Last modified by Mengting Qiu on 2024/04/02 16:44

From version 31.19
edited by Xiaoling
on 2022/06/07 10:03
Change comment: There is no comment for this version
To version 70.1
edited by Xiaoling
on 2022/07/09 08:42
Change comment: Uploaded new attachment "image-20220709084207-3.jpeg", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NDDS75 NB-IoT Distance Detect Sensor User Manual
Content
... ... @@ -1,74 +1,88 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
1 +[[image:image-20220709084038-1.jpeg||height="575" width="575"]]
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
12 12  
13 13  
11 +**Table of Contents:**
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
18 18  
19 -(((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
22 22  
23 -(((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 -)))
26 26  
17 +
18 +
19 += 1.  Introduction =
20 +
21 +== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
22 +
27 27  (((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
24 +
30 30  
31 31  (((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
27 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
28 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
29 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
30 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
31 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
32 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
33 33  )))
34 34  
35 -(((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
35 +
37 37  )))
38 38  
39 -
40 40  [[image:1654503236291-817.png]]
41 41  
42 42  
43 -[[image:1654503265560-120.png]]
41 +[[image:1657245163077-232.png]]
44 44  
45 45  
46 46  
47 -== 1.2 ​Features ==
45 +== 1.2 ​ Features ==
48 48  
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
47 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
51 51  * Monitor Soil Moisture
52 52  * Monitor Soil Temperature
53 53  * Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 55  * AT Commands to change parameters
56 56  * Uplink on periodically
57 57  * Downlink to change configure
58 58  * IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
55 +* Ultra-Low Power consumption
56 +* AT Commands to change parameters
57 +* Micro SIM card slot for NB-IoT SIM
58 +* 8500mAh Battery for long term use
60 60  
60 +== 1.3  Specification ==
61 61  
62 62  
63 -== 1.3 Specification ==
63 +(% style="color:#037691" %)**Common DC Characteristics:**
64 64  
65 +* Supply Voltage: 2.1v ~~ 3.6v
66 +* Operating Temperature: -40 ~~ 85°C
67 +
68 +(% style="color:#037691" %)**NB-IoT Spec:**
69 +
70 +* - B1 @H-FDD: 2100MHz
71 +* - B3 @H-FDD: 1800MHz
72 +* - B8 @H-FDD: 900MHz
73 +* - B5 @H-FDD: 850MHz
74 +* - B20 @H-FDD: 800MHz
75 +* - B28 @H-FDD: 700MHz
76 +
77 +Probe(% style="color:#037691" %)** Specification:**
78 +
65 65  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
66 66  
67 -[[image:image-20220606162220-5.png]]
81 +[[image:image-20220708101224-1.png]]
68 68  
69 69  
70 70  
71 -== ​1.4 Applications ==
85 +== ​1.4  Applications ==
72 72  
73 73  * Smart Agriculture
74 74  
... ... @@ -75,654 +75,623 @@
75 75  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
76 76  ​
77 77  
78 -== 1.5 Firmware Change log ==
92 +== 1.5  Pin Definitions ==
79 79  
80 80  
81 -**LSE01 v1.0 :**  Release
95 +[[image:1657246476176-652.png]]
82 82  
83 83  
84 84  
85 -= 2. Configure LSE01 to connect to LoRaWAN network =
99 += 2.  Use NSE01 to communicate with IoT Server =
86 86  
87 -== 2.1 How it works ==
101 +== 2.1  How it works ==
88 88  
103 +
89 89  (((
90 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
105 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
91 91  )))
92 92  
108 +
93 93  (((
94 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
110 +The diagram below shows the working flow in default firmware of NSE01:
95 95  )))
96 96  
113 +[[image:image-20220708101605-2.png]]
97 97  
98 -
99 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
100 -
101 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
102 -
103 -
104 -[[image:1654503992078-669.png]]
105 -
106 -
107 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
108 -
109 -
110 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
111 -
112 -Each LSE01 is shipped with a sticker with the default device EUI as below:
113 -
114 -[[image:image-20220606163732-6.jpeg]]
115 -
116 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
117 -
118 -**Add APP EUI in the application**
119 -
120 -
121 -[[image:1654504596150-405.png]]
122 -
123 -
124 -
125 -**Add APP KEY and DEV EUI**
126 -
127 -[[image:1654504683289-357.png]]
128 -
129 -
130 -
131 -**Step 2**: Power on LSE01
132 -
133 -
134 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
135 -
136 -[[image:image-20220606163915-7.png]]
137 -
138 -
139 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
140 -
141 -[[image:1654504778294-788.png]]
142 -
143 -
144 -
145 -== 2.3 Uplink Payload ==
146 -
147 -=== 2.3.1 MOD~=0(Default Mode) ===
148 -
149 -LSE01 will uplink payload via LoRaWAN with below payload format: 
150 -
151 -
152 -Uplink payload includes in total 11 bytes.
