Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 22 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,9 +3,7 @@ 3 3 4 4 5 5 6 -**Contents:** 7 7 8 -{{toc/}} 9 9 10 10 11 11 ... ... @@ -12,63 +12,81 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 - == 1.1 Whatis LoRaWANSoil Moisture& EC Sensor ==14 +**Table of Contents:** 18 18 19 -((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 22 22 23 -((( 24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 -))) 26 26 27 -((( 28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 -))) 34 34 20 + 21 += 1. Introduction = 22 + 23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 + 35 35 ((( 36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 -))) 26 + 38 38 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 39 39 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 + 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 + 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 + 36 + 37 +))) 38 + 40 40 [[image:1654503236291-817.png]] 41 41 42 42 43 -[[image:16545 03265560-120.png]]42 +[[image:1657245163077-232.png]] 44 44 45 45 46 46 47 47 == 1.2 Features == 48 48 49 - * LoRaWAN 1.0.3 Class A50 -* Ultra lowpower consumption48 + 49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 51 51 * Monitor Soil Moisture 52 52 * Monitor Soil Temperature 53 53 * Monitor Soil Conductivity 54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 55 55 * AT Commands to change parameters 56 56 * Uplink on periodically 57 57 * Downlink to change configure 58 58 * IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 59 +* Micro SIM card slot for NB-IoT SIM 60 +* 8500mAh Battery for long term use 60 60 62 +== 1.3 Specification == 61 61 62 62 63 - ==1.3Specification ==65 +(% style="color:#037691" %)**Common DC Characteristics:** 64 64 67 +* Supply Voltage: 2.1v ~~ 3.6v 68 +* Operating Temperature: -40 ~~ 85°C 69 + 70 +(% style="color:#037691" %)**NB-IoT Spec:** 71 + 72 +* - B1 @H-FDD: 2100MHz 73 +* - B3 @H-FDD: 1800MHz 74 +* - B8 @H-FDD: 900MHz 75 +* - B5 @H-FDD: 850MHz 76 +* - B20 @H-FDD: 800MHz 77 +* - B28 @H-FDD: 700MHz 78 + 79 +(% style="color:#037691" %)**Probe Specification:** 80 + 65 65 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 66 66 67 -[[image:image-20220 606162220-5.png]]83 +[[image:image-20220708101224-1.png]] 68 68 69 69 70 70 71 -== 1.4 Applications == 87 +== 1.4 Applications == 72 72 73 73 * Smart Agriculture 74 74 ... ... @@ -75,676 +75,547 @@ 75 75 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 76 76 77 77 78 -== 1.5 Firmware Changelog==94 +== 1.5 Pin Definitions == 79 79 80 80 81 - **LSE01v1.0 :** Release97 +[[image:1657246476176-652.png]] 82 82 83 83 84 84 85 -= 2. ConfigureLSE01 to connect toLoRaWANnetwork=101 += 2. Use NSE01 to communicate with IoT Server = 86 86 87 -== 2.1 How it works == 103 +== 2.1 How it works == 88 88 105 + 89 89 ((( 90 -The LSE01 isconfiguredasLoRaWANOTAAClass Amodebydefault.IthasOTAAkeystojoinLoRaWANnetwork.Toconnect a localLoRaWAN network,you need toinputtheOTAAkeysin theLoRaWANserverandpoweronthe LSE0150. It willautomaticallyjointhenetworkviaOTAA and starttosendthesensor value107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 91 91 ))) 92 92 110 + 93 93 ((( 94 - In case you can’t set the OTAA keys in theLoRaWAN OTAA server,andyouhave tousethe keysfromtheserver, you can [[useAT Commands >>||anchor="H3.UsingtheATCommands"]].112 +The diagram below shows the working flow in default firmware of NSE01: 95 95 ))) 96 96 115 +[[image:image-20220708101605-2.png]] 97 97 98 - 99 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 100 - 101 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 102 - 103 - 104 -[[image:1654503992078-669.png]] 105 - 106 - 107 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 108 - 109 - 110 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 111 - 112 -Each LSE01 is shipped with a