Last modified by Mengting Qiu on 2024/04/02 16:44

From version 31.17
edited by Xiaoling
on 2022/06/07 09:31
Change comment: There is no comment for this version
To version 65.2
edited by Xiaoling
on 2022/07/08 15:03
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,9 +3,7 @@
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
... ... @@ -12,1016 +12,825 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 +**Table of Contents:**
18 18  
19 -(((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
22 22  
23 -(((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 -)))
26 26  
27 -(((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 -)))
34 34  
20 +
21 += 1.  Introduction =
22 +
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 +
35 35  (((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 -)))
26 +
38 38  
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
39 39  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
36 +
37 +)))
38 +
40 40  [[image:1654503236291-817.png]]
41 41  
42 42  
43 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
44 44  
45 45  
46 46  
47 47  == 1.2 ​Features ==
48 48  
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
48 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
51 51  * Monitor Soil Moisture
52 52  * Monitor Soil Temperature
53 53  * Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 55  * AT Commands to change parameters
56 56  * Uplink on periodically
57 57  * Downlink to change configure
58 58  * IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
56 +* Ultra-Low Power consumption
57 +* AT Commands to change parameters
58 +* Micro SIM card slot for NB-IoT SIM
59 +* 8500mAh Battery for long term use
60 60  
61 61  
62 62  
63 -== 1.3 Specification ==
64 64  
65 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
64 +== 1.3  Specification ==
66 66  
67 -[[image:image-20220606162220-5.png]]
68 68  
67 +(% style="color:#037691" %)**Common DC Characteristics:**
69 69  
69 +* Supply Voltage: 2.1v ~~ 3.6v
70 +* Operating Temperature: -40 ~~ 85°C
70 70  
71 -== ​1.4 Applications ==
72 72  
73 -* Smart Agriculture
74 74  
75 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
76 -​
74 +(% style="color:#037691" %)**NB-IoT Spec:**
77 77  
78 -== 1.5 Firmware Change log ==
76 +* - B1 @H-FDD: 2100MHz
77 +* - B3 @H-FDD: 1800MHz
78 +* - B8 @H-FDD: 900MHz
79 +* - B5 @H-FDD: 850MHz
80 +* - B20 @H-FDD: 800MHz
81 +* - B28 @H-FDD: 700MHz
79 79  
80 80  
81 -**LSE01 v1.0 :**  Release
82 82  
85 +Probe(% style="color:#037691" %)** Specification:**
83 83  
87 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
84 84  
85 -= 2. Configure LSE01 to connect to LoRaWAN network =
89 +[[image:image-20220708101224-1.png]]
86 86  
87 -== 2.1 How it works ==
88 88  
89 -(((
90 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
91 -)))
92 92  
93 -(((
94 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
95 -)))
93 +== ​1.4  Applications ==
96 96  
95 +* Smart Agriculture
97 97  
97 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
98 +​
98 98  
99 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
100 +== 1. Pin Definitions ==
100 100  
101 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
102 102  
103 +[[image:1657246476176-652.png]]
103 103  
104 -[[image:1654503992078-669.png]]
105 105  
106 106  
107 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
107 += 2.  Use NSE01 to communicate with IoT Server =
108 108  
109 +== 2.1  How it works ==
109 109  
110 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
111 111  
112 -Each LSE01 is shipped with a sticker with the default device EUI as below:
112 +(((
113 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
114 +)))
113 113  
114 -[[image:image-20220606163732-6.jpeg]]
115 115  
116 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
117 +(((
118 +The diagram below shows the working flow in default firmware of NSE01:
119 +)))
117 117  
118 -**Add APP EUI in the application**
121 +[[image:image-20220708101605-2.png]]
119 119  
120 -
121 -[[image:1654504596150-405.png]]
122 -
123 -
124 -
125 -**Add APP KEY and DEV EUI**
126 -
127 -[[image:1654504683289-357.png]]
128 -
129 -
130 -
131 -**Step 2**: Power on LSE01
132 -
133 -
134 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
135 -
136 -[[image:image-20220606163915-7.png]]
137 -
138 -
139 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
140 -
141 -[[image:1654504778294-788.png]]
142 -
143 -
144 -
145 -== 2.3 Uplink Payload ==
146 -
147 -=== 2.3.1 MOD~=0(Default Mode) ===
148 -
149 -LSE01 will uplink payload via LoRaWAN with below payload format: 
150 -
151 -
152 -Uplink payload includes in total 11 bytes.
