Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 24 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,8 +3,16 @@ 3 3 4 4 5 5 6 -**Contents:** 7 7 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 +**Table of Contents:** 15 + 8 8 {{toc/}} 9 9 10 10 ... ... @@ -12,1016 +12,817 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 23 += 1. Introduction = 16 16 17 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 25 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 18 18 19 19 ((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 28 + 22 22 23 -((( 24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 -))) 30 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 26 26 27 -((( 28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 32 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 30 30 31 -((( 32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 -))) 34 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 34 34 35 -((( 36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 36 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 37 + 38 + 37 37 ))) 38 38 39 - 40 40 [[image:1654503236291-817.png]] 41 41 42 42 43 -[[image:16545 03265560-120.png]]44 +[[image:1657245163077-232.png]] 44 44 45 45 46 46 47 -== 1.2 Features == 48 +== 1.2 Features == 48 48 49 -* LoRaWAN 1.0.3 Class A 50 -* Ultra low power consumption 50 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 51 51 * Monitor Soil Moisture 52 52 * Monitor Soil Temperature 53 53 * Monitor Soil Conductivity 54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 55 55 * AT Commands to change parameters 56 56 * Uplink on periodically 57 57 * Downlink to change configure 58 58 * IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 58 +* Ultra-Low Power consumption 59 +* AT Commands to change parameters 60 +* Micro SIM card slot for NB-IoT SIM 61 +* 8500mAh Battery for long term use 60 60 61 61 62 62 63 -== 1.3 Specification == 64 64 65 - MeasureVolume:Baseon thecentra pin ofthe probe, a cylinder with 7cm diameter and10cm height.66 +== 1.3 Specification == 66 66 67 -[[image:image-20220606162220-5.png]] 68 68 69 +(% style="color:#037691" %)**Common DC Characteristics:** 69 69 71 +* Supply Voltage: 2.1v ~~ 3.6v 72 +* Operating Temperature: -40 ~~ 85°C 70 70 71 -== 1.4 Applications == 72 72 73 -* Smart Agriculture 74 74 75 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 76 - 76 +(% style="color:#037691" %)**NB-IoT Spec:** 77 77 78 -== 1.5 Firmware Change log == 78 +* - B1 @H-FDD: 2100MHz 79 +* - B3 @H-FDD: 1800MHz 80 +* - B8 @H-FDD: 900MHz 81 +* - B5 @H-FDD: 850MHz 82 +* - B20 @H-FDD: 800MHz 83 +* - B28 @H-FDD: 700MHz 79 79 80 80 81 -**LSE01 v1.0 :** Release 82 82 87 +Probe(% style="color:#037691" %)** Specification:** 83 83 89 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 84 84 85 - = 2. ConfigureLSE01to connect to LoRaWAN network =91 +[[image:image-20220708101224-1.png]] 86 86 87 -== 2.1 How it works == 88 88 89 -((( 90 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 91 -))) 92 92 93 -((( 94 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 95 -))) 95 +== 1.4 Applications == 96 96 97 +* Smart Agriculture 97 97 99 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 100 + 98 98 99 -== 2.2Quickguideto connecttoLoRaWANserver(OTAA)==102 +== 1.5 Pin Definitions == 100 100 101 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 102 102 105 +[[image:1657246476176-652.png]] 103 103 104 -[[image:1654503992078-669.png]] 105 105 106 106 107 - TheLG308isalreadyset to connected to [[TTNnetwork>>url:https://console.cloud.thethings.network/]], so whatweneed to nows configuretheTTNserver.109 += 2. Use NSE01 to communicate with IoT Server = 108 108 111 +== 2.1 How it works == 109 109 110 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 111 111 112 -Each LSE01 is shipped with a sticker with the default device EUI as below: 114 +((( 115 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 116 +))) 113 113 114 -[[image:image-20220606163732-6.jpeg]] 115 115 116 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 119 +((( 120 +The diagram below shows the working flow in default firmware of NSE01: 121 +))) 117 117 118 - **Add APP EUIin theapplication**123 +[[image:image-20220708101605-2.png]] 119 119 120 - 121 -[[image:1654504596150-405.png]] 122 - 123 - 124 - 125 -**Add APP KEY and DEV EUI** 126 - 127 -[[image:1654504683289-357.png]] 128 - 129 - 130 - 131 -**Step 2**: Power on LSE01 132 - 133 - 134 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 135 - 136 -[[image:image-20220606163915-7.png]] 137 - 138 - 139 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 140 - 141 -[[image:1654504778294-788.png]] 142 - 143 - 144 - 145 -== 2.3 Uplink Payload == 146 - 147 -=== 2.3.1 MOD~=0(Default Mode) === 148 - 149 -LSE01 will uplink payload via LoRaWAN with below payload format: 150 - 151 - 152 -Uplink payload includes in total 11 bytes. 