sticker with the default device EUI as below: 113 - 114 -[[image:image-20220606163732-6.jpeg]] 115 - 116 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 117 - 118 -**Add APP EUI in the application** 119 - 120 - 121 -[[image:1654504596150-405.png]] 122 - 123 - 124 - 125 -**Add APP KEY and DEV EUI** 126 - 127 -[[image:1654504683289-357.png]] 128 - 129 - 130 - 131 -**Step 2**: Power on LSE01 132 - 133 - 134 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 135 - 136 -[[image:image-20220606163915-7.png]] 137 - 138 - 139 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 140 - 141 -[[image:1654504778294-788.png]] 142 - 143 - 144 - 145 -== 2.3 Uplink Payload == 146 - 147 -=== 2.3.1 MOD~=0(Default Mode) === 148 - 149 -LSE01 will uplink payload via LoRaWAN with below payload format: 150 - 151 - 152 -Uplink payload includes in total 11 bytes. 117 +((( 153 153 154 - 155 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 156 -|=((( 157 -**Size** 158 - 159 -**(bytes)** 160 -)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1** 161 -|**Value**|(% style="width:46px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:160px" %)((( 162 -Temperature 163 - 164 -(Reserve, Ignore now) 165 -)))|(% style="width:104px" %)[[Soil Moisture>>path:#soil_moisture]]|(% style="width:126px" %)[[Soil Temperature>>path:#soil_tem]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>path:#EC]]|(% style="width:114px" %)((( 166 -MOD & Digital Interrupt 167 - 168 -(Optional) 169 169 ))) 170 170 171 -[[image:1654504881641-514.png]] 172 172 173 173 123 +== 2.2 Configure the NSE01 == 174 174 175 -=== 2.3.2 MOD~=1(Original value) === 176 176 177 - Thismodecangettheoriginal AD value of moistureand original conductivity (with temperature drift compensation).126 +=== 2.2.1 Test Requirement === 178 178 179 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 180 -|=((( 181 -**Size** 182 182 183 -**(bytes)** 184 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1** 185 -|**Value**|[[BAT>>path:#bat]]|((( 186 -Temperature 129 +To use NSE01 in your city, make sure meet below requirements: 187 187 188 - (Reserve,Ignorenow)189 - )))|[[SoilMoisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[SoilConductivity(EC)>>path:#EC]](raw)|(((190 - MOD&DigitalInterrupt131 +* Your local operator has already distributed a NB-IoT Network there. 132 +* The local NB-IoT network used the band that NSE01 supports. 133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 191 191 192 -(Optional) 135 +((( 136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 193 193 ))) 194 194 195 -[[image:1654504907647-967.png]] 196 196 140 +[[image:1657249419225-449.png]] 197 197 198 198 199 -=== 2.3.3 Battery Info === 200 200 201 - Checkthebattery voltageforLSE01.144 +=== 2.2.2 Insert SIM card === 202 202 203 - Ex1:0x0B45=2885mV146 +Insert the NB-IoT Card get from your provider. 204 204 205 - Ex2:0x0B49=2889mV148 +User need to take out the NB-IoT module and insert the SIM card like below: 206 206 207 207 151 +[[image:1657249468462-536.png]] 208 208 209 -=== 2.3.4 Soil Moisture === 210 210 211 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 212 212 213 - Forexample,ifthedatayougetfromtheregister is __0x050xDC__,themoisturecontentinthesoil is155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 214 214 215 - 216 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 217 - 218 - 219 - 220 -=== 2.3.5 Soil Temperature === 221 - 222 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 223 - 224 -**Example**: 225 - 226 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 227 - 228 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 229 - 230 - 231 - 232 -=== 2.3.6 Soil Conductivity (EC) === 233 - 234 234 ((( 235 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 236 -))) 237 - 238 238 ((( 239 - For example,ifthedatayougetfromtheregister is 0x000xC8,the