Last modified by Mengting Qiu on 2024/04/02 16:44

From version 31.2
edited by Xiaoling
on 2022/06/06 17:22
Change comment: There is no comment for this version
To version 44.2
edited by Xiaoling
on 2022/07/08 10:15
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="848" width="848"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
... ... @@ -8,61 +8,87 @@
8 8  
9 9  
10 10  
11 -= 1. Introduction =
12 12  
13 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 14  
15 -(((
16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 -)))
18 18  
19 -(((
20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
21 -)))
14 +**Table of Contents:**
22 22  
23 -(((
24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
25 -)))
26 26  
27 -(((
28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
29 -)))
30 30  
18 +
19 +
20 +
21 += 1.  Introduction =
22 +
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 +
31 31  (((
32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 -)))
26 +
34 34  
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
35 35  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
36 +
37 +)))
38 +
36 36  [[image:1654503236291-817.png]]
37 37  
38 38  
39 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
40 40  
41 41  
42 42  
43 43  == 1.2 ​Features ==
44 44  
45 -* LoRaWAN 1.0.3 Class A
46 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
47 47  * Monitor Soil Moisture
48 48  * Monitor Soil Temperature
49 49  * Monitor Soil Conductivity
50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 51  * AT Commands to change parameters
52 52  * Uplink on periodically
53 53  * Downlink to change configure
54 54  * IP66 Waterproof Enclosure
55 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
56 56  
57 -== 1.3 Specification ==
58 58  
63 +
64 +== 1.3  Specification ==
65 +
66 +
67 +(% style="color:#037691" %)**Common DC Characteristics:**
68 +
69 +* Supply Voltage: 2.1v ~~ 3.6v
70 +* Operating Temperature: -40 ~~ 85°C
71 +
72 +
73 +(% style="color:#037691" %)**NB-IoT Spec:**
74 +
75 +* - B1 @H-FDD: 2100MHz
76 +* - B3 @H-FDD: 1800MHz
77 +* - B8 @H-FDD: 900MHz
78 +* - B5 @H-FDD: 850MHz
79 +* - B20 @H-FDD: 800MHz
80 +* - B28 @H-FDD: 700MHz
81 +
82 +
83 +(% style="color:#037691" %)**Probe Specification:**
84 +
59 59  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
60 60  
61 -[[image:image-20220606162220-5.png]]
87 +[[image:image-20220708101224-1.png]]
62 62  
63 63  
64 64  
65 -== ​1.4 Applications ==
91 +== ​1.4  Applications ==
66 66  
67 67  * Smart Agriculture
68 68  
... ... @@ -69,10 +69,10 @@
69 69  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
70 70  ​
71 71  
72 -== 1.5 Firmware Change log ==
98 +== 1.5  Pin Definitions ==
73 73  
74 74  
75 -**LSE01 v1.0 :**  Release
101 +[[image:1657246476176-652.png]]
76 76  
77 77  
78 78  
... ... @@ -85,7 +85,7 @@
85 85  )))
86 86  
87 87  (((
88 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]].
114 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
89 89  )))
90 90  
91 91  
... ... @@ -101,7 +101,7 @@
101 101  The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
102 102  
103 103  
104 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
130 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
105 105  
106 106  Each LSE01 is shipped with a sticker with the default device EUI as below:
107 107  
... ... @@ -122,7 +122,7 @@
122 122  
123 123  
124 124  
125 -**Step 2**: Power on LSE01
151 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
126 126  
127 127  
128 128  Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
... ... @@ -130,7 +130,7 @@
130 130  [[image:image-20220606163915-7.png]]
131 131  
132 132  
133 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
159 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
134 134  
135 135  [[image:1654504778294-788.png]]
136 136  
... ... @@ -138,86 +138,104 @@
138 138  
139 139  == 2.3 Uplink Payload ==
140 140  
167 +
141 141  === 2.3.1 MOD~=0(Default Mode) ===
142 142  
143 143  LSE01 will uplink payload via LoRaWAN with below payload format: 
144 144  
145 -
172 +(((
146 146  Uplink payload includes in total 11 bytes.