115 +(((
153 153  
154 -
155 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
156 -|=(((
157 -**Size**
158 -
159 -**(bytes)**
160 -)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1**
161 -|**Value**|(% style="width:46px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:160px" %)(((
162 -Temperature
163 -
164 -(Reserve, Ignore now)
165 -)))|(% style="width:104px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:126px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:114px" %)(((
166 -MOD & Digital Interrupt
167 -
168 -(Optional)
169 169  )))
170 170  
171 -[[image:1654504881641-514.png]]
172 172  
173 173  
121 +== 2.2 ​ Configure the NSE01 ==
174 174  
175 -=== 2.3.2 MOD~=1(Original value) ===
176 176  
177 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
124 +=== 2.2.1 Test Requirement ===
178 178  
179 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
180 -|=(((
181 -**Size**
182 182  
183 -**(bytes)**
184 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1**
185 -|**Value**|[[BAT>>path:#bat]]|(((
186 -Temperature
127 +(((
128 +To use NSE01 in your city, make sure meet below requirements:
129 +)))
187 187  
188 -(Reserve, Ignore now)
189 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
190 -MOD & Digital Interrupt
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
191 191  
192 -(Optional)
135 +(((
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
193 193  )))
194 194  
195 -[[image:1654504907647-967.png]]
196 196  
140 +[[image:1657249419225-449.png]]
197 197  
198 198  
199 -=== 2.3.3 Battery Info ===
200 200  
201 -Check the battery voltage for LSE01.
144 +=== 2.2.2 Insert SIM card ===
202 202  
203 -Ex1: 0x0B45 = 2885mV
146 +(((
147 +Insert the NB-IoT Card get from your provider.
148 +)))
204 204  
205 -Ex2: 0x0B49 = 2889mV
150 +(((
151 +User need to take out the NB-IoT module and insert the SIM card like below:
152 +)))
206 206  
207 207  
155 +[[image:1657249468462-536.png]]
208 208  
209 -=== 2.3.4 Soil Moisture ===
210 210  
211 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
212 212  
213 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
159 +=== 2.2.3 Connect USB TTL to NSE01 to configure it ===
214 214  
161 +(((
162 +(((
163 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
164 +)))
165 +)))
215 215  
216 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
217 217  
168 +**Connection:**
218 218  
170 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
219 219  
220 -=== 2.3.5 Soil Temperature ===
172 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
221 221  
222 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
174 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
223 223  
224 -**Example**:
225 225  
226 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
177 +In the PC, use below serial tool settings:
227 227  
228 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
179 +* Baud:  (% style="color:green" %)**9600**
180 +* Data bits:** (% style="color:green" %)8(%%)**
181 +* Stop bits: (% style="color:green" %)**1**
182 +* Parity:  (% style="color:green" %)**None**
183 +* Flow Control: (% style="color:green" %)**None**
229 229  
230 -
231 -
232 -=== 2.3.6 Soil Conductivity (EC) ===
233 -
234 234  (((
235 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
186 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
236 236  )))
237 237  
238 -(((
239 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
240 -)))
189 +[[image:image-20220708110657-3.png]]
241 241  
242 242  (((
243 -Generally, the EC value of irrigation water is less than 800uS / cm.
192 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
244 244  )))
245 245  
246 -(((
247 -
248 -)))
249 249  
250 -(((
251 -
252 -)))
253 253  
254 -=== 2.3.7 MOD ===
197 +=== 2.2.4 Use CoAP protocol to uplink data ===
255 255  
256 -Firmware version at least v2.1 supports changing mode.
199 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
257 257  
258 -For example, bytes[10]=90
259 259  
260 -mod=(bytes[10]>>7)&0x01=1.
202 +**Use below commands:**
261 261  
204 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
205 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
206 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
262 262  
263 -Downlink Command:
208 +For parameter description, please refer to AT command set
264 264  
265 -If payload = 0x0A00, workmode=0
210 +[[image:1657249793983-486.png]]
266 266  
267 -If** **payload =** **0x0A01, workmode=1
268 268  
213 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
269 269  
215 +[[image:1657249831934-534.png]]
270 270  
271 -=== 2.3.8 ​Decode payload in The Things Network ===
272 272  
273 -While using TTN network, you can add the payload format to decode the payload.