125 +((( 153 153 154 - 155 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 156 -|=((( 157 -**Size** 158 - 159 -**(bytes)** 160 -)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1** 161 -|**Value**|(% style="width:46px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:160px" %)((( 162 -Temperature 163 - 164 -(Reserve, Ignore now) 165 -)))|(% style="width:104px" %)[[Soil Moisture>>path:#soil_moisture]]|(% style="width:126px" %)[[Soil Temperature>>path:#soil_tem]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>path:#EC]]|(% style="width:114px" %)((( 166 -MOD & Digital Interrupt 167 - 168 -(Optional) 169 169 ))) 170 170 171 -[[image:1654504881641-514.png]] 172 172 173 173 131 +== 2.2 Configure the NSE01 == 174 174 175 -=== 2.3.2 MOD~=1(Original value) === 176 176 177 - Thismodecangettheoriginal AD value of moistureand original conductivity (with temperature drift compensation).134 +=== 2.2.1 Test Requirement === 178 178 179 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 180 -|=((( 181 -**Size** 182 182 183 -**(bytes)** 184 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1** 185 -|**Value**|[[BAT>>path:#bat]]|((( 186 -Temperature 137 +To use NSE01 in your city, make sure meet below requirements: 187 187 188 - (Reserve,Ignorenow)189 - )))|[[SoilMoisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[SoilConductivity(EC)>>path:#EC]](raw)|(((190 - MOD&DigitalInterrupt139 +* Your local operator has already distributed a NB-IoT Network there. 140 +* The local NB-IoT network used the band that NSE01 supports. 141 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 191 191 192 -(Optional) 143 +((( 144 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 193 193 ))) 194 194 195 -[[image:1654504907647-967.png]] 196 196 148 +[[image:1657249419225-449.png]] 197 197 198 198 199 -=== 2.3.3 Battery Info === 200 200 201 - Checkthebattery voltageforLSE01.152 +=== 2.2.2 Insert SIM card === 202 202 203 - Ex1:0x0B45=2885mV154 +Insert the NB-IoT Card get from your provider. 204 204 205 - Ex2:0x0B49=2889mV156 +User need to take out the NB-IoT module and insert the SIM card like below: 206 206 207 207 159 +[[image:1657249468462-536.png]] 208 208 209 -=== 2.3.4 Soil Moisture === 210 210 211 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 212 212 213 - Forexample,ifthedatayougetfromtheregister is __0x050xDC__,themoisturecontentinthesoil is163 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 214 214 215 - 216 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 217 - 218 - 219 - 220 -=== 2.3.5 Soil Temperature === 221 - 222 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 223 - 224 -**Example**: 225 - 226 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 227 - 228 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 229 - 230 - 231 - 232 -=== 2.3.6 Soil Conductivity (EC) === 233 - 234 234 ((( 235 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 236 -))) 237 - 238 238 ((( 239 - For example,ifthedatayougetfromtheregister is 0x000xC8,the soilconductivityis00C8(H)=200(D)=200uS/cm.167 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 240 240 ))) 241 - 242 -((( 243 -Generally, the EC value of irrigation water is less than 800uS / cm. 244 244 ))) 245 245 246 -((( 247 - 248 -))) 249 249 250 -((( 251 - 252 -))) 172 +**Connection:** 253 253 254 -= ==2.3.7MOD===174 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 255 255 256 - Firmwareversionatst v2.1 supportschanging mode.176 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 257 257 258 - Forexample,bytes[10]=90178 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 259 259 260 -mod=(bytes[10]>>7)&0x01=1. 261 261 181 +In the PC, use below serial tool settings: 262 262 263 -Downlink Command: 183 +* Baud: (% style="color:green" %)**9600** 184 +* Data bits:** (% style="color:green" %)8(%%)** 185 +* Stop bits: (% style="color:green" %)**1** 186 +* Parity: (% style="color:green" %)**None** 187 +* Flow Control: (% style="color:green" %)**None** 264 264 265 -If payload = 0x0A00, workmode=0 189 +((( 190 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 191 +))) 266 266 267 - If** **payload =** **0x0A01, workmode=1193 +[[image:image-20220708110657-3.png]] 268 268 195 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 269 269 270 270 271 -=== 2.3.8 Decode payload in The Things Network === 272 272 273 - WhileusingTTNnetwork,youcan add thepayload formattodecodethepayload.199 +=== 2.2.4 Use CoAP protocol to uplink data === 274 274 201 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 275 275 276 -[[image:1654505570700-128.png]] 277 277 278 - Thepayloaddecoder function for TTN ishere:204 +**Use below commands:** 279 279 280 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 206 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 