soilconductivityis00C8(H)=200(D)=200uS/cm.159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 240 240 ))) 241 - 242 -((( 243 -Generally, the EC value of irrigation water is less than 800uS / cm. 244 244 ))) 245 245 246 -((( 247 - 248 -))) 249 249 250 -((( 251 - 252 -))) 164 +**Connection:** 253 253 254 -= ==2.3.7MOD===166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 255 255 256 - Firmwareversionatst v2.1 supportschanging mode.168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 257 257 258 - Forexample,bytes[10]=90170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 259 259 260 -mod=(bytes[10]>>7)&0x01=1. 261 261 173 +In the PC, use below serial tool settings: 262 262 263 -Downlink Command: 175 +* Baud: (% style="color:green" %)**9600** 176 +* Data bits:** (% style="color:green" %)8(%%)** 177 +* Stop bits: (% style="color:green" %)**1** 178 +* Parity: (% style="color:green" %)**None** 179 +* Flow Control: (% style="color:green" %)**None** 264 264 265 -If payload = 0x0A00, workmode=0 181 +((( 182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 183 +))) 266 266 267 - If** **payload =** **0x0A01, workmode=1185 +[[image:image-20220708110657-3.png]] 268 268 187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 269 269 270 270 271 -=== 2.3.8 Decode payload in The Things Network === 272 272 273 - WhileusingTTNnetwork,youcan add thepayload formattodecodethepayload.191 +=== 2.2.4 Use CoAP protocol to uplink data === 274 274 193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 275 275 276 -[[image:1654505570700-128.png]] 277 277 278 - Thepayloaddecoder function for TTN ishere:196 +**Use below commands:** 279 279 280 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 198 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 281 281 202 +For parameter description, please refer to AT command set 282 282 283 - ==2.4Uplink Interval ==204 +[[image:1657249793983-486.png]] 284 284 285 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: 286 286 287 - [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 288 288 209 +[[image:1657249831934-534.png]] 289 289 290 290 291 -== 2.5 Downlink Payload == 292 292 293 - Bydefault,LSE50printsthe downlinkpayloadtonsoleport.213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 294 294 295 - [[image:image-20220606165544-8.png]]215 +This feature is supported since firmware version v1.0.1 296 296 297 297 298 -**Examples:** 218 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 299 299 222 +[[image:1657249864775-321.png]] 300 300 301 -* **Set TDC** 302 302 303 - If the payload=0100003C,itmeans set the END Node’s TDC to 0x00003C=60(S), while type code is 01.225 +[[image:1657249930215-289.png]] 304 304 305 -Payload: 01 00 00 1E TDC=30S 306 306 307 -Payload: 01 00 00 3C TDC=60S 308 308 229 +=== 2.2.6 Use MQTT protocol to uplink data === 309 309 310 - ***Reset**231 +This feature is supported since firmware version v110 311 311 312 -If payload = 0x04FF, it will reset the LSE01 313 313 234 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 237 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 238 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 314 314 315 - * **CFM**242 +[[image:1657249978444-674.png]] 316 316 317 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 318 318 245 +[[image:1657249990869-686.png]] 319 319 320 320 321 -== 2.6 Show Data in DataCake IoT Server == 248 +((( 249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 250 +))) 322 322 323 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 324 324 325 325 326 - **Step1**:Besurethatyour device isprogrammed and properlyconnectedtothenetwork atthis time.254 +=== 2.2.7 Use TCP protocol to uplink data === 327 327 328 - **Step 2**:ToconfiguretheApplication to forward data to DATACAKE you will needto addintegration. To add theDATACAKE integration,perform the following steps:256 +This feature is supported since firmware version v110 329 329 330 330 331 -[[image:1654505857935-743.png]] 259 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 332 332 262 +[[image:1657250217799-140.png]] 333 333 334 -[[image:1654505874829-548.png]] 335 335 336 - Step 3: Create an account or login Datacake.265 +[[image:1657250255956-604.png]] 337 337 338 -Step 4: Search the LSE01 and add DevEUI. 