123 +(((
153 153  
154 -
155 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
156 -|=(((
157 -**Size**
158 -
159 -**(bytes)**
160 -)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1**
161 -|**Value**|(% style="width:46px" %)[[BAT>>path:#bat]]|(% style="width:160px" %)(((
162 -Temperature
163 -
164 -(Reserve, Ignore now)
165 -)))|(% style="width:104px" %)[[Soil Moisture>>path:#soil_moisture]]|(% style="width:126px" %)[[Soil Temperature>>path:#soil_tem]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>path:#EC]]|(% style="width:114px" %)(((
166 -MOD & Digital Interrupt
167 -
168 -(Optional)
169 169  )))
170 170  
171 -[[image:1654504881641-514.png]]
172 172  
173 173  
129 +== 2.2 ​ Configure the NSE01 ==
174 174  
175 -=== 2.3.2 MOD~=1(Original value) ===
176 176  
177 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
132 +=== 2.2.1 Test Requirement ===
178 178  
179 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
180 -|=(((
181 -**Size**
182 182  
183 -**(bytes)**
184 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1**
185 -|**Value**|[[BAT>>path:#bat]]|(((
186 -Temperature
135 +To use NSE01 in your city, make sure meet below requirements:
187 187  
188 -(Reserve, Ignore now)
189 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
190 -MOD & Digital Interrupt
137 +* Your local operator has already distributed a NB-IoT Network there.
138 +* The local NB-IoT network used the band that NSE01 supports.
139 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
191 191  
192 -(Optional)
141 +(((
142 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
193 193  )))
194 194  
195 -[[image:1654504907647-967.png]]
196 196  
146 +[[image:1657249419225-449.png]]
197 197  
198 198  
199 -=== 2.3.3 Battery Info ===
200 200  
201 -Check the battery voltage for LSE01.
150 +=== 2.2.2 Insert SIM card ===
202 202  
203 -Ex1: 0x0B45 = 2885mV
152 +Insert the NB-IoT Card get from your provider.
204 204  
205 -Ex2: 0x0B49 = 2889mV
154 +User need to take out the NB-IoT module and insert the SIM card like below:
206 206  
207 207  
157 +[[image:1657249468462-536.png]]
208 208  
209 -=== 2.3.4 Soil Moisture ===
210 210  
211 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
212 212  
213 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
161 +=== 2.2.3 Connect USB TTL to NSE01 to configure it ===
214 214  
215 -
216 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
217 -
218 -
219 -
220 -=== 2.3.5 Soil Temperature ===
221 -
222 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
223 -
224 -**Example**:
225 -
226 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
227 -
228 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
229 -
230 -
231 -
232 -=== 2.3.6 Soil Conductivity (EC) ===
233 -
234 234  (((
235 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
236 -)))
237 -
238 238  (((
239 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
165 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
240 240  )))
241 -
242 -(((
243 -Generally, the EC value of irrigation water is less than 800uS / cm.
244 244  )))
245 245  
246 -(((
247 -
248 -)))
249 249  
250 -(((
251 -
252 -)))
170 +**Connection:**
253 253  
254 -=== 2.3.7 MOD ===
172 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
255 255  
256 -Firmware version at least v2.1 supports changing mode.
174 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
257 257  
258 -For example, bytes[10]=90
176 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
259 259  
260 -mod=(bytes[10]>>7)&0x01=1.
261 261  
179 +In the PC, use below serial tool settings:
262 262  
263 -Downlink Command:
181 +* Baud:  (% style="color:green" %)**9600**
182 +* Data bits:** (% style="color:green" %)8(%%)**
183 +* Stop bits: (% style="color:green" %)**1**
184 +* Parity:  (% style="color:green" %)**None**
185 +* Flow Control: (% style="color:green" %)**None**
264 264  
265 -If payload = 0x0A00, workmode=0
187 +(((
188 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
189 +)))
266 266  
267 -If** **payload =** **0x0A01, workmode=1
191 +[[image:image-20220708110657-3.png]]
268 268  
193 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
269 269  
270 270  
271 -=== 2.3.8 ​Decode payload in The Things Network ===
272 272  
273 -While using TTN network, you can add the payload format to decode the payload.
197 +=== 2.2.4 Use CoAP protocol to uplink data ===
274 274  
199 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
275 275  
276 -[[image:1654505570700-128.png]]
277 277  
278 -The payload decoder function for TTN is here:
202 +**Use below commands:**
279 279  
280 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
204 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
205 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
206 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
281 281  
208 +For parameter description, please refer to AT command set
282 282  
283 -== 2.4 Uplink Interval ==
210 +[[image:1657249793983-486.png]]
284 284  
285 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
286 286  
287 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
213 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
288 288  
215 +[[image:1657249831934-534.png]]
289 289  
290 290  
291 -== 2.5 Downlink Payload ==
292 292  
293 -By default, LSE50 prints the downlink payload to console port.