207 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 208 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 281 281 210 +For parameter description, please refer to AT command set 282 282 283 - ==2.4Uplink Interval ==212 +[[image:1657249793983-486.png]] 284 284 285 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: 286 286 287 - [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]215 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 288 288 217 +[[image:1657249831934-534.png]] 289 289 290 290 291 -== 2.5 Downlink Payload == 292 292 293 - Bydefault,LSE50printsthe downlinkpayloadtonsoleport.221 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 294 294 295 - [[image:image-20220606165544-8.png]]223 +This feature is supported since firmware version v1.0.1 296 296 297 297 298 -**Examples:** 226 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 227 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 228 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 299 299 230 +[[image:1657249864775-321.png]] 300 300 301 -* **Set TDC** 302 302 303 - If the payload=0100003C,itmeans set the END Node’s TDC to 0x00003C=60(S), while type code is 01.233 +[[image:1657249930215-289.png]] 304 304 305 -Payload: 01 00 00 1E TDC=30S 306 306 307 -Payload: 01 00 00 3C TDC=60S 308 308 237 +=== 2.2.6 Use MQTT protocol to uplink data === 309 309 310 - ***Reset**239 +This feature is supported since firmware version v110 311 311 312 -If payload = 0x04FF, it will reset the LSE01 313 313 242 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 243 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 244 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 245 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 246 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 247 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 248 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 314 314 315 - * **CFM**250 +[[image:1657249978444-674.png]] 316 316 317 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 318 318 253 +[[image:1657249990869-686.png]] 319 319 320 320 321 -== 2.6 Show Data in DataCake IoT Server == 256 +((( 257 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 258 +))) 322 322 323 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 324 324 325 325 326 - **Step1**:Besurethatyour device isprogrammed and properlyconnectedtothenetwork atthis time.262 +=== 2.2.7 Use TCP protocol to uplink data === 327 327 328 - **Step 2**:ToconfiguretheApplication to forward data to DATACAKE you will needto addintegration. To add theDATACAKE integration,perform the following steps:264 +This feature is supported since firmware version v110 329 329 330 330 331 -[[image:1654505857935-743.png]] 267 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 268 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 332 332 270 +[[image:1657250217799-140.png]] 333 333 334 -[[image:1654505874829-548.png]] 335 335 336 - Step 3: Create an account or login Datacake.273 +[[image:1657250255956-604.png]] 337 337 338 -Step 4: Search the LSE01 and add DevEUI. 339 339 340 340 341 - [[image:1654505905236-553.png]]277 +=== 2.2.8 Change Update Interval === 342 342 279 +User can use below command to change the (% style="color:green" %)**uplink interval**. 343 343 344 - Afteradded,thesensordata arrive TTN,itwillalsoarriveandshow inMydevices.281 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 345 345 346 -[[image:1654505925508-181.png]] 283 +((( 284 +(% style="color:red" %)**NOTE:** 285 +))) 347 347 287 +((( 288 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 289 +))) 348 348 349 349 350 -== 2.7 Frequency Plans == 351 351 352 - TheLSE01uses OTAA mode and below frequencyplans by default. If user want to useit with differentfrequencyplan, please refer the AT commandsets.293 +== 2.3 Uplink Payload == 353 353 295 +In this mode, uplink payload includes in total 18 bytes 354 354 355 -=== 2.7.1 EU863-870 (EU868) === 297 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 298 +|=(% style="width: 50px;" %)((( 299 +**Size(bytes)** 300 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 301 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 356 356 357 - (%style="color:#037691"%)** Uplink:**303 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 358 358 359 -868.1 - SF7BW125 to SF12BW125 360 360 361 - 868.3-SF7BW125 to SF12BW125 and SF7BW250306 +[[image:image-20220708111918-4.png]] 362 362 363 -868.5 - SF7BW125 to SF12BW125 364 364 365 - 867.1-SF7BW125toSF12BW125309 +The payload is ASCII string, representative same HEX: 366 366 367 - 867.3- SF7BW125to SF12BW125311 +0x72403155615900640c7817075e0a8c02f900 where: 368 368 369 -867.5 - SF7BW125 to SF12BW125 313 +* Device ID: 0x 724031556159 = 724031556159 314 +* Version: 0x0064=100=1.0.0 370 370 371 -867.7 - SF7BW125 to SF12BW125 316 +* BAT: 0x0c78 = 3192 mV = 3.192V 317 +* Singal: 0x17 = 23 318 +* Soil Moisture: 0x075e= 1886 = 18.86 % 319 +* Soil Temperature:0x0a8c =2700=27 °C 320 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 321 +* Interrupt: 0x00 = 0 372 372 373 -867.9 - SF7BW125 to SF12BW125 374 374 375 -868.8 - FSK 376 376 377 377 378 - (%style="color:#037691"%)**Downlink:**326 +== 2.4 Payload Explanation and Sensor Interface == 379 379 380 -Uplink channels 1-9 (RX1) 381 381 382 - 869.525- SF9BW125 (RX2 downlinkonly)329 +=== 2.4.1 Device ID === 383 383 331 +By default, the Device ID equal to the last 6 bytes of IMEI. 384 384 333 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 385 385 386 - === 2.7.2 US902-928(US915) ===335 +**Example:** 387 387 388 - Used in USA, Canada and South America.Default use CHE=2337 +AT+DEUI=A84041F15612 389 389 390 - (%style="color:#037691"%)**Uplink:**339 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 391 391 392 -903.9 - SF7BW125 to SF10BW125 393 393 394 -904.1 - SF7BW125 to SF10BW125 395 395 396 - 904.3 - SF7BW125toSF10BW125343 +=== 2.4.2 Version Info === 397 397 398 - 904.5-SF7BW125toSF10BW125345 +Specify the software version: 0x64=100, means firmware version 1.00. 399 399 400 - 904.7-SF7BW125toSF10BW125347 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 401 401 402 -904.9 - SF7BW125 to SF10BW125 403 403 404 -905.1 - SF7BW125 to SF10BW125 405 405 406 - 905.3- SF7BW125toSF10BW125351 +=== 2.4.3 Battery Info === 407 407 353 +((( 354 +Check the battery voltage for LSE01. 355 +))) 408 408 409 -(% style="color:#037691" %)**Downlink:** 357 +((( 358 +Ex1: 0x0B45 = 2885mV 359 +))) 410 410 411 -923.3 - SF7BW500 to SF12BW500 361 +((( 362 +Ex2: 0x0B49 = 2889mV 363 +))) 412 412 413 -923.9 - SF7BW500 to SF12BW500 414 414 415 -924.5 - SF7BW500 to SF12BW500 416 416 417 - 925.1-SF7BW500toSF12BW500367 +=== 2.4.4 Signal Strength === 418 418 419 - 925.7-SF7BW500to SF12BW500369 +NB-IoT Network signal Strength. 420 420 421 - 926.3- SF7BW500toSF12BW500371 +**Ex1: 0x1d = 29** 422 422 423 - 926.9-SF7BW500toSF12BW500373 +(% style="color:blue" %)**0**(%%) -113dBm or less 424 424 425 - 927.5- SF7BW500toSF12BW500375 +(% style="color:blue" %)**1**(%%) -111dBm 426 426 427 - 923.3 -SF12BW500(RX2downlinkonly)377 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 428 428 379 +(% style="color:blue" %)**31** (%%) -51dBm or greater 429 429 381 +(% style="color:blue" %)**99** (%%) Not known or not detectable 430 430 431 -=== 2.7.3 CN470-510 (CN470) === 432 432 433 -Used in China, Default use CHE=1 434 434 435 - (% style="color:#037691"%)**Uplink:**385 +=== 2.4.5 Soil Moisture === 436 436 437 -486.3 - SF7BW125 to SF12BW125 387 +((( 388 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 389 +))) 438 438 439 -486.5 - SF7BW125 to SF12BW125 391 +((( 392 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 393 +))) 440 440 441 -486.7 - SF7BW125 to SF12BW125 395 +((( 396 + 397 +))) 442 442 443 -486.9 - SF7BW125 to SF12BW125 399 +((( 400 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 401 +))) 444 444 445 -487.1 - SF7BW125 to SF12BW125 446 446 447 -487.3 - SF7BW125 to SF12BW125 448 448 449 -4 87.5-SF7BW125toSF12BW125405 +=== 2.4.6 Soil Temperature === 450 450 451 -487.7 - SF7BW125 to SF12BW125 407 +((( 408 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 409 +))) 452 452 411 +((( 412 +**Example**: 413 +))) 453 453 454 -(% style="color:#037691" %)**Downlink:** 415 +((( 416 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 417 +))) 455 455 456 -506.7 - SF7BW125 to SF12BW125 419 +((( 420 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 421 +))) 457 457 458 -506.9 - SF7BW125 to SF12BW125 459 459 460 -507.1 - SF7BW125 to SF12BW125 461 461 462 - 507.3-SF7BW125toSF12BW125425 +=== 2.4.7 Soil Conductivity (EC) === 463 463 464 -507.5 - SF7BW125 to SF12BW125 427 +((( 428 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 429 +))) 465 465 466 -507.7 - SF7BW125 to SF12BW125 431 +((( 432 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 433 +))) 467 467 468 -507.9 - SF7BW125 to SF12BW125 435 +((( 436 +Generally, the EC value of irrigation water is less than 800uS / cm. 437 +))) 469 469 470 -508.1 - SF7BW125 to SF12BW125 439 +((( 440 + 441 +))) 471 471 472 -505.3 - SF12BW125 (RX2 downlink only) 443 +((( 444 + 445 +))) 473 473 447 +=== 2.4.8 Digital Interrupt === 474 474 449 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 475 475 476 - ===2.7.4AU915-928(AU915) ===451 +The command is: 477 477 478 -Defau ltuse CHE=2453 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 479 479 480 -(% style="color:#037691" %)**Uplink:** 481 481 482 - 916.8-SF7BW125toSF12BW125456 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 483 483 484 -917.0 - SF7BW125 to SF12BW125 485 485 486 - 917.2 - SF7BW125 to SF12BW125459 +Example: 487 487 488 - 917.4-SF7BW125to SF12BW125461 +0x(00): Normal uplink packet. 