274 274  
219 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
275 275  
276 -[[image:1654505570700-128.png]]
221 +This feature is supported since firmware version v1.0.1
277 277  
278 -The payload decoder function for TTN is here:
279 279  
280 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
224 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
225 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
226 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
281 281  
228 +[[image:1657249864775-321.png]]
282 282  
283 -== 2.4 Uplink Interval ==
284 284  
285 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
231 +[[image:1657249930215-289.png]]
286 286  
287 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
288 288  
289 289  
235 +=== 2.2.6 Use MQTT protocol to uplink data ===
290 290  
291 -== 2.5 Downlink Payload ==
237 +This feature is supported since firmware version v110
292 292  
293 -By default, LSE50 prints the downlink payload to console port.
294 294  
295 -[[image:image-20220606165544-8.png]]
240 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
241 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
242 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
243 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
244 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
245 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
246 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
296 296  
248 +[[image:1657249978444-674.png]]
297 297  
298 -**Examples:**
299 299  
251 +[[image:1657249990869-686.png]]
300 300  
301 -* **Set TDC**
302 302  
303 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
254 +(((
255 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
256 +)))
304 304  
305 -Payload:    01 00 00 1E    TDC=30S
306 306  
307 -Payload:    01 00 00 3C    TDC=60S
308 308  
260 +=== 2.2.7 Use TCP protocol to uplink data ===
309 309  
310 -* **Reset**
262 +This feature is supported since firmware version v110
311 311  
312 -If payload = 0x04FF, it will reset the LSE01
313 313  
265 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
266 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
314 314  
315 -* **CFM**
268 +[[image:1657250217799-140.png]]
316 316  
317 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
318 318  
271 +[[image:1657250255956-604.png]]
319 319  
320 320  
321 -== 2.6 ​Show Data in DataCake IoT Server ==
322 322  
323 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
275 +=== 2.2.8 Change Update Interval ===
324 324  
277 +User can use below command to change the (% style="color:green" %)**uplink interval**.
325 325  
326 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
279 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
327 327  
328 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
281 +(((
282 +(% style="color:red" %)**NOTE:**
283 +)))
329 329  
285 +(((
286 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
287 +)))
330 330  
331 -[[image:1654505857935-743.png]]
332 332  
333 333  
334 -[[image:1654505874829-548.png]]
291 +== 2.3  Uplink Payload ==
335 335  
336 -Step 3: Create an account or log in Datacake.
293 +In this mode, uplink payload includes in total 18 bytes
337 337  
338 -Step 4: Search the LSE01 and add DevEUI.
295 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
296 +|=(% style="width: 60px;" %)(((
297 +**Size(bytes)**
298 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
299 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
339 339  
301 +(((
302 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
303 +)))
340 340  
341 -[[image:1654505905236-553.png]]
342 342  
306 +[[image:image-20220708111918-4.png]]
343 343  
344 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
345 345  
346 -[[image:1654505925508-181.png]]
309 +The payload is ASCII string, representative same HEX:
347 347  
311 +0x72403155615900640c7817075e0a8c02f900 where:
348 348  
313 +* Device ID: 0x 724031556159 = 724031556159
314 +* Version: 0x0064=100=1.0.0
349 349  
350 -== 2.7 Frequency Plans ==
316 +* BAT: 0x0c78 = 3192 mV = 3.192V
317 +* Singal: 0x17 = 23
318 +* Soil Moisture: 0x075e= 1886 = 18.86  %
319 +* Soil Temperature:0x0a8c =2700=27 °C
320 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
321 +* Interrupt: 0x00 = 0
351 351  
352 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
323 +== 2.4  Payload Explanation and Sensor Interface ==
353 353  
354 354  
355 -=== 2.7.1 EU863-870 (EU868) ===
326 +=== 2.4.1  Device ID ===
356 356  
357 -(% style="color:#037691" %)** Uplink:**
328 +(((
329 +By default, the Device ID equal to the last 6 bytes of IMEI.
330 +)))
358 358  
359 -868.1 - SF7BW125 to SF12BW125
332 +(((
333 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
334 +)))
360 360  
361 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
336 +(((
337 +**Example:**
338 +)))
362 362  
363 -868.5 - SF7BW125 to SF12BW125
340 +(((
341 +AT+DEUI=A84041F15612
342 +)))
364 364  
365 -867.1 - SF7BW125 to SF12BW125
344 +(((
345 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
346 +)))
366 366  
367 -867.3 - SF7BW125 to SF12BW125
368 368  
369 -867.5 - SF7BW125 to SF12BW125
370 370  
371 -867.7 - SF7BW125 to SF12BW125
350 +=== 2.4.2  Version Info ===
372 372  
373 -867.9 - SF7BW125 to SF12BW125
352 +(((
353 +Specify the software version: 0x64=100, means firmware version 1.00.
