Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 24 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -8,715 +8,643 @@ 8 8 9 9 10 10 11 -= 1. Introduction = 12 12 13 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 14 14 15 -((( 16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 -))) 18 18 19 -((( 20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 21 -))) 14 +**Table of Contents:** 22 22 23 -((( 24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 25 -))) 16 +{{toc/}} 26 26 27 -((( 28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 29 -))) 30 30 31 -((( 32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 -))) 34 34 35 35 36 -[[image:1654503236291-817.png]] 37 37 38 38 39 - [[image:1654503265560-120.png]]23 += 1. Introduction = 40 40 25 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 41 41 42 - 43 -== 1.2 Features == 44 - 45 -* LoRaWAN 1.0.3 Class A 46 -* Ultra low power consumption 47 -* Monitor Soil Moisture 48 -* Monitor Soil Temperature 49 -* Monitor Soil Conductivity 50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 -* AT Commands to change parameters 52 -* Uplink on periodically 53 -* Downlink to change configure 54 -* IP66 Waterproof Enclosure 55 -* 4000mAh or 8500mAh Battery for long term use 56 - 57 - 58 - 59 -== 1.3 Specification == 60 - 61 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 62 - 63 -[[image:image-20220606162220-5.png]] 64 - 65 - 66 - 67 -== 1.4 Applications == 68 - 69 -* Smart Agriculture 70 - 71 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 72 - 73 - 74 -== 1.5 Firmware Change log == 75 - 76 - 77 -**LSE01 v1.0 :** Release 78 - 79 - 80 - 81 -= 2. Configure LSE01 to connect to LoRaWAN network = 82 - 83 -== 2.1 How it works == 84 - 85 85 ((( 86 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 87 -))) 28 + 88 88 89 -((( 90 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 91 -))) 30 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 92 92 32 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 93 93 34 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 94 94 95 - ==2.2QuickguidetoconnecttoLoRaWANserver(OTAA) ==36 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 96 96 97 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 98 - 99 - 100 -[[image:1654503992078-669.png]] 101 - 102 - 103 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 104 - 105 - 106 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 107 - 108 -Each LSE01 is shipped with a sticker with the default device EUI as below: 109 - 110 -[[image:image-20220606163732-6.jpeg]] 111 - 112 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 113 - 114 -**Add APP EUI in the application** 115 - 116 - 117 -[[image:1654504596150-405.png]] 118 - 119 - 120 - 121 -**Add APP KEY and DEV EUI** 122 - 123 -[[image:1654504683289-357.png]] 124 - 125 - 126 - 127 -**Step 2**: Power on LSE01 128 - 129 - 130 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 131 - 132 -[[image:image-20220606163915-7.png]] 133 - 134 - 135 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 136 - 137 -[[image:1654504778294-788.png]] 138 - 139 - 140 - 141 -== 2.3 Uplink Payload == 142 - 143 -=== 2.3.1 MOD~=0(Default Mode) === 144 - 145 -LSE01 will uplink payload via LoRaWAN with below payload format: 146 - 147 - 148 -Uplink payload includes in total 11 bytes. 149 149 39 +))) 150 150 151 -|((( 152 -**Size** 41 +[[image:1654503236291-817.png]] 153 153 154 -**(bytes)** 155 -)))|**2**|**2**|**2**|**2**|**2**|**1** 156 -|**Value**|[[BAT>>path:#bat]]|((( 157 -Temperature 158 158 159 -(Reserve, Ignore now) 160 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|((( 161 -MOD & Digital Interrupt 44 +[[image:1657245163077-232.png]] 162 162 163 -(Optional) 164 -))) 165 165 166 -[[image:1654504881641-514.png]] 167 167 48 +== 1.2 Features == 168 168 50 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 51 +* Monitor Soil Moisture 52 +* Monitor Soil Temperature 53 +* Monitor Soil Conductivity 54 +* AT Commands to change parameters 55 +* Uplink on periodically 56 +* Downlink to change configure 57 +* IP66 Waterproof Enclosure 58 +* Ultra-Low Power consumption 59 +* AT Commands to change parameters 60 +* Micro SIM card slot for NB-IoT SIM 61 +* 8500mAh Battery for long term use 169 169 170 -=== 2.3.2 MOD~=1(Original value) === 171 171 172 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 173 173 174 -|((( 175 -**Size** 176 176 177 -**(bytes)** 178 -)))|**2**|**2**|**2**|**2**|**2**|**1** 179 -|**Value**|[[BAT>>path:#bat]]|((( 180 -Temperature 66 +== 1.3 Specification == 181 181 182 -(Reserve, Ignore now) 183 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|((( 184 -MOD & Digital Interrupt 185 185 186 -(Optional) 187 -))) 69 +(% style="color:#037691" %)**Common DC Characteristics:** 188 188 189 -[[image:1654504907647-967.png]] 71 +* Supply Voltage: 2.1v ~~ 3.6v 72 +* Operating Temperature: -40 ~~ 85°C 190 190 191 191 192 192 193 - ===2.3.3 BatteryInfo===76 +(% style="color:#037691" %)**NB-IoT Spec:** 194 194 195 -Check the battery voltage for LSE01. 