489 489 490 - 917.6-SF7BW125to SF12BW125463 +0x(01): Interrupt Uplink Packet. 491 491 492 -917.8 - SF7BW125 to SF12BW125 493 493 494 -918.0 - SF7BW125 to SF12BW125 495 495 496 - 918.2- SF7BW125 toSF12BW125467 +=== 2.4.9 +5V Output === 497 497 469 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 498 498 499 -(% style="color:#037691" %)**Downlink:** 500 500 501 - 923.3- SF7BW500toSF12BW500472 +The 5V output time can be controlled by AT Command. 502 502 503 - 923.9- SF7BW500toSF12BW500474 +(% style="color:blue" %)**AT+5VT=1000** 504 504 505 - 924.5-SF7BW500 toSF12BW500476 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 506 506 507 -925.1 - SF7BW500 to SF12BW500 508 508 509 -925.7 - SF7BW500 to SF12BW500 510 510 511 - 926.3 - SF7BW500toSF12BW500480 +== 2.5 Downlink Payload == 512 512 513 - 926.9-SF7BW500toSF12BW500482 +By default, NSE01 prints the downlink payload to console port. 514 514 515 - 927.5-SF7BW500 to SF12BW500484 +[[image:image-20220708133731-5.png]] 516 516 517 -923.3 - SF12BW500(RX2 downlink only) 518 518 487 +((( 488 +(% style="color:blue" %)**Examples:** 489 +))) 519 519 491 +((( 492 + 493 +))) 520 520 521 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 495 +* ((( 496 +(% style="color:blue" %)**Set TDC** 497 +))) 522 522 523 -(% style="color:#037691" %)**Default Uplink channel:** 499 +((( 500 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 501 +))) 524 524 525 -923.2 - SF7BW125 to SF10BW125 503 +((( 504 +Payload: 01 00 00 1E TDC=30S 505 +))) 526 526 527 -923.4 - SF7BW125 to SF10BW125 507 +((( 508 +Payload: 01 00 00 3C TDC=60S 509 +))) 528 528 511 +((( 512 + 513 +))) 529 529 530 -(% style="color:#037691" %)**Additional Uplink Channel**: 515 +* ((( 516 +(% style="color:blue" %)**Reset** 517 +))) 531 531 532 -(OTAA mode, channel added by JoinAccept message) 519 +((( 520 +If payload = 0x04FF, it will reset the NSE01 521 +))) 533 533 534 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 535 535 536 - 922.2-SF7BW125toSF10BW125524 +* (% style="color:blue" %)**INTMOD** 537 537 538 - 922.4-SF7BW125toSF10BW125526 +Downlink Payload: 06000003, Set AT+INTMOD=3 539 539 540 -922.6 - SF7BW125 to SF10BW125 541 541 542 -922.8 - SF7BW125 to SF10BW125 543 543 544 - 923.0-SF7BW125toSF10BW125530 +== 2.6 LED Indicator == 545 545 546 -922.0 - SF7BW125 to SF10BW125 532 +((( 533 +The NSE01 has an internal LED which is to show the status of different state. 547 547 548 548 549 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 536 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 537 +* Then the LED will be on for 1 second means device is boot normally. 538 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 539 +* For each uplink probe, LED will be on for 500ms. 540 +))) 550 550 551 -923.6 - SF7BW125 to SF10BW125 552 552 553 -923.8 - SF7BW125 to SF10BW125 554 554 555 -924.0 - SF7BW125 to SF10BW125 556 556 557 - 924.2 - SF7BW125to SF10BW125545 +== 2.7 Installation in Soil == 558 558 559 - 924.4- SF7BW125toSF10BW125547 +__**Measurement the soil surface**__ 560 560 561 - 924.6-SF7BW125SF10BW125549 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 562 562 551 +[[image:1657259653666-883.png]] 563 563 564 -(% style="color:#037691" %)** Downlink:** 565 565 566 -Uplink channels 1-8 (RX1) 554 +((( 555 + 567 567 568 -923.2 - SF10BW125 (RX2) 557 +((( 558 +Dig a hole with diameter > 20CM. 559 +))) 569 569 561 +((( 562 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 563 +))) 564 +))) 570 570 566 +[[image:1654506665940-119.png]] 571 571 572 -=== 2.7.6 KR920-923 (KR920) === 568 +((( 569 + 570 +))) 573 573 574 -Default channel: 575 575 576 - 922.1- SF7BW125toSF12BW125573 +== 2.8 Firmware Change Log == 577 577 578 -922.3 - SF7BW125 to SF12BW125 579 579 580 - 922.5-SF7BW125toSF12BW125576 +Download URL & Firmware Change log 581 581 578 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 582 582 583 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 584 584 585 - 922.1- SF7BW125toSF12BW125581 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 586 586 587 -922.3 - SF7BW125 to SF12BW125 588 588 589 -922.5 - SF7BW125 to SF12BW125 590 590 591 - 922.7- SF7BW125toSF12BW125585 +== 2.9 Battery Analysis == 592 592 593 - 922.9- SF7BW125toSF12BW125587 +=== 2.9.1 Battery Type === 594 594 595 -923.1 - SF7BW125 to SF12BW125 596 596 597 - 923.3-SF7BW125to SF12BW125590 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 598 598 599 599 600 - (%style="color:#037691"%)**Downlink:**593 +The battery is designed to last for several years depends on the actually use environment and update interval. 