219 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
294 294  
295 -[[image:image-20220606165544-8.png]]
221 +This feature is supported since firmware version v1.0.1
296 296  
297 297  
298 -**Examples:**
224 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
225 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
226 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
299 299  
228 +[[image:1657249864775-321.png]]
300 300  
301 -* **Set TDC**
302 302  
303 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
231 +[[image:1657249930215-289.png]]
304 304  
305 -Payload:    01 00 00 1E    TDC=30S
306 306  
307 -Payload:    01 00 00 3C    TDC=60S
308 308  
235 +=== 2.2.6 Use MQTT protocol to uplink data ===
309 309  
310 -* **Reset**
237 +This feature is supported since firmware version v110
311 311  
312 -If payload = 0x04FF, it will reset the LSE01
313 313  
240 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
241 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
242 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
243 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
244 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
245 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
246 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
314 314  
315 -* **CFM**
248 +[[image:1657249978444-674.png]]
316 316  
317 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
318 318  
251 +[[image:1657249990869-686.png]]
319 319  
320 320  
321 -== 2.6 ​Show Data in DataCake IoT Server ==
254 +(((
255 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
256 +)))
322 322  
323 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
324 324  
325 325  
326 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
260 +=== 2.2.7 Use TCP protocol to uplink data ===
327 327  
328 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
262 +This feature is supported since firmware version v110
329 329  
330 330  
331 -[[image:1654505857935-743.png]]
265 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
266 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
332 332  
268 +[[image:1657250217799-140.png]]
333 333  
334 -[[image:1654505874829-548.png]]
335 335  
336 -Step 3: Create an account or log in Datacake.
271 +[[image:1657250255956-604.png]]
337 337  
338 -Step 4: Search the LSE01 and add DevEUI.
339 339  
340 340  
341 -[[image:1654505905236-553.png]]
275 +=== 2.2.8 Change Update Interval ===
342 342  
277 +User can use below command to change the (% style="color:green" %)**uplink interval**.
343 343  
344 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
279 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
345 345  
346 -[[image:1654505925508-181.png]]
281 +(((
282 +(% style="color:red" %)**NOTE:**
283 +)))
347 347  
285 +(((
286 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
287 +)))
348 348  
349 349  
350 -== 2.7 Frequency Plans ==
351 351  
352 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
291 +== 2.3  Uplink Payload ==
353 353  
293 +In this mode, uplink payload includes in total 18 bytes
354 354  
355 -=== 2.7.1 EU863-870 (EU868) ===
295 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
296 +|=(% style="width: 50px;" %)(((
297 +**Size(bytes)**
298 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
299 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
356 356  
357 -(% style="color:#037691" %)** Uplink:**
301 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
358 358  
359 -868.1 - SF7BW125 to SF12BW125
360 360  
361 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
304 +[[image:image-20220708111918-4.png]]
362 362  
363 -868.5 - SF7BW125 to SF12BW125
364 364  
365 -867.1 - SF7BW125 to SF12BW125
307 +The payload is ASCII string, representative same HEX:
366 366  
367 -867.3 - SF7BW125 to SF12BW125
309 +0x72403155615900640c7817075e0a8c02f900 where:
368 368  
369 -867.5 - SF7BW125 to SF12BW125
311 +* Device ID: 0x 724031556159 = 724031556159
312 +* Version: 0x0064=100=1.0.0
370 370  
371 -867.7 - SF7BW125 to SF12BW125
314 +* BAT: 0x0c78 = 3192 mV = 3.192V
315 +* Singal: 0x17 = 23
316 +* Soil Moisture: 0x075e= 1886 = 18.86  %
317 +* Soil Temperature:0x0a8c =2700=27 °C
318 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
319 +* Interrupt: 0x00 = 0
372 372  
373 -867.9 - SF7BW125 to SF12BW125
374 374  
375 -868.8 - FSK
376 376  
377 377  
378 -(% style="color:#037691" %)** Downlink:**
324 +== 2.4  Payload Explanation and Sensor Interface ==
379 379  
380 -Uplink channels 1-9 (RX1)
381 381  
382 -869.525 - SF9BW125 (RX2 downlink only)
327 +=== 2.4.1  Device ID ===
383 383  
329 +By default, the Device ID equal to the last 6 bytes of IMEI.