339 339 340 340 341 - [[image:1654505905236-553.png]]269 +=== 2.2.8 Change Update Interval === 342 342 271 +User can use below command to change the (% style="color:green" %)**uplink interval**. 343 343 344 - Afteradded,thesensordata arrive TTN,itwillalsoarriveandshow inMydevices.273 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 345 345 346 -[[image:1654505925508-181.png]] 275 +((( 276 +(% style="color:red" %)**NOTE:** 277 +))) 347 347 279 +((( 280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 281 +))) 348 348 349 349 350 -== 2.7 Frequency Plans == 351 351 352 - TheLSE01uses OTAA mode and below frequencyplans by default. If user want to useit with differentfrequencyplan, please refer the AT commandsets.285 +== 2.3 Uplink Payload == 353 353 287 +In this mode, uplink payload includes in total 18 bytes 354 354 355 -=== 2.7.1 EU863-870 (EU868) === 289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 290 +|=(% style="width: 50px;" %)((( 291 +**Size(bytes)** 292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 356 356 357 - (%style="color:#037691"%)** Uplink:**295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 358 358 359 -868.1 - SF7BW125 to SF12BW125 360 360 361 - 868.3-SF7BW125 to SF12BW125 and SF7BW250298 +[[image:image-20220708111918-4.png]] 362 362 363 -868.5 - SF7BW125 to SF12BW125 364 364 365 - 867.1-SF7BW125toSF12BW125301 +The payload is ASCII string, representative same HEX: 366 366 367 - 867.3- SF7BW125to SF12BW125303 +0x72403155615900640c7817075e0a8c02f900 where: 368 368 369 -867.5 - SF7BW125 to SF12BW125 305 +* Device ID: 0x 724031556159 = 724031556159 306 +* Version: 0x0064=100=1.0.0 370 370 371 -867.7 - SF7BW125 to SF12BW125 308 +* BAT: 0x0c78 = 3192 mV = 3.192V 309 +* Singal: 0x17 = 23 310 +* Soil Moisture: 0x075e= 1886 = 18.86 % 311 +* Soil Temperature:0x0a8c =2700=27 °C 312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 313 +* Interrupt: 0x00 = 0 372 372 373 - 867.9- SF7BW125to SF12BW125315 +== 2.4 Payload Explanation and Sensor Interface == 374 374 375 -868.8 - FSK 376 376 318 +=== 2.4.1 Device ID === 377 377 378 - (% style="color:#037691"%)**Downlink:**320 +By default, the Device ID equal to the last 6 bytes of IMEI. 379 379 380 -U plinkchannels1-9(RX1)322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 381 381 382 - 869.525 - SF9BW125 (RX2 downlink only)324 +**Example:** 383 383 326 +AT+DEUI=A84041F15612 384 384 328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 385 385 386 -=== 2.7.2 US902-928(US915) === 387 387 388 -Used in USA, Canada and South America. Default use CHE=2 389 389 390 - (%style="color:#037691" %)**Uplink:**332 +=== 2.4.2 Version Info === 391 391 392 - 903.9 -SF7BW125toSF10BW125334 +Specify the software version: 0x64=100, means firmware version 1.00. 393 393 394 - 904.1-SF7BW125toSF10BW125336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 395 395 396 -904.3 - SF7BW125 to SF10BW125 397 397 398 -904.5 - SF7BW125 to SF10BW125 399 399 400 - 904.7- SF7BW125toSF10BW125340 +=== 2.4.3 Battery Info === 401 401 402 -904.9 - SF7BW125 to SF10BW125 342 +((( 343 +Check the battery voltage for LSE01. 344 +))) 403 403 404 -905.1 - SF7BW125 to SF10BW125 346 +((( 347 +Ex1: 0x0B45 = 2885mV 348 +))) 405 405 406 -905.3 - SF7BW125 to SF10BW125 350 +((( 351 +Ex2: 0x0B49 = 2889mV 352 +))) 407 407 408 408 409 -(% style="color:#037691" %)**Downlink:** 410 410 411 - 923.3-SF7BW500toSF12BW500356 +=== 2.4.4 Signal Strength === 412 412 413 - 923.9-SF7BW500to SF12BW500358 +NB-IoT Network signal Strength. 