601 601 602 -Uplink channels 1-7(RX1) 603 603 604 - 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 mightbechangedtoSF9BW125)596 +The battery related documents as below: 605 605 598 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 599 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 600 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 606 606 607 - 608 -=== 2.7.7 IN865-867 (IN865) === 609 - 610 -(% style="color:#037691" %)** Uplink:** 611 - 612 -865.0625 - SF7BW125 to SF12BW125 613 - 614 -865.4025 - SF7BW125 to SF12BW125 615 - 616 -865.9850 - SF7BW125 to SF12BW125 617 - 618 - 619 -(% style="color:#037691" %) **Downlink:** 620 - 621 -Uplink channels 1-3 (RX1) 622 - 623 -866.550 - SF10BW125 (RX2) 624 - 625 - 626 - 627 - 628 -== 2.8 LED Indicator == 629 - 630 -The LSE01 has an internal LED which is to show the status of different state. 631 - 632 -* Blink once when device power on. 633 -* Solid ON for 5 seconds once device successful Join the network. 634 -* Blink once when device transmit a packet. 635 - 636 -== 2.9 Installation in Soil == 637 - 638 -**Measurement the soil surface** 639 - 640 - 641 -[[image:1654506634463-199.png]] 642 - 643 643 ((( 644 -((( 645 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 603 +[[image:image-20220708140453-6.png]] 646 646 ))) 647 -))) 648 648 649 649 650 -[[image:1654506665940-119.png]] 651 651 652 -((( 653 -Dig a hole with diameter > 20CM. 654 -))) 608 +=== 2.9.2 Power consumption Analyze === 655 655 656 656 ((( 657 - Horizontalinsertthe probeto the soil andfill the holefor longtermmeasurement.611 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 658 658 ))) 659 659 660 660 661 -== 2.10 Firmware Change Log == 662 - 663 663 ((( 664 - **Firmware downloadlink:**616 +Instruction to use as below: 665 665 ))) 666 666 667 667 ((( 668 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/ LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]620 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 669 669 ))) 670 670 671 -((( 672 - 673 -))) 674 674 675 675 ((( 676 - **FirmwareUpgradeMethod: **[[FirmwareUpgradeInstruction>>doc:Main.FirmwareUpgradeInstruction for STM32 baseproducts.WebHome]]625 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 677 677 ))) 678 678 679 -((( 680 - 628 +* ((( 629 +Product Model 681 681 ))) 682 - 683 -((( 684 -**V1.0.** 631 +* ((( 632 +Uplink Interval 685 685 ))) 634 +* ((( 635 +Working Mode 636 +))) 686 686 687 687 ((( 688 - Release639 +And the Life expectation in difference case will be shown on the right. 689 689 ))) 690 690 642 +[[image:image-20220708141352-7.jpeg]] 691 691 692 -== 2.11 Battery Analysis == 693 693 694 -=== 2.11.1 Battery Type === 695 695 696 -((( 697 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 698 -))) 646 +=== 2.9.3 Battery Note === 699 699 700 700 ((( 701 -The battery is designed to last for more than5 yearsfor theLSN50.649 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 702 702 ))) 703 703 704 -((( 705 -((( 706 -The battery-related documents are as below: 707 -))) 708 -))) 709 709 710 -* ((( 711 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 712 -))) 713 -* ((( 714 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 715 -))) 716 -* ((( 717 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 718 -))) 719 719 720 - [[image:image-20220606171726-9.png]]654 +=== 2.9.4 Replace the battery === 721 721 722 - 723 - 724 -=== 2.11.2 Battery Note === 725 - 726 726 ((( 727 -The Li-SICObatteryisdesigned forsmallcurrent/longperiodapplication. Itis notgood to use ahigh current,shortperiodtransmitmethod. Therecommendedminimum periodfor use ofthisbatteryis5minutes.If you useahorterperiodtimeto transmitLoRa, then the battery lifemaybe decreased.657 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 728 728 ))) 729 729 730 730 731 731 732 -= ==2.11.3Replacethebattery===662 += 3. Access NB-IoT Module = 733 733 734 734 ((( 735 - If Battery islower than2.7v, user shouldplace thebatteryofLSE01.665 +Users can directly access the AT command set of the NB-IoT module. 736 736 ))) 737 737 738 738 ((( 739 - Youcan changethebatteryintheLSE01.Thetypeofbattery is notlimitedaslongas the outputisbetween3v to3.6v. On themainboard, there isa diode(D1) between the battery andthe main circuit. If you needo usea battery with lessthan 3.3v, pleaseremovethe D1 andshortcut thetwopadsofit sothere won’t be voltageop between battery andmain board.669 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 740 740 ))) 741 741 742 -((( 743 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 744 -))) 672 +[[image:1657261278785-153.png]] 745 745 746 746 747 747 748 -= 3.Using the AT Commands =676 += 4. Using the AT Commands = 749 749 750 -== 3.1 Access AT Commands ==678 +== 4.1 Access AT Commands == 751 751 680 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 752 752 753 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 754 754 755 - [[image:1654501986557-872.png]]683 +AT+<CMD>? : Help on <CMD> 756 756 685 +AT+<CMD> : Run <CMD> 757 757 758 - Orifyouhavebelowboard,usebelowconnection:687 +AT+<CMD>=<value> : Set