384 384  
331 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
385 385  
386 -=== 2.7.2 US902-928(US915) ===
333 +**Example:**
387 387  
388 -Used in USA, Canada and South America. Default use CHE=2
335 +AT+DEUI=A84041F15612
389 389  
390 -(% style="color:#037691" %)**Uplink:**
337 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
391 391  
392 -903.9 - SF7BW125 to SF10BW125
393 393  
394 -904.1 - SF7BW125 to SF10BW125
395 395  
396 -904.3 - SF7BW125 to SF10BW125
341 +=== 2.4.2  Version Info ===
397 397  
398 -904.5 - SF7BW125 to SF10BW125
343 +Specify the software version: 0x64=100, means firmware version 1.00.
399 399  
400 -904.7 - SF7BW125 to SF10BW125
345 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
401 401  
402 -904.9 - SF7BW125 to SF10BW125
403 403  
404 -905.1 - SF7BW125 to SF10BW125
405 405  
406 -905.3 - SF7BW125 to SF10BW125
349 +=== 2.4.3  Battery Info ===
407 407  
351 +(((
352 +Check the battery voltage for LSE01.
353 +)))
408 408  
409 -(% style="color:#037691" %)**Downlink:**
355 +(((
356 +Ex1: 0x0B45 = 2885mV
357 +)))
410 410  
411 -923.3 - SF7BW500 to SF12BW500
359 +(((
360 +Ex2: 0x0B49 = 2889mV
361 +)))
412 412  
413 -923.9 - SF7BW500 to SF12BW500
414 414  
415 -924.5 - SF7BW500 to SF12BW500
416 416  
417 -925.1 - SF7BW500 to SF12BW500
365 +=== 2.4.4  Signal Strength ===
418 418  
419 -925.7 - SF7BW500 to SF12BW500
367 +NB-IoT Network signal Strength.
420 420  
421 -926.3 - SF7BW500 to SF12BW500
369 +**Ex1: 0x1d = 29**
422 422  
423 -926.9 - SF7BW500 to SF12BW500
371 +(% style="color:blue" %)**0**(%%)  -113dBm or less
424 424  
425 -927.5 - SF7BW500 to SF12BW500
373 +(% style="color:blue" %)**1**(%%)  -111dBm
426 426  
427 -923.3 - SF12BW500(RX2 downlink only)
375 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
428 428  
377 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
429 429  
379 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
430 430  
431 -=== 2.7.3 CN470-510 (CN470) ===
432 432  
433 -Used in China, Default use CHE=1
434 434  
435 -(% style="color:#037691" %)**Uplink:**
383 +=== 2.4.5  Soil Moisture ===
436 436  
437 -486.3 - SF7BW125 to SF12BW125
385 +(((
386 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
387 +)))
438 438  
439 -486.5 - SF7BW125 to SF12BW125
389 +(((
390 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
391 +)))
440 440  
441 -486.7 - SF7BW125 to SF12BW125
393 +(((
394 +
395 +)))
442 442  
443 -486.9 - SF7BW125 to SF12BW125
397 +(((
398 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
399 +)))
444 444  
445 -487.1 - SF7BW125 to SF12BW125
446 446  
447 -487.3 - SF7BW125 to SF12BW125
448 448  
449 -487.5 - SF7BW125 to SF12BW125
403 +=== 2.4. Soil Temperature ===
450 450  
451 -487.7 - SF7BW125 to SF12BW125
405 +(((
406 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
407 +)))
452 452  
409 +(((
410 +**Example**:
411 +)))
453 453  
454 -(% style="color:#037691" %)**Downlink:**
413 +(((
414 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
415 +)))
455 455  
456 -506.7 - SF7BW125 to SF12BW125
417 +(((
418 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
419 +)))
457 457  
458 -506.9 - SF7BW125 to SF12BW125
459 459  
460 -507.1 - SF7BW125 to SF12BW125
461 461  
462 -507.3 - SF7BW125 to SF12BW125
423 +=== 2.4.7  Soil Conductivity (EC) ===
463 463  
464 -507.5 - SF7BW125 to SF12BW125
425 +(((
426 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
427 +)))
465 465  
466 -507.7 - SF7BW125 to SF12BW125
429 +(((
430 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
431 +)))
467 467  
468 -507.9 - SF7BW125 to SF12BW125
433 +(((
434 +Generally, the EC value of irrigation water is less than 800uS / cm.