414 414 415 - 924.5- SF7BW500toSF12BW500360 +**Ex1: 0x1d = 29** 416 416 417 - 925.1-SF7BW500toSF12BW500362 +(% style="color:blue" %)**0**(%%) -113dBm or less 418 418 419 - 925.7- SF7BW500toSF12BW500364 +(% style="color:blue" %)**1**(%%) -111dBm 420 420 421 - 926.3- SF7BW500to SF12BW500366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 422 422 423 - 926.9- SF7BW500toSF12BW500368 +(% style="color:blue" %)**31** (%%) -51dBm or greater 424 424 425 -9 27.5-SF7BW500toSF12BW500370 +(% style="color:blue" %)**99** (%%) Not known or not detectable 426 426 427 -923.3 - SF12BW500(RX2 downlink only) 428 428 429 429 374 +=== 2.4.5 Soil Moisture === 430 430 431 -=== 2.7.3 CN470-510 (CN470) === 376 +((( 377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 378 +))) 432 432 433 -Used in China, Default use CHE=1 380 +((( 381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 382 +))) 434 434 435 -(% style="color:#037691" %)**Uplink:** 384 +((( 385 + 386 +))) 436 436 437 -486.3 - SF7BW125 to SF12BW125 388 +((( 389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 390 +))) 438 438 439 -486.5 - SF7BW125 to SF12BW125 440 440 441 -486.7 - SF7BW125 to SF12BW125 442 442 443 -4 86.9-SF7BW125toSF12BW125394 +=== 2.4.6 Soil Temperature === 444 444 445 -487.1 - SF7BW125 to SF12BW125 396 +((( 397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 398 +))) 446 446 447 -487.3 - SF7BW125 to SF12BW125 400 +((( 401 +**Example**: 402 +))) 448 448 449 -487.5 - SF7BW125 to SF12BW125 404 +((( 405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 406 +))) 450 450 451 -487.7 - SF7BW125 to SF12BW125 408 +((( 409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 410 +))) 452 452 453 453 454 -(% style="color:#037691" %)**Downlink:** 455 455 456 - 506.7-SF7BW125toSF12BW125414 +=== 2.4.7 Soil Conductivity (EC) === 457 457 458 -506.9 - SF7BW125 to SF12BW125 416 +((( 417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 418 +))) 459 459 460 -507.1 - SF7BW125 to SF12BW125 420 +((( 421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 422 +))) 461 461 462 -507.3 - SF7BW125 to SF12BW125 424 +((( 425 +Generally, the EC value of irrigation water is less than 800uS / cm. 426 +))) 463 463 464 -507.5 - SF7BW125 to SF12BW125 428 +((( 429 + 430 +))) 465 465 466 -507.7 - SF7BW125 to SF12BW125 432 +((( 433 + 434 +))) 467 467 468 - 507.9- SF7BW125toSF12BW125436 +=== 2.4.8 Digital Interrupt === 469 469 470 - 508.1-SF7BW125toSF12BW125438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 471 471 472 - 505.3- SF12BW125 (RX2 downlinkonly)440 +The command is: 473 473 442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 474 474 475 475 476 - ===2.7.4AU915-928(AU915)===445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 477 477 478 -Default use CHE=2 479 479 480 - (% style="color:#037691" %)**Uplink:**448 +Example: 481 481 482 - 916.8-SF7BW125to SF12BW125450 +0x(00): Normal uplink packet. 483 483 484 - 917.0- SF7BW125toSF12BW125452 +0x(01): Interrupt Uplink Packet. 485 485 486 -917.2 - SF7BW125 to SF12BW125 487 487 488 -917.4 - SF7BW125 to SF12BW125 489 489 490 - 917.6- SF7BW125 toSF12BW125456 +=== 2.4.9 +5V Output === 491 491 492 - 917.8-SF7BW125 toSF12BW125458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 493 493 494 -918.0 - SF7BW125 to SF12BW125 495 495 496 - 918.2- SF7BW125 toSF12BW125461 +The 5V output time can be controlled by AT Command. 