the value 759 759 689 +AT+<CMD>=? : Get the value 760 760 761 -[[image:1654502005655-729.png]] 762 762 763 - 764 - 765 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 766 - 767 - 768 - [[image:1654502050864-459.png]] 769 - 770 - 771 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 772 - 773 - 774 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 775 - 776 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 777 - 778 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 779 - 780 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 781 - 782 - 783 783 (% style="color:#037691" %)**General Commands**(%%) 784 784 785 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention694 +AT : Attention 786 786 787 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help696 +AT? : Short Help 788 788 789 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset698 +ATZ : MCU Reset 790 790 791 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval700 +AT+TDC : Application Data Transmission Interval 792 792 702 +AT+CFG : Print all configurations 793 793 794 - (%style="color:#037691"%)**Keys,IDsand EUIs management**704 +AT+CFGMOD : Working mode selection 795 795 796 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI706 +AT+INTMOD : Set the trigger interrupt mode 797 797 798 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey708 +AT+5VT : Set extend the time of 5V power 799 799 800 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key710 +AT+PRO : Choose agreement 801 801 802 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress712 +AT+WEIGRE : Get weight or set weight to 0 803 803 804 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI714 +AT+WEIGAP : Get or Set the GapValue of weight 805 805 806 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)716 +AT+RXDL : Extend the sending and receiving time 807 807 808 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network718 +AT+CNTFAC : Get or set counting parameters 809 809 810 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode720 +AT+SERVADDR : Server Address 811 811 812 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 813 813 814 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network723 +(% style="color:#037691" %)**COAP Management** 815 815 816 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode725 +AT+URI : Resource parameters 817 817 818 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 819 819 820 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format728 +(% style="color:#037691" %)**UDP Management** 821 821 822 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat730 +AT+CFM : Upload confirmation mode (only valid for UDP) 823 823 824 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 825 825 826 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data733 +(% style="color:#037691" %)**MQTT Management** 827 827 735 +AT+CLIENT : Get or Set MQTT client 828 828 829 - (%style="color:#037691"%)**LoRaNetworkManagement**737 +AT+UNAME : Get or Set MQTT Username 830 830 831 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate739 +AT+PWD : Get or Set MQTT password 832 832 833 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA741 +AT+PUBTOPIC : Get or Set MQTT publish topic 834 834 835 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting743 +AT+SUBTOPIC : Get or Set MQTT subscription topic 836 836 837 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 838 838 839 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink746 +(% style="color:#037691" %)**Information** 840 840 841 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink748 +AT+FDR : Factory Data Reset 842 842 843 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1750 +AT+PWORD : Serial Access Password 844 844 845 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 846 846 847 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 848 848 849 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1754 += 5. FAQ = 850 850 851 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2756 +== 5.1 How to Upgrade Firmware == 852 852 853 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 854 854 855 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 759 +((( 760 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 761 +))) 856 856 857 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 858 - 859 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 860 - 861 - 862 -(% style="color:#037691" %)**Information** 863 - 864 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 865 - 866 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 867 - 868 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 869 - 870 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 871 - 872 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 873 - 874 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 875 - 876 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 877 - 878 - 879 -= 4. FAQ = 880 - 881 -== 4.1 How to change the LoRa Frequency Bands/Region? == 882 - 883 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10FirmwareChangeLog"]]. 