78 +* - B1 @H-FDD: 2100MHz 79 +* - B3 @H-FDD: 1800MHz 80 +* - B8 @H-FDD: 900MHz 81 +* - B5 @H-FDD: 850MHz 82 +* - B20 @H-FDD: 800MHz 83 +* - B28 @H-FDD: 700MHz 196 196 197 -Ex1: 0x0B45 = 2885mV 198 198 199 -Ex2: 0x0B49 = 2889mV 200 200 87 +Probe(% style="color:#037691" %)** Specification:** 201 201 89 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 202 202 203 - === 2.3.4 Soil Moisture===91 +[[image:image-20220708101224-1.png]] 204 204 205 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 206 206 207 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 208 208 95 +== 1.4 Applications == 209 209 210 - (%style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**97 +* Smart Agriculture 211 211 99 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 100 + 212 212 102 +== 1.5 Pin Definitions == 213 213 214 -=== 2.3.5 Soil Temperature === 215 215 216 - Get the temperature in the soil. The value rangeof the register is -4000 - +800(Decimal), divide this value by100 to get the temperature in the soil.For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is105 +[[image:1657246476176-652.png]] 217 217 218 -**Example**: 219 219 220 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 221 221 222 - IfpayloadisFF7EH: ((FF7E &0x8000)>>15===1),temp=(FF7E(H)-FFFF(H))/100=-1.29 °C109 += 2. Use NSE01 to communicate with IoT Server = 223 223 111 +== 2.1 How it works == 224 224 225 225 226 -=== 2.3.6 Soil Conductivity (EC) === 227 - 228 228 ((( 229 - Obtain(%style="color:#4f81bd"%)**__solublesaltconcentration__**(%%)insoil or (% style="color:#4f81bd"%)**__soluble ionconcentrationinliquidfertilizer__**(%%)or(% style="color:#4f81bd"%)**__plantingmedium__**(%%). Thevaluerangeftheregister is0 - 20000(Decimal)(Canbegreaterthan20000).115 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 230 230 ))) 231 231 232 -((( 233 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 234 -))) 235 235 236 236 ((( 237 - Generally,theEC valueof irrigationwateris lessthan800uS/ cm.120 +The diagram below shows the working flow in default firmware of NSE01: 238 238 ))) 239 239 240 -((( 241 - 242 -))) 123 +[[image:image-20220708101605-2.png]] 243 243 244 244 ((( 245 245 246 246 ))) 247 247 248 -=== 2.3.7 MOD === 249 249 250 -Firmware version at least v2.1 supports changing mode. 251 251 252 - Forxample,bytes[10]=90131 +== 2.2 Configure the NSE01 == 253 253 254 -mod=(bytes[10]>>7)&0x01=1. 255 255 134 +=== 2.2.1 Test Requirement === 256 256 257 -Downlink Command: 258 258 259 - If payload=0x0A00,workmode=0137 +To use NSE01 in your city, make sure meet below requirements: 260 260 261 -If** **payload =** **0x0A01, workmode=1 139 +* Your local operator has already distributed a NB-IoT Network there. 140 +* The local NB-IoT network used the band that NSE01 supports. 141 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 262 262 143 +((( 144 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 145 +))) 263 263 264 264 265 - ===2.3.8 Decodepayload inThe Things Network ===148 +[[image:1657249419225-449.png]] 266 266 267 -While using TTN network, you can add the payload format to decode the payload. 268 268 269 269 270 - [[image:1654505570700-128.png]]152 +=== 2.2.2 Insert SIM card === 271 271 272 - ThepayloaddecoderfunctionforTTNis here:154 +Insert the NB-IoT Card get from your provider. 273 273 274 - LSE01 TTN Payload Decoder:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]156 +User need to take out the NB-IoT module and insert the SIM card like below: 275 275 276 276 277 - ==2.4Uplink Interval ==159 +[[image:1657249468462-536.png]] 278 278 279 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: 280 280 281 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 282 282 163 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 283 283 165 +((( 166 +((( 167 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 168 +))) 169 +))) 284 284 285 -== 2.5 Downlink Payload == 286 286 287 - By default, LSE50 prints the downlink payloadtoconsole port.172 +**Connection:** 288 288 289 - [[image:image-20220606165544-8.png]]174 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 290 290 176 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 291 291 292 - **Examples:**178 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 293 293 294 294 295 - ***SetTDC**181 +In the PC, use below serial tool settings: 296 296 297 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 183 +* Baud: (% style="color:green" %)**9600** 184 +* Data bits:** (% style="color:green" %)8(%%)** 185 +* Stop bits: (% style="color:green" %)**1** 186 +* Parity: (% style="color:green" %)**None** 187 +* Flow Control: (% style="color:green" %)**None** 298 298 299 -Payload: 01 00 00 1E TDC=30S 189 +((( 190 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 191 +))) 300 300 301 - Payload:1000 3C TDC=60S193 +[[image:image-20220708110657-3.png]] 302 302 195 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 303 303 304 -* **Reset** 305 305 306 -If payload = 0x04FF, it will reset the LSE01 307 307 199 +=== 2.2.4 Use CoAP protocol to uplink data === 308 308 309 - ***CFM**201 