497 497 463 +(% style="color:blue" %)**AT+5VT=1000** 498 498 499 - (%style="color:#037691"%)**Downlink:**465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 500 500 501 -923.3 - SF7BW500 to SF12BW500 502 502 503 -923.9 - SF7BW500 to SF12BW500 504 504 505 - 924.5-SF7BW500 toSF12BW500469 +== 2.5 Downlink Payload == 506 506 507 - 925.1-SF7BW500toSF12BW500471 +By default, NSE01 prints the downlink payload to console port. 508 508 509 - 925.7-SF7BW500 to SF12BW500473 +[[image:image-20220708133731-5.png]] 510 510 511 -926.3 - SF7BW500 to SF12BW500 512 512 513 -926.9 - SF7BW500 to SF12BW500 514 514 515 -927.5 - SF7BW500 to SF12BW500 477 +((( 478 +(% style="color:blue" %)**Examples:** 479 +))) 516 516 517 -923.3 - SF12BW500(RX2 downlink only) 481 +((( 482 + 483 +))) 518 518 485 +* ((( 486 +(% style="color:blue" %)**Set TDC** 487 +))) 519 519 489 +((( 490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 491 +))) 520 520 521 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 493 +((( 494 +Payload: 01 00 00 1E TDC=30S 495 +))) 522 522 523 -(% style="color:#037691" %)**Default Uplink channel:** 497 +((( 498 +Payload: 01 00 00 3C TDC=60S 499 +))) 524 524 525 -923.2 - SF7BW125 to SF10BW125 501 +((( 502 + 503 +))) 526 526 527 -923.4 - SF7BW125 to SF10BW125 505 +* ((( 506 +(% style="color:blue" %)**Reset** 507 +))) 528 528 509 +((( 510 +If payload = 0x04FF, it will reset the NSE01 511 +))) 529 529 530 -(% style="color:#037691" %)**Additional Uplink Channel**: 531 531 532 -( OTAAmode,channeladded by JoinAcceptmessage)514 +* (% style="color:blue" %)**INTMOD** 533 533 534 - (%style="color:#037691" %)**AS920~~AS923for Japan,Malaysia,Singapore**:516 +Downlink Payload: 06000003, Set AT+INTMOD=3 535 535 536 -922.2 - SF7BW125 to SF10BW125 537 537 538 -922.4 - SF7BW125 to SF10BW125 539 539 540 - 922.6-SF7BW125toSF10BW125520 +== 2.6 LED Indicator == 541 541 542 -922.8 - SF7BW125 to SF10BW125 522 +((( 523 +The NSE01 has an internal LED which is to show the status of different state. 543 543 544 -923.0 - SF7BW125 to SF10BW125 545 545 546 -922.0 - SF7BW125 to SF10BW125 526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 527 +* Then the LED will be on for 1 second means device is boot normally. 528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 529 +* For each uplink probe, LED will be on for 500ms. 530 +))) 547 547 548 548 549 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 550 550 551 -923.6 - SF7BW125 to SF10BW125 552 552 553 - 923.8 - SF7BW125to SF10BW125535 +== 2.7 Installation in Soil == 554 554 555 - 924.0- SF7BW125toSF10BW125537 +__**Measurement the soil surface**__ 556 556 557 - 924.2-SF7BW125SF10BW125539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 558 558 559 - 924.4 - SF7BW125to SF10BW125541 +[[image:1657259653666-883.png]] 560 560 561 -924.6 - SF7BW125 to SF10BW125 562 562 544 +((( 545 + 563 563 564 -(% style="color:#037691" %)** Downlink:** 547 +((( 548 +Dig a hole with diameter > 20CM. 549 +))) 565 565 566 -Uplink channels 1-8 (RX1) 551 +((( 552 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 553 +))) 554 +))) 567 567 568 -9 23.2-SF10BW125 (RX2)556 +[[image:1654506665940-119.png]] 569 569 558 +((( 559 + 560 +))) 570 570 571 571 572 -== =2.7.6KR920-923(KR920)===563 +== 2.8 Firmware Change Log == 573 573 574 -Default channel: 575 575 576 - 922.1-SF7BW125toSF12BW125566 +Download URL & Firmware Change log 577 577 578 - 922.3-F7BW125toSF12BW125568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 579 579 580 -922.5 - SF7BW125 to SF12BW125 581 581 571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 582 582 583 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 584 584 585 -922.1 - SF7BW125 to SF12BW125 586 586 587 - 922.3- SF7BW125toSF12BW125575 +== 2.9 Battery Analysis == 588 588 589 - 922.5 - SF7BW125toSF12BW125577 +=== 2.9.1 Battery Type === 590 590 591 -922.7 - SF7BW125 to SF12BW125 592 592 593 - 922.9-SF7BW125to SF12BW125580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 594 594 595 -923.1 - SF7BW125 to SF12BW125 596 596 597 - 923.3-SF7BW125toSF12BW125583 +The battery is designed to last for several years depends on the actually use environment and update interval. 