[image:1654500909990-784.png]] 911 911 795 +(% class="wikigeneratedid" %) 796 +((( 797 + 798 +))) 912 912 913 - (% style="color:#4f81bd"%)**Causeforthis issue:**800 += 8. Packing Info = 914 914 915 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 802 +((( 803 + 916 916 805 +(% style="color:#037691" %)**Package Includes**: 917 917 918 -(% style="color:#4f81bd" %)**Solution: ** 919 919 920 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 808 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 809 +* External antenna x 1 810 +))) 921 921 922 -[[image:1654500929571-736.png]] 812 +((( 813 + 923 923 815 +(% style="color:#037691" %)**Dimension and weight**: 924 924 925 -= 6. Order Info = 926 926 927 - 928 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 929 - 930 - 931 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 932 - 933 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 934 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 935 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 936 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 937 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 938 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 939 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 940 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 941 - 942 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 943 - 944 -* (% style="color:red" %)**4**(%%): 4000mAh battery 945 -* (% style="color:red" %)**8**(%%): 8500mAh battery 946 - 947 -= 7. Packing Info = 948 - 949 -((( 950 -**Package Includes**: 818 +* Size: 195 x 125 x 55 mm 819 +* Weight: 420g 951 951 ))) 952 952 953 -* ((( 954 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 955 -))) 956 - 957 957 ((( 958 958 959 -))) 960 960 961 -((( 962 -**Dimension and weight**: 963 -))) 964 964 965 -* ((( 966 -Device Size: cm 826 + 967 967 ))) 968 -* ((( 969 -Device Weight: g 970 -))) 971 -* ((( 972 -Package Size / pcs : cm 973 -))) 974 -* ((( 975 -Weight / pcs : g 976 -))) 977 977 978 -= 8. Support =829 += 9. Support = 979 979 980 980 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 981 981 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 982 - 983 -
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content