147 -
174 +)))
148 148  
176 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
149 149  |(((
150 150  **Size**
151 151  
152 152  **(bytes)**
153 153  )))|**2**|**2**|**2**|**2**|**2**|**1**
154 -|**Value**|[[BAT>>path:#bat]]|(((
182 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
155 155  Temperature
156 156  
157 157  (Reserve, Ignore now)
158 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
186 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
159 159  MOD & Digital Interrupt
160 160  
161 161  (Optional)
162 162  )))
163 163  
164 -[[image:1654504881641-514.png]]
165 -
166 -
167 -
168 168  === 2.3.2 MOD~=1(Original value) ===
169 169  
170 170  This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
171 171  
196 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
172 172  |(((
173 173  **Size**
174 174  
175 175  **(bytes)**
176 176  )))|**2**|**2**|**2**|**2**|**2**|**1**
177 -|**Value**|[[BAT>>path:#bat]]|(((
202 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
178 178  Temperature
179 179  
180 180  (Reserve, Ignore now)
181 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
206 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
182 182  MOD & Digital Interrupt
183 183  
184 184  (Optional)
185 185  )))
186 186  
187 -[[image:1654504907647-967.png]]
188 -
189 -
190 -
191 191  === 2.3.3 Battery Info ===
192 192  
214 +(((
193 193  Check the battery voltage for LSE01.
216 +)))
194 194  
218 +(((
195 195  Ex1: 0x0B45 = 2885mV
220 +)))
196 196  
222 +(((
197 197  Ex2: 0x0B49 = 2889mV
224 +)))
198 198  
199 199  
200 200  
201 201  === 2.3.4 Soil Moisture ===
202 202  
230 +(((
203 203  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
232 +)))
204 204  
234 +(((
205 205  For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
236 +)))
206 206  
238 +(((
239 +
240 +)))
207 207  
242 +(((
208 208  (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
244 +)))
209 209  
210 210  
211 211  
212 212  === 2.3.5 Soil Temperature ===
213 213  
250 +(((
214 214   Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
252 +)))
215 215  
254 +(((
216 216  **Example**:
256 +)))
217 217  
258 +(((
218 218  If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
260 +)))
219 219  
262 +(((
220 220  If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
264 +)))
221 221  
222 222  
223 223  
... ... @@ -252,7 +252,7 @@
252 252  mod=(bytes[10]>>7)&0x01=1.
253 253  
254 254  
255 -Downlink Command:
299 +**Downlink Command:**
256 256  
257 257  If payload = 0x0A00, workmode=0
258 258  
... ... @@ -267,19 +267,21 @@
267 267  
268 268  [[image:1654505570700-128.png]]
269 269  
314 +(((
270 270  The payload decoder function for TTN is here:
316 +)))
271 271  
272 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
318 +(((
319 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
320 +)))
273 273  
274 274  
275 275  == 2.4 Uplink Interval ==
276 276  
277 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
325 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
278 278  
279 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
280 280  
281 281  
282 -
283 283  == 2.5 Downlink Payload ==
284 284  
285 285  By default, LSE50 prints the downlink payload to console port.
... ... @@ -287,24 +287,44 @@
287 287  [[image:image-20220606165544-8.png]]
288 288  
289 289  
290 -**Examples:**
336 +(((
337 +(% style="color:blue" %)**Examples:**
338 +)))
291 291  
340 +(((
341 +
342 +)))
292 292  
293 -* **Set TDC**
344 +* (((
345 +(% style="color:blue" %)**Set TDC**
346 +)))
294 294  
348 +(((
295 295  If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
350 +)))
296 296  
352 +(((
297 297  Payload:    01 00 00 1E    TDC=30S
354 +)))
298 298  
356 +(((
299 299  Payload:    01 00 00 3C    TDC=60S
358 +)))
300 300  
360 +(((
361 +
362 +)))
301 301  
302 -* **Reset**
364 +* (((
365 +(% style="color:blue" %)**Reset**
366 +)))
303 303  
368 +(((
304 304  If payload = 0x04FF, it will reset the LSE01
370 +)))
305 305  
306 306  
307 -* **CFM**
373 +* (% style="color:blue" %)**CFM**
308 308  
309 309  Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
310 310  
... ... @@ -312,12 +312,21 @@
312 312  
313 313  == 2.6 ​Show Data in DataCake IoT Server ==
314 314  
381 +(((
315 315  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
383 +)))
316 316  
385 +(((
386 +
387 +)))
317 317  
318 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
389 +(((
390 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
391 +)))
319 319  
320 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
393 +(((
394 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
395 +)))
321 321  
322 322  
323 323  [[image:1654505857935-743.png]]
... ... @@ -325,11 +325,12 @@
325 325  
326 326  [[image:1654505874829-548.png]]
327 327  
328 -Step 3: Create an account or log in Datacake.