598 598 599 599 600 - (%style="color:#037691"%)**Downlink:**586 +The battery related documents as below: 601 601 602 -Uplink channels 1-7(RX1) 588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 603 603 604 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 605 - 606 - 607 - 608 -=== 2.7.7 IN865-867 (IN865) === 609 - 610 -(% style="color:#037691" %)** Uplink:** 611 - 612 -865.0625 - SF7BW125 to SF12BW125 613 - 614 -865.4025 - SF7BW125 to SF12BW125 615 - 616 -865.9850 - SF7BW125 to SF12BW125 617 - 618 - 619 -(% style="color:#037691" %) **Downlink:** 620 - 621 -Uplink channels 1-3 (RX1) 622 - 623 -866.550 - SF10BW125 (RX2) 624 - 625 - 626 - 627 - 628 -== 2.8 LED Indicator == 629 - 630 -The LSE01 has an internal LED which is to show the status of different state. 631 - 632 -* Blink once when device power on. 633 -* Solid ON for 5 seconds once device successful Join the network. 634 -* Blink once when device transmit a packet. 635 - 636 -== 2.9 Installation in Soil == 637 - 638 -**Measurement the soil surface** 639 - 640 - 641 -[[image:1654506634463-199.png]] 642 - 643 643 ((( 644 -((( 645 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 593 +[[image:image-20220708140453-6.png]] 646 646 ))) 647 -))) 648 648 649 649 650 -[[image:1654506665940-119.png]] 651 651 652 -((( 653 -Dig a hole with diameter > 20CM. 654 -))) 598 +2.9.2 655 655 656 -((( 657 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 658 -))) 600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 659 659 660 660 661 - ==2.10FirmwareChangeLog ==603 +Instruction to use as below: 662 662 663 -((( 664 -**Firmware download link:** 665 -))) 666 666 667 -((( 668 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 669 -))) 606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 670 670 671 -((( 672 - 673 -))) 608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 674 674 675 -((( 676 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 677 -))) 678 678 679 -((( 680 - 681 -))) 611 +Step 2: Open it and choose 682 682 683 - (((684 -* *V1.0.**685 - )))613 +* Product Model 614 +* Uplink Interval 615 +* Working Mode 686 686 687 -((( 688 -Release 689 -))) 617 +And the Life expectation in difference case will be shown on the right. 690 690 691 691 692 -== 2.11 Battery Analysis == 693 693 694 -=== 2. 11.1BatteryType ===621 +=== 2.9.3 Battery Note === 695 695 696 696 ((( 697 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 698 -))) 699 - 700 -((( 701 -The battery is designed to last for more than 5 years for the LSN50. 702 -))) 703 - 704 -((( 705 -((( 706 -The battery-related documents are as below: 707 -))) 708 -))) 709 - 710 -* ((( 711 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 712 -))) 713 -* ((( 714 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 715 -))) 716 -* ((( 717 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 718 -))) 719 - 720 - [[image:image-20220606171726-9.png]] 721 - 722 - 723 - 724 -=== 2.11.2 Battery Note === 725 - 726 -((( 727 727 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 728 728 ))) 729 729 730 730 731 731 732 -=== 2. 11.3Replace the battery ===629 +=== 2.9.4 Replace the battery === 733 733 734 -((( 735 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 736 -))) 631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 737 737 738 -((( 739 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 740 -))) 741 741 742 -((( 743 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 744 -))) 745 745 746 - 747 - 748 748 = 3. Using the AT Commands = 749 749 750 750 == 3.1 Access AT Commands == ... ... @@ -752,13 +752,13 @@ 752 752 753 753 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 754 754 755 -[[image:1654501986557-872.png]] 642 +[[image:1654501986557-872.png||height="391" width="800"]] 756 756 757 757 758 758 Or if you have below board, use below connection: 759 759 760 760 761 -[[image:1654502005655-729.png]] 648 +[[image:1654502005655-729.png||height="503" width="801"]] 762 762 763 763 764 764 ... ... @@ -765,10 +765,10 @@ 765 765 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 766 766 767 767 768 - [[image:1654502050864-459.png]] 655 + [[image:1654502050864-459.png||height="564" width="806"]] 769 769 770 770 771 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>> url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 772 772 773 773 774 774 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> ... ... @@ -880,20 +880,38 @@ 880 880 881 881 == 4.1 How to change the LoRa Frequency Bands/Region? == 882 882 883 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10FirmwareChangeLog"]]. 