354 +)))
374 374  
375 -868.8 - FSK
356 +(((
357 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
358 +)))
376 376  
377 377  
378 -(% style="color:#037691" %)** Downlink:**
379 379  
380 -Uplink channels 1-9 (RX1)
362 +=== 2.4.3  Battery Info ===
381 381  
382 -869.525 - SF9BW125 (RX2 downlink only)
364 +(((
365 +Check the battery voltage for LSE01.
366 +)))
383 383  
368 +(((
369 +Ex1: 0x0B45 = 2885mV
370 +)))
384 384  
372 +(((
373 +Ex2: 0x0B49 = 2889mV
374 +)))
385 385  
386 -=== 2.7.2 US902-928(US915) ===
387 387  
388 -Used in USA, Canada and South America. Default use CHE=2
389 389  
390 -(% style="color:#037691" %)**Uplink:**
378 +=== 2.4.4  Signal Strength ===
391 391  
392 -903.9 - SF7BW125 to SF10BW125
380 +(((
381 +NB-IoT Network signal Strength.
382 +)))
393 393  
394 -904.1 - SF7BW125 to SF10BW125
384 +(((
385 +**Ex1: 0x1d = 29**
386 +)))
395 395  
396 -904.3 - SF7BW125 to SF10BW125
388 +(((
389 +(% style="color:blue" %)**0**(%%)  -113dBm or less
390 +)))
397 397  
398 -904.5 - SF7BW125 to SF10BW125
392 +(((
393 +(% style="color:blue" %)**1**(%%)  -111dBm
394 +)))
399 399  
400 -904.7 - SF7BW125 to SF10BW125
396 +(((
397 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
398 +)))
401 401  
402 -904.9 - SF7BW125 to SF10BW125
400 +(((
401 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
402 +)))
403 403  
404 -905.1 - SF7BW125 to SF10BW125
404 +(((
405 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
406 +)))
405 405  
406 -905.3 - SF7BW125 to SF10BW125
407 407  
408 408  
409 -(% style="color:#037691" %)**Downlink:**
410 +=== 2.4.5  Soil Moisture ===
410 410  
411 -923.3 - SF7BW500 to SF12BW500
412 +(((
413 +(((
414 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
415 +)))
416 +)))
412 412  
413 -923.9 - SF7BW500 to SF12BW500
418 +(((
419 +(((
420 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
421 +)))
422 +)))
414 414  
415 -924.5 - SF7BW500 to SF12BW500
424 +(((
425 +
426 +)))
416 416  
417 -925.1 - SF7BW500 to SF12BW500
428 +(((
429 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
430 +)))
418 418  
419 -925.7 - SF7BW500 to SF12BW500
420 420  
421 -926.3 - SF7BW500 to SF12BW500
422 422  
423 -926.9 - SF7BW500 to SF12BW500
434 +=== 2.4.6  Soil Temperature ===
424 424  
425 -927.5 - SF7BW500 to SF12BW500
436 +(((
437 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
438 +)))
426 426  
427 -923.3 - SF12BW500(RX2 downlink only)
440 +(((
441 +**Example**:
442 +)))
428 428  
444 +(((
445 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
446 +)))
429 429  
448 +(((
449 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
450 +)))
430 430  
431 -=== 2.7.3 CN470-510 (CN470) ===
432 432  
433 -Used in China, Default use CHE=1
434 434  
435 -(% style="color:#037691" %)**Uplink:**
454 +=== 2.4.7  Soil Conductivity (EC) ===
436 436  
437 -486.3 - SF7BW125 to SF12BW125
456 +(((
457 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
458 +)))
438 438  
439 -486.5 - SF7BW125 to SF12BW125
460 +(((
461 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
462 +)))
440 440  
441 -486.7 - SF7BW125 to SF12BW125
464 +(((
465 +Generally, the EC value of irrigation water is less than 800uS / cm.
466 +)))
442 442  
443 -486.9 - SF7BW125 to SF12BW125
468 +(((
469 +
470 +)))
444 444  
445 -487.1 - SF7BW125 to SF12BW125
472 +(((
473 +
474 +)))
446 446  
447 -487.3 - SF7BW125 to SF12BW125
476 +=== 2.4. Digital Interrupt ===
448 448  
449 -487.5 - SF7BW125 to SF12BW125
478 +(((
479 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
480 +)))
450 450  
451 -487.7 - SF7BW125 to SF12BW125
482 +(((
483 +The command is:
484 +)))
452 452  
486 +(((
487 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
488 +)))
453 453  
454 -(% style="color:#037691" %)**Downlink:**
455 455  
456 -506.7 - SF7BW125 to SF12BW125
491 +(((
492 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
493 +)))
457 457  
458 -506.9 - SF7BW125 to SF12BW125
459 459  
460 -507.1 - SF7BW125 to SF12BW125
496 +(((
497 +Example:
498 +)))
461 461  
462 -507.3 - SF7BW125 to SF12BW125
500 +(((
501 +0x(00): Normal uplink packet.