329 329  
330 -Step 4: Search the LSE01 and add DevEUI.
404 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
331 331  
406 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
332 332  
408 +
333 333  [[image:1654505905236-553.png]]
334 334  
335 335  
... ... @@ -625,7 +625,6 @@
625 625  * Solid ON for 5 seconds once device successful Join the network.
626 626  * Blink once when device transmit a packet.
627 627  
628 -
629 629  == 2.9 Installation in Soil ==
630 630  
631 631  **Measurement the soil surface**
... ... @@ -634,31 +634,53 @@
634 634  [[image:1654506634463-199.png]] ​
635 635  
636 636  (((
712 +(((
637 637  Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
638 638  )))
715 +)))
639 639  
640 640  
641 641  
642 642  [[image:1654506665940-119.png]]
643 643  
721 +(((
644 644  Dig a hole with diameter > 20CM.
723 +)))
645 645  
725 +(((
646 646  Horizontal insert the probe to the soil and fill the hole for long term measurement.
727 +)))
647 647  
648 648  
649 649  == 2.10 ​Firmware Change Log ==
650 650  
732 +(((
651 651  **Firmware download link:**
734 +)))
652 652  
736 +(((
653 653  [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
738 +)))
654 654  
740 +(((
741 +
742 +)))
655 655  
744 +(((
656 656  **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
746 +)))
657 657  
748 +(((
749 +
750 +)))
658 658  
752 +(((
659 659  **V1.0.**
754 +)))
660 660  
756 +(((
661 661  Release
758 +)))
662 662  
663 663  
664 664  == 2.11 ​Battery Analysis ==
... ... @@ -665,50 +665,58 @@
665 665  
666 666  === 2.11.1 ​Battery Type ===
667 667  
765 +(((
668 668  The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
767 +)))
669 669  
670 -
769 +(((
671 671  The battery is designed to last for more than 5 years for the LSN50.
771 +)))
672 672  
673 -
674 674  (((
774 +(((
675 675  The battery-related documents are as below:
676 676  )))
777 +)))
677 677  
678 678  * (((
679 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
780 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
680 680  )))
681 681  * (((
682 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
783 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
683 683  )))
684 684  * (((
685 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
786 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
686 686  )))
687 687  
688 - [[image:image-20220606171726-9.png]]
789 + [[image:image-20220610172436-1.png]]
689 689  
690 690  
691 691  
692 692  === 2.11.2 ​Battery Note ===
693 693  
795 +(((
694 694  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
797 +)))
695 695  
696 696  
697 697  
698 698  === 2.11.3 Replace the battery ===
699 699  
803 +(((
700 700  If Battery is lower than 2.7v, user should replace the battery of LSE01.