435 +)))
469 469  
470 -508.1 - SF7BW125 to SF12BW125
437 +(((
438 +
439 +)))
471 471  
472 -505.3 - SF12BW125 (RX2 downlink only)
441 +(((
442 +
443 +)))
473 473  
445 +=== 2.4.8  Digital Interrupt ===
474 474  
447 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
475 475  
476 -=== 2.7.4 AU915-928(AU915) ===
449 +The command is:
477 477  
478 -Default use CHE=2
451 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
479 479  
480 -(% style="color:#037691" %)**Uplink:**
481 481  
482 -916.8 - SF7BW125 to SF12BW125
454 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
483 483  
484 -917.0 - SF7BW125 to SF12BW125
485 485  
486 -917.2 - SF7BW125 to SF12BW125
457 +Example:
487 487  
488 -917.4 - SF7BW125 to SF12BW125
459 +0x(00): Normal uplink packet.
489 489  
490 -917.6 - SF7BW125 to SF12BW125
461 +0x(01): Interrupt Uplink Packet.
491 491  
492 -917.8 - SF7BW125 to SF12BW125
493 493  
494 -918.0 - SF7BW125 to SF12BW125
495 495  
496 -918.2 - SF7BW125 to SF12BW125
465 +=== 2.4.9  ​+5V Output ===
497 497  
467 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
498 498  
499 -(% style="color:#037691" %)**Downlink:**
500 500  
501 -923.3 - SF7BW500 to SF12BW500
470 +The 5V output time can be controlled by AT Command.
502 502  
503 -923.9 - SF7BW500 to SF12BW500
472 +(% style="color:blue" %)**AT+5VT=1000**
504 504  
505 -924.5 - SF7BW500 to SF12BW500
474 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
506 506  
507 -925.1 - SF7BW500 to SF12BW500
508 508  
509 -925.7 - SF7BW500 to SF12BW500
510 510  
511 -926.3 - SF7BW500 to SF12BW500
478 +== 2.5  Downlink Payload ==
512 512  
513 -926.9 - SF7BW500 to SF12BW500
480 +By default, NSE01 prints the downlink payload to console port.
514 514  
515 -927.5 - SF7BW500 to SF12BW500
482 +[[image:image-20220708133731-5.png]]
516 516  
517 -923.3 - SF12BW500(RX2 downlink only)
518 518  
485 +(((
486 +(% style="color:blue" %)**Examples:**
487 +)))
519 519  
489 +(((
490 +
491 +)))
520 520  
521 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
493 +* (((
494 +(% style="color:blue" %)**Set TDC**
495 +)))
522 522  
523 -(% style="color:#037691" %)**Default Uplink channel:**
497 +(((
498 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
499 +)))
524 524  
525 -923.2 - SF7BW125 to SF10BW125
501 +(((
502 +Payload:    01 00 00 1E    TDC=30S
503 +)))
526 526  
527 -923.4 - SF7BW125 to SF10BW125
505 +(((
506 +Payload:    01 00 00 3C    TDC=60S
507 +)))
528 528  
509 +(((
510 +
511 +)))
529 529  
530 -(% style="color:#037691" %)**Additional Uplink Channel**:
513 +* (((
514 +(% style="color:blue" %)**Reset**
515 +)))
531 531  
532 -(OTAA mode, channel added by JoinAccept message)
517 +(((
518 +If payload = 0x04FF, it will reset the NSE01
519 +)))
533 533  
534 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
535 535  
536 -922.2 - SF7BW125 to SF10BW125
522 +* (% style="color:blue" %)**INTMOD**
537 537  
538 -922.4 - SF7BW125 to SF10BW125
524 +Downlink Payload: 06000003, Set AT+INTMOD=3
539 539  
540 -922.6 - SF7BW125 to SF10BW125
541 541  
542 -922.8 - SF7BW125 to SF10BW125
543 543  
544 -923.0 - SF7BW125 to SF10BW125
528 +== 2. ​LED Indicator ==
545 545  
546 -922.0 - SF7BW125 to SF10BW125
530 +(((
531 +The NSE01 has an internal LED which is to show the status of different state.
547 547  
548 548  
549 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
534 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
535 +* Then the LED will be on for 1 second means device is boot normally.
536 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
537 +* For each uplink probe, LED will be on for 500ms.