502 +)))
463 463  
464 -507.5 - SF7BW125 to SF12BW125
504 +(((
505 +0x(01): Interrupt Uplink Packet.
506 +)))
465 465  
466 -507.7 - SF7BW125 to SF12BW125
467 467  
468 -507.9 - SF7BW125 to SF12BW125
469 469  
470 -508.1 - SF7BW125 to SF12BW125
510 +=== 2.4.9  ​+5V Output ===
471 471  
472 -505.3 - SF12BW125 (RX2 downlink only)
512 +(((
513 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
514 +)))
473 473  
474 474  
517 +(((
518 +The 5V output time can be controlled by AT Command.
519 +)))
475 475  
476 -=== 2.7.4 AU915-928(AU915) ===
521 +(((
522 +(% style="color:blue" %)**AT+5VT=1000**
523 +)))
477 477  
478 -Default use CHE=2
525 +(((
526 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
527 +)))
479 479  
480 -(% style="color:#037691" %)**Uplink:**
481 481  
482 -916.8 - SF7BW125 to SF12BW125
483 483  
484 -917.0 - SF7BW125 to SF12BW125
531 +== 2.5  Downlink Payload ==
485 485  
486 -917.2 - SF7BW125 to SF12BW125
533 +By default, NSE01 prints the downlink payload to console port.
487 487  
488 -917.4 - SF7BW125 to SF12BW125
535 +[[image:image-20220708133731-5.png]]
489 489  
490 -917.6 - SF7BW125 to SF12BW125
491 491  
492 -917.8 - SF7BW125 to SF12BW125
538 +(((
539 +(% style="color:blue" %)**Examples:**
540 +)))
493 493  
494 -918.0 - SF7BW125 to SF12BW125
542 +(((
543 +
544 +)))
495 495  
496 -918.2 - SF7BW125 to SF12BW125
546 +* (((
547 +(% style="color:blue" %)**Set TDC**
548 +)))
497 497  
550 +(((
551 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
552 +)))
498 498  
499 -(% style="color:#037691" %)**Downlink:**
554 +(((
555 +Payload:    01 00 00 1E    TDC=30S
556 +)))
500 500  
501 -923.3 - SF7BW500 to SF12BW500
558 +(((
559 +Payload:    01 00 00 3C    TDC=60S
560 +)))
502 502  
503 -923.9 - SF7BW500 to SF12BW500
562 +(((
563 +
564 +)))
504 504  
505 -924.5 - SF7BW500 to SF12BW500
566 +* (((
567 +(% style="color:blue" %)**Reset**
568 +)))
506 506  
507 -925.1 - SF7BW500 to SF12BW500
570 +(((
571 +If payload = 0x04FF, it will reset the NSE01
572 +)))
508 508  
509 -925.7 - SF7BW500 to SF12BW500
510 510  
511 -926.3 - SF7BW500 to SF12BW500
575 +* (% style="color:blue" %)**INTMOD**
512 512  
513 -926.9 - SF7BW500 to SF12BW500
577 +(((
578 +Downlink Payload: 06000003, Set AT+INTMOD=3
579 +)))
514 514  
515 -927.5 - SF7BW500 to SF12BW500
516 516  
517 -923.3 - SF12BW500(RX2 downlink only)
518 518  
583 +== 2.6  ​LED Indicator ==
519 519  
585 +(((
586 +The NSE01 has an internal LED which is to show the status of different state.
520 520  
521 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
522 522  
523 -(% style="color:#037691" %)**Default Uplink channel:**
589 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
590 +* Then the LED will be on for 1 second means device is boot normally.
591 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
592 +* For each uplink probe, LED will be on for 500ms.
593 +)))
524 524  
525 -923.2 - SF7BW125 to SF10BW125
526 526  
527 -923.4 - SF7BW125 to SF10BW125
528 528  
529 529  
530 -(% style="color:#037691" %)**Additional Uplink Channel**:
598 +== 2.7  Installation in Soil ==
531 531  
532 -(OTAA mode, channel added by JoinAccept message)
600 +__**Measurement the soil surface**__
533 533  
534 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
602 +(((
603 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
604 +)))
535 535  
536 -922.2 - SF7BW125 to SF10BW125
606 +[[image:1657259653666-883.png]] ​
537 537  
538 -922.4 - SF7BW125 to SF10BW125
539 539  
540 -922.6 - SF7BW125 to SF10BW125
609 +(((
610 +
541 541  
542 -922.8 - SF7BW125 to SF10BW125
612 +(((
613 +Dig a hole with diameter > 20CM.