770 +((( 771 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 884 884 When downloading the images, choose the required image file for download. 773 +))) 885 885 775 +((( 776 + 777 +))) 886 886 779 +((( 887 887 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 781 +))) 888 888 783 +((( 784 + 785 +))) 889 889 787 +((( 890 890 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 789 +))) 891 891 791 +((( 792 + 793 +))) 892 892 795 +((( 893 893 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 797 +))) 894 894 895 895 [[image:image-20220606154726-3.png]] 896 896 801 + 897 897 When you use the TTN network, the US915 frequency bands use are: 898 898 899 899 * 903.9 - SF7BW125 to SF10BW125 ... ... @@ -906,37 +906,47 @@ 906 906 * 905.3 - SF7BW125 to SF10BW125 907 907 * 904.6 - SF8BW500 908 908 814 +((( 909 909 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 910 910 911 -(% class="box infomessage" %) 912 -((( 913 -**AT+CHE=2** 817 +* (% style="color:#037691" %)**AT+CHE=2** 818 +* (% style="color:#037691" %)**ATZ** 914 914 ))) 915 915 916 -(% class="box infomessage" %) 917 917 ((( 918 -**ATZ** 919 -))) 822 + 920 920 921 921 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 825 +))) 922 922 827 +((( 828 + 829 +))) 923 923 831 +((( 924 924 The **AU915** band is similar. Below are the AU915 Uplink Channels. 833 +))) 925 925 926 926 [[image:image-20220606154825-4.png]] 927 927 928 928 838 +== 4.2 Can I calibrate LSE01 to different soil types? == 929 929 840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 841 + 842 + 930 930 = 5. Trouble Shooting = 931 931 932 -== 5.1 Why I can ’t join TTN in US915 / AU915 bands? ==845 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 933 933 934 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. LoRaWANCommunication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 935 935 936 936 937 -== 5.2 AT Command input doesn ’t work ==850 +== 5.2 AT Command input doesn't work == 938 938 939 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 852 +((( 853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 854 +))) 940 940 941 941 942 942 == 5.3 Device rejoin in at the second uplink packet == ... ... @@ -948,7 +948,9 @@ 948 948 949 949 (% style="color:#4f81bd" %)**Cause for this issue:** 950 950 866 +((( 951 951 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 868 +))) 952 952 953 953 954 954 (% style="color:#4f81bd" %)**Solution: ** ... ... @@ -955,7 +955,7 @@ 955 955 956 956 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 957 957 958 -[[image:1654500929571-736.png]] 875 +[[image:1654500929571-736.png||height="458" width="832"]] 959 959 960 960 961 961 = 6. Order Info = ... ... @@ -988,7 +988,9 @@ 988 988 = 7. Packing Info = 989 989 990 990 ((( 991 -**Package Includes**: 908 + 909 + 910 +(% style="color:#037691" %)**Package Includes**: 992 992 ))) 993 993 994 994 * ((( ... ... @@ -997,10 +997,8 @@ 997 997 998 998 ((( 999 999 1000 -))) 1001 1001 1002 -((( 1003 -**Dimension and weight**: 920 +(% style="color:#037691" %)**Dimension and weight**: 1004 1004 ))) 1005 1005 1006 1006 * ((( ... ... @@ -1015,7 +1015,6 @@ 1015 1015 * ((( 1016 1016 Weight / pcs : g 1017 1017 1018 - 1019 1019 1020 1020 ))) 1021 1021 ... ... @@ -1023,5 +1023,3 @@ 1023 1023 1024 1024 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1025 1025 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1026 - 1027 -
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content