538 +)))
550 550  
551 -923.6 - SF7BW125 to SF10BW125
552 552  
553 -923.8 - SF7BW125 to SF10BW125
554 554  
555 -924.0 - SF7BW125 to SF10BW125
556 556  
557 -924.2 - SF7BW125 to SF10BW125
543 +== 2.7  Installation in Soil ==
558 558  
559 -924.4 - SF7BW125 to SF10BW125
545 +__**Measurement the soil surface**__
560 560  
561 -924.6 - SF7BW125 to SF10BW125
547 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
562 562  
549 +[[image:1657259653666-883.png]] ​
563 563  
564 -(% style="color:#037691" %)** Downlink:**
565 565  
566 -Uplink channels 1-8 (RX1)
552 +(((
553 +
567 567  
568 -923.2 - SF10BW125 (RX2)
555 +(((
556 +Dig a hole with diameter > 20CM.
557 +)))
569 569  
559 +(((
560 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
561 +)))
562 +)))
570 570  
564 +[[image:1654506665940-119.png]]
571 571  
572 -=== 2.7.6 KR920-923 (KR920) ===
566 +(((
567 +
568 +)))
573 573  
574 -Default channel:
575 575  
576 -922.1 - SF7BW125 to SF12BW125
571 +== 2. Firmware Change Log ==
577 577  
578 -922.3 - SF7BW125 to SF12BW125
579 579  
580 -922.5 - SF7BW125 to SF12BW125
574 +Download URL & Firmware Change log
581 581  
576 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
582 582  
583 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
584 584  
585 -922.1 - SF7BW125 to SF12BW125
579 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
586 586  
587 -922.3 - SF7BW125 to SF12BW125
588 588  
589 -922.5 - SF7BW125 to SF12BW125
590 590  
591 -922.7 - SF7BW125 to SF12BW125
583 +== 2. Battery Analysis ==
592 592  
593 -922.9 - SF7BW125 to SF12BW125
585 +=== 2.9.1  ​Battery Type ===
594 594  
595 -923.1 - SF7BW125 to SF12BW125
596 596  
597 -923.3 - SF7BW125 to SF12BW125
588 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
598 598  
599 599  
600 -(% style="color:#037691" %)**Downlink:**
591 +The battery is designed to last for several years depends on the actually use environment and update interval. 
601 601  
602 -Uplink channels 1-7(RX1)
603 603  
604 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
594 +The battery related documents as below:
605 605  
596 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
597 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
598 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
606 606  
607 -
608 -=== 2.7.7 IN865-867 (IN865) ===
609 -
610 -(% style="color:#037691" %)** Uplink:**
611 -
612 -865.0625 - SF7BW125 to SF12BW125
613 -
614 -865.4025 - SF7BW125 to SF12BW125
615 -
616 -865.9850 - SF7BW125 to SF12BW125
617 -
618 -
619 -(% style="color:#037691" %) **Downlink:**
620 -
621 -Uplink channels 1-3 (RX1)
622 -
623 -866.550 - SF10BW125 (RX2)
624 -
625 -
626 -
627 -
628 -== 2.8 LED Indicator ==
629 -
630 -The LSE01 has an internal LED which is to show the status of different state.
631 -
632 -* Blink once when device power on.
633 -* Solid ON for 5 seconds once device successful Join the network.
634 -* Blink once when device transmit a packet.
635 -
636 -== 2.9 Installation in Soil ==
637 -
638 -**Measurement the soil surface**
639 -
640 -
641 -[[image:1654506634463-199.png]] ​
642 -
643 643  (((
644 -(((
645 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
601 +[[image:image-20220708140453-6.png]]
646 646  )))
647 -)))
648 648  
649 649  
650 -[[image:1654506665940-119.png]]
651 651  
652 -(((
653 -Dig a hole with diameter > 20CM.
654 -)))
606 +=== 2.9.2  Power consumption Analyze ===
655 655  
656 656  (((
657 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
609 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
658 658  )))
659 659  
660 660  
661 -== 2.10 ​Firmware Change Log ==
662 -
663 663  (((
664 -**Firmware download link:**
614 +Instruction to use as below:
665 665  )))
666 666  
667 667  (((
668 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
618 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
669 669  )))
670 670  
671 -(((
672 -
673 -)))
674 674  
675 675  (((
676 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
623 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
677 677  )))
678 678  
679 -(((
680 -
626 +* (((
627 +Product Model
681 681  )))
682 -
683 -(((
684 -**V1.0.**
629 +* (((
630 +Uplink Interval
685 685  )))
632 +* (((
633 +Working Mode
634 +)))
686 686  
687 687  (((
688 -Release
637 +And the Life expectation in difference case will be shown on the right.
689 689  )))
690 690  
640 +[[image:image-20220708141352-7.jpeg]]
691 691  
692 -== 2.11 ​Battery Analysis ==
693 693  
694 -=== 2.11.1 ​Battery Type ===
695 695  
696 -(((
697 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
698 -)))
644 +=== 2.9.3  ​Battery Note ===
699 699  
700 700  (((
701 -The battery is designed to last for more than 5 years for the LSN50.