805 +)))
701 701  
807 +(((
702 702  You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
809 +)))
703 703  
704 -
811 +(((
705 705  The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
813 +)))
706 706  
707 707  
708 708  
709 -
710 -
711 -
712 712  = 3. ​Using the AT Commands =
713 713  
714 714  == 3.1 Access AT Commands ==
... ... @@ -716,13 +716,13 @@
716 716  
717 717  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
718 718  
719 -[[image:1654501986557-872.png]]
824 +[[image:1654501986557-872.png||height="391" width="800"]]
720 720  
721 721  
722 722  Or if you have below board, use below connection:
723 723  
724 724  
725 -[[image:1654502005655-729.png]]
830 +[[image:1654502005655-729.png||height="503" width="801"]]
726 726  
727 727  
728 728  
... ... @@ -729,10 +729,10 @@
729 729  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
730 730  
731 731  
732 - [[image:1654502050864-459.png]]
837 + [[image:1654502050864-459.png||height="564" width="806"]]
733 733  
734 734  
735 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
840 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
736 736  
737 737  
738 738  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -844,20 +844,38 @@
844 844  
845 845  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
846 846  
847 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
952 +(((
953 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
848 848  When downloading the images, choose the required image file for download. ​
955 +)))
849 849  
957 +(((
958 +
959 +)))
850 850  
961 +(((
851 851  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
963 +)))
852 852  
965 +(((
966 +
967 +)))
853 853  
969 +(((
854 854  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
971 +)))
855 855  
973 +(((
974 +
975 +)))
856 856  
977 +(((
857 857  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
979 +)))
858 858  
859 859  [[image:image-20220606154726-3.png]]
860 860  
983 +
861 861  When you use the TTN network, the US915 frequency bands use are:
862 862  
863 863  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -870,37 +870,47 @@
870 870  * 905.3 - SF7BW125 to SF10BW125
871 871  * 904.6 - SF8BW500
872 872  
996 +(((
873 873  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
874 874  
875 -(% class="box infomessage" %)
876 -(((
877 -**AT+CHE=2**
999 +* (% style="color:#037691" %)**AT+CHE=2**
1000 +* (% style="color:#037691" %)**ATZ**
878 878  )))
879 879  
880 -(% class="box infomessage" %)
881 881  (((
882 -**ATZ**
883 -)))
1004 +
884 884  
885 885  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1007 +)))
886 886  
1009 +(((
1010 +
1011 +)))
887 887  
1013 +(((
888 888  The **AU915** band is similar. Below are the AU915 Uplink Channels.
1015 +)))
889 889  
890 890  [[image:image-20220606154825-4.png]]
891 891  
892 892  
1020 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
893 893  
1022 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1023 +
1024 +
894 894  = 5. Trouble Shooting =
895 895  
896 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
1027 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
897 897  
898 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1029 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
899 899  
900 900  
901 -== 5.2 AT Command input doesnt work ==
1032 +== 5.2 AT Command input doesn't work ==
902 902  
903 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1034 +(((
1035 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1036 +)))
904 904  
905 905  
906 906  == 5.3 Device rejoin in at the second uplink packet ==
... ... @@ -912,7 +912,9 @@
912 912  
913 913  (% style="color:#4f81bd" %)**Cause for this issue:**
914 914  
1048 +(((
915 915  The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1050 +)))
916 916  
917 917  
918 918  (% style="color:#4f81bd" %)**Solution: **
... ... @@ -919,7 +919,7 @@
919 919  
920 920  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
921 921  
922 -[[image:1654500929571-736.png]]
1057 +[[image:1654500929571-736.png||height="458" width="832"]]
923 923  
924 924  
925 925  = 6. ​Order Info =
... ... @@ -944,10 +944,17 @@
944 944  * (% style="color:red" %)**4**(%%): 4000mAh battery
945 945  * (% style="color:red" %)**8**(%%): 8500mAh battery
946 946  
1082 +(% class="wikigeneratedid" %)
1083 +(((
1084 +
1085 +)))
1086 +
947 947  = 7. Packing Info =
948 948  
949 949  (((
950 -**Package Includes**:
1090 +
1091 +
1092 +(% style="color:#037691" %)**Package Includes**:
951 951  )))
952 952  
953 953  * (((
... ... @@ -956,10 +956,8 @@
956 956  
957 957  (((
958 958  
959 -)))
960 960  
961 -(((
962 -**Dimension and weight**:
1102 +(% style="color:#037691" %)**Dimension and weight**:
963 963  )))
964 964  
965 965  * (((
... ... @@ -973,6 +973,8 @@
973 973  )))
974 974  * (((
975 975  Weight / pcs : g
1116 +
1117 +
976 976  )))
977 977  
978 978  = 8. Support =
... ... @@ -979,5 +979,3 @@
979 979  
980 980  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
981 981  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
982 -
983 -
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content