884 -When downloading the images, choose the required image file for download. 885 - 886 - 887 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 888 - 889 - 890 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 891 - 892 - 893 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 894 - 895 -[[image:image-20220606154726-3.png]] 896 - 897 -When you use the TTN network, the US915 frequency bands use are: 898 - 899 -* 903.9 - SF7BW125 to SF10BW125 900 -* 904.1 - SF7BW125 to SF10BW125 901 -* 904.3 - SF7BW125 to SF10BW125 902 -* 904.5 - SF7BW125 to SF10BW125 903 -* 904.7 - SF7BW125 to SF10BW125 904 -* 904.9 - SF7BW125 to SF10BW125 905 -* 905.1 - SF7BW125 to SF10BW125 906 -* 905.3 - SF7BW125 to SF10BW125 907 -* 904.6 - SF8BW500 908 - 909 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 910 - 911 -(% class="box infomessage" %) 912 912 ((( 913 - **AT+CHE=2**764 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 914 914 ))) 915 915 916 -(% class="box infomessage" %) 917 917 ((( 918 - **ATZ**768 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 919 919 ))) 920 920 921 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 922 922 923 923 924 - The**AU915**band is similar. Beloware the AU915 UplinkChannels.773 += 6. Trouble Shooting = 925 925 926 - [[image:image-20220606154825-4.png]]775 +== 6.1 Connection problem when uploading firmware == 927 927 928 928 778 +(% class="wikigeneratedid" %) 779 +((( 780 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]] 781 +))) 929 929 930 -= 5. Trouble Shooting = 931 931 932 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 933 933 934 - Itis due to channel mapping.Please see the [[Eight Channel Mode>>doc:Main.LoRaWANCommunicationDebug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]sectionabove fordetails.785 +== 6.2 AT Command input doesn't work == 935 935 787 +((( 788 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 789 +))) 936 936 937 -== 5.2 AT Command input doesn’t work == 938 938 939 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 940 940 793 += 7. Order Info = 941 941 942 -== 5.3 Device rejoin in at the second uplink packet == 943 943 944 -(% style="color:#4f81bd" %)** Issue describe as below:**796 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 945 945 946 -[[image:1654500909990-784.png]] 947 947 948 - 949 -(% style="color:#4f81bd" %)**Cause for this issue:** 950 - 951 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 952 - 953 - 954 -(% style="color:#4f81bd" %)**Solution: ** 955 - 956 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 957 - 958 -[[image:1654500929571-736.png]] 959 - 960 - 961 -= 6. Order Info = 962 - 963 - 964 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 965 - 966 - 967 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 968 - 969 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 970 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 971 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 972 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 973 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 974 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 975 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 976 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 977 - 978 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 979 - 980 -* (% style="color:red" %)**4**(%%): 4000mAh battery 981 -* (% style="color:red" %)**8**(%%): 8500mAh battery 982 - 983 983 (% class="wikigeneratedid" %) 984 984 ((( 985 985 986 986 ))) 987 987 988 -= 7. Packing Info =804 += 8. Packing Info = 989 989 990 990 ((( 991 -**Package Includes**: 992 -))) 807 + 993 993 994 -* ((( 995 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 809 +(% style="color:#037691" %)**Package Includes**: 810 + 811 + 812 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 813 +* External antenna x 1 996 996 ))) 997 997 998 998 ((( 999 999 1000 -))) 1001 1001 1002 -((( 1003 -**Dimension and weight**: 1004 -))) 819 +(% style="color:#037691" %)**Dimension and weight**: 1005 1005 1006 -* ((( 1007 -Device Size: cm 821 + 822 +* Size: 195 x 125 x 55 mm 823 +* Weight: 420g 1008 1008 ))) 1009 -* ((( 1010 -Device Weight: g 1011 -))) 1012 -* ((( 1013 -Package Size / pcs : cm 1014 -))) 1015 -* ((( 1016 -Weight / pcs : g 1017 1017 826 +((( 827 + 1018 1018 829 + 1019 1019 1020 1020 ))) 1021 1021 1022 -= 8. Support =833 += 9. Support = 1023 1023 1024 1024 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1025 1025 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1026 - 1027 -
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content