614 +)))
543 543  
544 -923.0 - SF7BW125 to SF10BW125
616 +(((
617 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
618 +)))
619 +)))
545 545  
546 -922.0 - SF7BW125 to SF10BW125
621 +[[image:1654506665940-119.png]]
547 547  
623 +(((
624 +
625 +)))
548 548  
549 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
550 550  
551 -923.6 - SF7BW125 to SF10BW125
628 +== 2. Firmware Change Log ==
552 552  
553 -923.8 - SF7BW125 to SF10BW125
554 554  
555 -924.0 - SF7BW125 to SF10BW125
631 +Download URL & Firmware Change log
556 556  
557 -924.2 - SF7BW125 to SF10BW125
633 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
558 558  
559 -924.4 - SF7BW125 to SF10BW125
560 560  
561 -924.6 - SF7BW125 to SF10BW125
636 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
562 562  
563 563  
564 -(% style="color:#037691" %)** Downlink:**
565 565  
566 -Uplink channels 1-8 (RX1)
640 +== 2.9  ​Battery Analysis ==
567 567  
568 -923.2 - SF10BW125 (RX2)
642 +=== 2.9.1  ​Battery Type ===
569 569  
570 570  
571 -
572 -=== 2.7.6 KR920-923 (KR920) ===
573 -
574 -Default channel:
575 -
576 -922.1 - SF7BW125 to SF12BW125
577 -
578 -922.3 - SF7BW125 to SF12BW125
579 -
580 -922.5 - SF7BW125 to SF12BW125
581 -
582 -
583 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
584 -
585 -922.1 - SF7BW125 to SF12BW125
586 -
587 -922.3 - SF7BW125 to SF12BW125
588 -
589 -922.5 - SF7BW125 to SF12BW125
590 -
591 -922.7 - SF7BW125 to SF12BW125
592 -
593 -922.9 - SF7BW125 to SF12BW125
594 -
595 -923.1 - SF7BW125 to SF12BW125
596 -
597 -923.3 - SF7BW125 to SF12BW125
598 -
599 -
600 -(% style="color:#037691" %)**Downlink:**
601 -
602 -Uplink channels 1-7(RX1)
603 -
604 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
605 -
606 -
607 -
608 -=== 2.7.7 IN865-867 (IN865) ===
609 -
610 -(% style="color:#037691" %)** Uplink:**
611 -
612 -865.0625 - SF7BW125 to SF12BW125
613 -
614 -865.4025 - SF7BW125 to SF12BW125
615 -
616 -865.9850 - SF7BW125 to SF12BW125
617 -
618 -
619 -(% style="color:#037691" %) **Downlink:**
620 -
621 -Uplink channels 1-3 (RX1)
622 -
623 -866.550 - SF10BW125 (RX2)
624 -
625 -
626 -
627 -
628 -== 2.8 LED Indicator ==
629 -
630 -The LSE01 has an internal LED which is to show the status of different state.
631 -
632 -* Blink once when device power on.
633 -* Solid ON for 5 seconds once device successful Join the network.
634 -* Blink once when device transmit a packet.
635 -
636 -== 2.9 Installation in Soil ==
637 -
638 -**Measurement the soil surface**
639 -
640 -
641 -[[image:1654506634463-199.png]] ​
642 -
643 643  (((
644 -(((
645 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
646 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
646 646  )))
647 -)))
648 648  
649 649  
650 -[[image:1654506665940-119.png]]
651 -
652 652  (((
653 -Dig a hole with diameter > 20CM.
651 +The battery is designed to last for several years depends on the actually use environment and update interval. 
654 654  )))
655 655  
656 -(((
657 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
658 -)))
659 659  
660 -
661 -== 2.10 ​Firmware Change Log ==
662 -
663 663  (((
664 -**Firmware download link:**
656 +The battery related documents as below:
665 665  )))
666 666  
667 -(((
668 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
669 -)))
659 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
660 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
661 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
670 670  
671 671  (((
672 -
664 +[[image:image-20220708140453-6.png]]
673 673  )))
674 674  
675 -(((
676 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
677 -)))
678 678  
679 -(((
680 -
681 -)))
682 682  
683 -(((
684 -**V1.0.**
685 -)))
669 +=== 2.9.2  Power consumption Analyze ===
686 686  
687 687  (((
688 -Release
672 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
689 689  )))
690 690  
691 691  
692 -== 2.11 ​Battery Analysis ==
693 -
694 -=== 2.11.1 ​Battery Type ===
695 -
696 696  (((
697 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
677 +Instruction to use as below:
698 698  )))
699 699  
700 700  (((
701 -The battery is designed to last for more than 5 years for the LSN50.