647 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
702 702  )))
703 703  
704 -(((
705 -(((
706 -The battery-related documents are as below:
707 -)))
708 -)))
709 709  
710 -* (((
711 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
712 -)))
713 -* (((
714 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
715 -)))
716 -* (((
717 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
718 -)))
719 719  
720 - [[image:image-20220606171726-9.png]]
652 +=== 2.9.4  Replace the battery ===
721 721  
722 -
723 -
724 -=== 2.11.2 ​Battery Note ===
725 -
726 726  (((
727 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
655 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
728 728  )))
729 729  
730 730  
731 731  
732 -=== 2.11.3 Replace the battery ===
660 += 3. ​ Access NB-IoT Module =
733 733  
734 734  (((
735 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
663 +Users can directly access the AT command set of the NB-IoT module.
736 736  )))
737 737  
738 738  (((
739 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
667 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
740 740  )))
741 741  
742 -(((
743 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
744 -)))
670 +[[image:1657261278785-153.png]]
745 745  
746 746  
747 747  
748 -= 3. Using the AT Commands =
674 += 4.  Using the AT Commands =
749 749  
750 -== 3.1 Access AT Commands ==
676 +== 4.1  Access AT Commands ==
751 751  
678 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
752 752  
753 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
754 754  
755 -[[image:1654501986557-872.png]]
681 +AT+<CMD>?  : Help on <CMD>
756 756  
683 +AT+<CMD>         : Run <CMD>
757 757  
758 -Or if you have below board, use below connection:
685 +AT+<CMD>=<value> : Set the value
759 759  
687 +AT+<CMD>=?  : Get the value
760 760  
761 -[[image:1654502005655-729.png]]
762 762  
763 -
764 -
765 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
766 -
767 -
768 - [[image:1654502050864-459.png]]
769 -
770 -
771 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
772 -
773 -
774 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
775 -
776 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
777 -
778 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
779 -
780 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
781 -
782 -
783 783  (% style="color:#037691" %)**General Commands**(%%)      
784 784  
785 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
692 +AT  : Attention       
786 786  
787 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
694 +AT?  : Short Help     
788 788  
789 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
696 +ATZ  : MCU Reset    
790 790  
791 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
698 +AT+TDC  : Application Data Transmission Interval
792 792  
700 +AT+CFG  : Print all configurations
793 793  
794 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
702 +AT+CFGMOD           : Working mode selection
795 795  
796 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
704 +AT+INTMOD            : Set the trigger interrupt mode
797 797  
798 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
706 +AT+5VT  : Set extend the time of 5V power  
799 799  
800 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
708 +AT+PRO  : Choose agreement
801 801  
802 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
710 +AT+WEIGRE  : Get weight or set weight to 0
803 803  
804 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
712 +AT+WEIGAP  : Get or Set the GapValue of weight
805 805  
806 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
714 +AT+RXDL  : Extend the sending and receiving time
807 807  
808 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
716 +AT+CNTFAC  : Get or set counting parameters
809 809  
810 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
718 +AT+SERVADDR  : Server Address
811 811  
812 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
813 813  
814 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
721 +(% style="color:#037691" %)**COAP Management**      
815 815  
816 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
723 +AT+URI            : Resource parameters
817 817  
818 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
819 819  
820 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
726 +(% style="color:#037691" %)**UDP Management**
821 821  
822 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
728 +AT+CFM          : Upload confirmation mode (only valid for UDP)
823 823  
824 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
825 825  
826 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
731 +(% style="color:#037691" %)**MQTT Management**
827 827  
733 +AT+CLIENT               : Get or Set MQTT client
828 828  
829 -(% style="color:#037691" %)**LoRa Network Management**
735 +AT+UNAME  : Get or Set MQTT Username
830 830  
831 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
737 +AT+PWD                  : Get or Set MQTT password
832 832  
833 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
739 +AT+PUBTOPI : Get or Set MQTT publish topic
834 834  
835 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
741 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
836 836  
837 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
838 838  
839 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
744 +(% style="color:#037691" %)**Information**          
840 840  
841 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
746 +AT+FDR  : Factory Data Reset
842 842  
843 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
748 +AT+PWOR : Serial Access Password
844 844  
845 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
846 846  
847 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
848 848  
849 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
752 += ​5.  FAQ =
850 850  
851 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
754 +== 5.1 How to Upgrade Firmware ==
852 852  
853 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
854 854  
855 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
757 +(((
758 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
759 +)))
856 856  
857 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
858 -
859 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
860 -
861 -
862 -(% style="color:#037691" %)**Information** 
863 -
864 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
865 -
866 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
867 -
868 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
869 -
870 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
871 -
872 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
873 -
874 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
875 -
876 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
877 -
878 -
879 -= ​4. FAQ =
880 -
881 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
882 -
883 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10FirmwareChangeLog"]].