681 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
702 702  )))
703 703  
684 +
704 704  (((
705 -(((
706 -The battery-related documents are as below:
686 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
707 707  )))
708 -)))
709 709  
710 710  * (((
711 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
690 +Product Model
712 712  )))
713 713  * (((
714 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
693 +Uplink Interval
715 715  )))
716 716  * (((
717 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
696 +Working Mode
718 718  )))
719 719  
720 - [[image:image-20220606171726-9.png]]
699 +(((
700 +And the Life expectation in difference case will be shown on the right.
701 +)))
721 721  
703 +[[image:image-20220708141352-7.jpeg]]
722 722  
723 723  
724 -=== 2.11.2 ​Battery Note ===
725 725  
707 +=== 2.9.3  ​Battery Note ===
708 +
726 726  (((
727 727  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
728 728  )))
... ... @@ -729,299 +729,195 @@
729 729  
730 730  
731 731  
732 -=== 2.11.3 Replace the battery ===
715 +=== 2.9. Replace the battery ===
733 733  
734 734  (((
735 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
718 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
736 736  )))
737 737  
721 +
722 +
723 += 3. ​ Access NB-IoT Module =
724 +
738 738  (((
739 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
726 +Users can directly access the AT command set of the NB-IoT module.
740 740  )))
741 741  
742 742  (((
743 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
730 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
744 744  )))
745 745  
733 +[[image:1657261278785-153.png]]
746 746  
747 747  
748 -= 3. ​Using the AT Commands =
749 749  
750 -== 3.1 Access AT Commands ==
737 += 4.  Using the AT Commands =
751 751  
739 +== 4.1  Access AT Commands ==
752 752  
753 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
741 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
754 754  
755 -[[image:1654501986557-872.png]]
756 756  
744 +AT+<CMD>?  : Help on <CMD>
757 757  
758 -Or if you have below board, use below connection:
746 +AT+<CMD>         : Run <CMD>
759 759  
748 +AT+<CMD>=<value> : Set the value
760 760  
761 -[[image:1654502005655-729.png]]
750 +AT+<CMD>=?  : Get the value
762 762  
763 763  
764 -
765 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
766 -
767 -
768 - [[image:1654502050864-459.png]]
769 -
770 -
771 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
772 -
773 -
774 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
775 -
776 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
777 -
778 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
779 -
780 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
781 -
782 -
783 783  (% style="color:#037691" %)**General Commands**(%%)      
784 784  
785 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
755 +AT  : Attention       
786 786  
787 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
757 +AT?  : Short Help     
788 788  
789 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
759 +ATZ  : MCU Reset    
790 790  
791 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
761 +AT+TDC  : Application Data Transmission Interval
792 792  
763 +AT+CFG  : Print all configurations
793 793  
794 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
765 +AT+CFGMOD           : Working mode selection
795 795  
796 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
767 +AT+INTMOD            : Set the trigger interrupt mode
797 797  
798 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
769 +AT+5VT  : Set extend the time of 5V power  
799 799  
800 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
771 +AT+PRO  : Choose agreement
801 801  
802 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
773 +AT+WEIGRE  : Get weight or set weight to 0
803 803  
804 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
775 +AT+WEIGAP  : Get or Set the GapValue of weight
805 805  
806 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
777 +AT+RXDL  : Extend the sending and receiving time
807 807  
808 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
779 +AT+CNTFAC  : Get or set counting parameters
809 809  
810 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
781 +AT+SERVADDR  : Server Address
811 811  
812 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
813 813  
814 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
784 +(% style="color:#037691" %)**COAP Management**      
815 815  
816 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
786 +AT+URI            : Resource parameters
817 817  
818 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
819 819  
820 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
789 +(% style="color:#037691" %)**UDP Management**
821 821  
822 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
791 +AT+CFM          : Upload confirmation mode (only valid for UDP)
823 823  
824 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
825 825  
826 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
794 +(% style="color:#037691" %)**MQTT Management**
827 827  
796 +AT+CLIENT               : Get or Set MQTT client
828 828  
829 -(% style="color:#037691" %)**LoRa Network Management**
798 +AT+UNAME  : Get or Set MQTT Username
830 830  
831 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
800 +AT+PWD                  : Get or Set MQTT password
832 832  
833 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
802 +AT+PUBTOPI : Get or Set MQTT publish topic
834 834  
835 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
804 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
836 836  
837 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
838 838  
839 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
807 +(% style="color:#037691" %)**Information**          
840 840  
841 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
809 +AT+FDR  : Factory Data Reset
842 842  
843 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
811 +AT+PWOR : Serial Access Password
844 844  
845 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
846 846  
847 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
848 848  
849 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
815 += ​5.  FAQ =
850 850  
851 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
817 +== 5.1 How to Upgrade Firmware ==
852 852  
853 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
854 854  
855 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
820 +(((
821 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
822 +)))
856 856  
857 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
824 +(((
825 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
826 +)))
858 858  
859 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
828 +(((
829 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
830 +)))
860 860  
861 861  
862 -(% style="color:#037691" %)**Information** 
863 863  
864 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
834 +== 5.2  Can I calibrate NSE01 to different soil types? ==
865 865  
866 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
836 +(((
837 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
838 +)))
867 867  
868 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
869 869  
870 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
841 += 6.  Trouble Shooting =
871 871  
872 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
843 +== 6.1  ​Connection problem when uploading firmware ==
873 873  
874 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
875 875  
876 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
877 -
878 -
879 -= ​4. FAQ =
880 -
881 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
882 -
883 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10FirmwareChangeLog"]].
884 -When downloading the images, choose the required image file for download. ​
885 -
886 -
887 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
888 -
889 -
890 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
891 -
892 -
893 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
894 -
895 -[[image:image-20220606154726-3.png]]
896 -
897 -When you use the TTN network, the US915 frequency bands use are:
898 -
899 -* 903.9 - SF7BW125 to SF10BW125
900 -* 904.1 - SF7BW125 to SF10BW125
901 -* 904.3 - SF7BW125 to SF10BW125
902 -* 904.5 - SF7BW125 to SF10BW125
903 -* 904.7 - SF7BW125 to SF10BW125
904 -* 904.9 - SF7BW125 to SF10BW125
905 -* 905.1 - SF7BW125 to SF10BW125
906 -* 905.3 - SF7BW125 to SF10BW125
907 -* 904.6 - SF8BW500
908 -
909 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
910 -
911 -(% class="box infomessage" %)
912 912  (((
913 -**AT+CHE=2**
847 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
914 914  )))
915 915  
916 -(% class="box infomessage" %)
850 +(% class="wikigeneratedid" %)
917 917  (((
918 -**ATZ**
852 +
919 919  )))
920 920  
921 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
922 922  
856 +== 6.2  AT Command input doesn't work ==
923 923  
924 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
858 +(((
859 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
925 925  
926 -[[image:image-20220606154825-4.png]]
861 +
862 +)))
927 927  
928 928  
865 += 7. ​ Order Info =
929 929  
930 -= 5. Trouble Shooting =
931 931  
932 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
868 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
933 933  
934 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
935 935  
936 -
937 -== 5.2 AT Command input doesn’t work ==
938 -
939 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
940 -
941 -
942 -== 5.3 Device rejoin in at the second uplink packet ==
943 -
944 -(% style="color:#4f81bd" %)**Issue describe as below:**
945 -
946 -[[image:1654500909990-784.png]]
947 -
948 -
949 -(% style="color:#4f81bd" %)**Cause for this issue:**
950 -
951 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
952 -
953 -
954 -(% style="color:#4f81bd" %)**Solution: **
955 -
956 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
957 -
958 -[[image:1654500929571-736.png]]
959 -
960 -
961 -= 6. ​Order Info =
962 -
963 -
964 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
965 -
966 -
967 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
968 -
969 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
970 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
971 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
972 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
973 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
974 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
975 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
976 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
977 -
978 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
979 -
980 -* (% style="color:red" %)**4**(%%): 4000mAh battery
981 -* (% style="color:red" %)**8**(%%): 8500mAh battery
982 -
983 983  (% class="wikigeneratedid" %)
984 984  (((
985 985  
986 986  )))
987 987  
988 -= 7. Packing Info =
876 += 8.  Packing Info =
989 989  
990 990  (((
991 -**Package Includes**:
992 -)))
879 +
993 993  
994 -* (((
995 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
881 +(% style="color:#037691" %)**Package Includes**:
882 +
883 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
884 +* External antenna x 1
996 996  )))
997 997  
998 998  (((
999 999  
1000 -)))
1001 1001  
1002 -(((
1003 -**Dimension and weight**:
1004 -)))
890 +(% style="color:#037691" %)**Dimension and weight**:
1005 1005  
1006 -* (((
1007 -Device Size: cm
892 +* Size: 195 x 125 x 55 mm
893 +* Weight:   420g
1008 1008  )))
1009 -* (((
1010 -Device Weight: g
1011 -)))
1012 -* (((
1013 -Package Size / pcs : cm
1014 -)))
1015 -* (((
1016 -Weight / pcs : g
1017 1017  
896 +(((
897 +
1018 1018  
899 +
1019 1019  
1020 1020  )))
1021 1021  
1022 -= 8. Support =
903 += 9.  Support =
1023 1023  
1024 1024  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1025 1025  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1026 -
1027 -
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content