884 -When downloading the images, choose the required image file for download. ​
885 -
886 -
887 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
888 -
889 -
890 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
891 -
892 -
893 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
894 -
895 -[[image:image-20220606154726-3.png]]
896 -
897 -When you use the TTN network, the US915 frequency bands use are:
898 -
899 -* 903.9 - SF7BW125 to SF10BW125
900 -* 904.1 - SF7BW125 to SF10BW125
901 -* 904.3 - SF7BW125 to SF10BW125
902 -* 904.5 - SF7BW125 to SF10BW125
903 -* 904.7 - SF7BW125 to SF10BW125
904 -* 904.9 - SF7BW125 to SF10BW125
905 -* 905.1 - SF7BW125 to SF10BW125
906 -* 905.3 - SF7BW125 to SF10BW125
907 -* 904.6 - SF8BW500
908 -
909 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
910 -
911 -(% class="box infomessage" %)
912 912  (((
913 -**AT+CHE=2**
762 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
914 914  )))
915 915  
916 -(% class="box infomessage" %)
917 917  (((
918 -**ATZ**
766 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
919 919  )))
920 920  
921 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
922 922  
923 923  
924 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
771 += 6.  Trouble Shooting =
925 925  
926 -[[image:image-20220606154825-4.png]]
773 +== 6.1  ​Connection problem when uploading firmware ==
927 927  
928 928  
776 +(% class="wikigeneratedid" %)
777 +(((
778 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
779 +)))
929 929  
930 -= 5. Trouble Shooting =
931 931  
932 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
933 933  
934 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
783 +== 6. AT Command input doesn't work ==
935 935  
785 +(((
786 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
787 +)))
936 936  
937 -== 5.2 AT Command input doesn’t work ==
938 938  
939 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
940 940  
791 += 7. ​ Order Info =
941 941  
942 -== 5.3 Device rejoin in at the second uplink packet ==
943 943  
944 -(% style="color:#4f81bd" %)**Issue describe as below:**
794 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
945 945  
946 -[[image:1654500909990-784.png]]
947 947  
948 -
949 -(% style="color:#4f81bd" %)**Cause for this issue:**
950 -
951 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
952 -
953 -
954 -(% style="color:#4f81bd" %)**Solution: **
955 -
956 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
957 -
958 -[[image:1654500929571-736.png]]
959 -
960 -
961 -= 6. ​Order Info =
962 -
963 -
964 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
965 -
966 -
967 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
968 -
969 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
970 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
971 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
972 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
973 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
974 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
975 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
976 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
977 -
978 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
979 -
980 -* (% style="color:red" %)**4**(%%): 4000mAh battery
981 -* (% style="color:red" %)**8**(%%): 8500mAh battery
982 -
983 983  (% class="wikigeneratedid" %)
984 984  (((
985 985  
986 986  )))
987 987  
988 -= 7. Packing Info =
802 += 8.  Packing Info =
989 989  
990 990  (((
991 -**Package Includes**:
992 -)))
805 +
993 993  
994 -* (((
995 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
807 +(% style="color:#037691" %)**Package Includes**:
808 +
809 +
810 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
811 +* External antenna x 1
996 996  )))
997 997  
998 998  (((
999 999  
1000 -)))
1001 1001  
1002 -(((
1003 -**Dimension and weight**:
1004 -)))
817 +(% style="color:#037691" %)**Dimension and weight**:
1005 1005  
1006 -* (((
1007 -Device Size: cm
819 +
820 +* Size: 195 x 125 x 55 mm
821 +* Weight:   420g
1008 1008  )))
1009 -* (((
1010 -Device Weight: g
1011 -)))
1012 -* (((
1013 -Package Size / pcs : cm
1014 -)))
1015 -* (((
1016 -Weight / pcs : g
1017 1017  
824 +(((
825 +
1018 1018  
827 +
1019 1019  
1020 1020  )))
1021 1021  
1022 -= 8. Support =
831 += 9.  Support =
1023 1023  
1024 1024  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1025 1025  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1026 -
1027 -
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content