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 310 310 311 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 312 312 204 +**Use below commands:** 313 313 206 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 207 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 208 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 314 314 315 - == 2.6 ShowData inDataCakeIoT Server==210 +For parameter description, please refer to AT command set 316 316 317 -[[ DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]]to connect to TTN and see the data in DATACAKE. Below are the steps:212 +[[image:1657249793983-486.png]] 318 318 319 319 320 - **Step1**: Be sure thatyour deviceis programmed andproperlyconnectedtothenetworkat this time.215 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 321 321 322 - **Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add theDATACAKE integration,perform the followingsteps:217 +[[image:1657249831934-534.png]] 323 323 324 324 325 -[[image:1654505857935-743.png]] 326 326 221 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 327 327 328 - [[image:1654505874829-548.png]]223 +This feature is supported since firmware version v1.0.1 329 329 330 -Step 3: Create an account or log in Datacake. 331 331 332 -Step 4: Search the LSE01 and add DevEUI. 226 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 227 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 228 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 333 333 230 +[[image:1657249864775-321.png]] 334 334 335 -[[image:1654505905236-553.png]] 336 336 233 +[[image:1657249930215-289.png]] 337 337 338 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 339 339 340 -[[image:1654505925508-181.png]] 341 341 237 +=== 2.2.6 Use MQTT protocol to uplink data === 342 342 239 +This feature is supported since firmware version v110 343 343 344 -== 2.7 Frequency Plans == 345 345 346 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 242 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 243 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 244 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 245 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 246 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 247 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 248 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 347 347 250 +[[image:1657249978444-674.png]] 348 348 349 -=== 2.7.1 EU863-870 (EU868) === 350 350 351 - (% style="color:#037691" %)** Uplink:**253 +[[image:1657249990869-686.png]] 352 352 353 -868.1 - SF7BW125 to SF12BW125 354 354 355 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 256 +((( 257 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 258 +))) 356 356 357 -868.5 - SF7BW125 to SF12BW125 358 358 359 -867.1 - SF7BW125 to SF12BW125 360 360 361 - 867.3-SF7BW125toSF12BW125262 +=== 2.2.7 Use TCP protocol to uplink data === 362 362 363 - 867.5-SF7BW125toSF12BW125264 +This feature is supported since firmware version v110 364 364 365 -867.7 - SF7BW125 to SF12BW125 366 366 367 -867.9 - SF7BW125 to SF12BW125 267 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 268 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 368 368 369 - 868.8-FSK270 +[[image:1657250217799-140.png]] 370 370 371 371 372 - (% style="color:#037691" %)** Downlink:**273 +[[image:1657250255956-604.png]] 373 373 374 -Uplink channels 1-9 (RX1) 375 375 376 -869.525 - SF9BW125 (RX2 downlink only) 377 377 277 +=== 2.2.8 Change Update Interval === 378 378 279 +User can use below command to change the (% style="color:green" %)**uplink interval**. 379 379 380 -== =2.7.2US902-928(US915)===281 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 381 381 382 -Used in USA, Canada and South America. Default use CHE=2 283 +((( 284 +(% style="color:red" %)**NOTE:** 285 +))) 383 383 384 -(% style="color:#037691" %)**Uplink:** 287 +((( 288 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 289 +))) 385 385 386 -903.9 - SF7BW125 to SF10BW125 387 387 388 -904.1 - SF7BW125 to SF10BW125 389 389 390 - 904.3-SF7BW125 toSF10BW125293 +== 2.3 Uplink Payload == 391 391 392 - 904.5-SF7BW125toSF10BW125295 +In this mode, uplink payload includes in total 18 bytes 393 393 394 -904.7 - SF7BW125 to SF10BW125 297 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 298 +|=(% style="width: 50px;" %)((( 299 +**Size(bytes)** 300 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 301 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 395 395 396 - 904.9-SF7BW125to SF10BW125303 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 397 397 398 -905.1 - SF7BW125 to SF10BW125 399 399 400 - 905.3-SF7BW125 to SF10BW125306 +[[image:image-20220708111918-4.png]] 401 401 402 402 403 - (%style="color:#037691"%)**Downlink:**309 +The payload is ASCII string, representative same HEX: 404 404 405 - 923.3 - SF7BW500to SF12BW500311 +0x72403155615900640c7817075e0a8c02f900 where: 406 406 407 -923.9 - SF7BW500 to SF12BW500 313 +* Device ID: 0x 724031556159 = 724031556159 314 +* Version: 0x0064=100=1.0.0 408 408 409 -924.5 - SF7BW500 to SF12BW500 316 +* BAT: 0x0c78 = 3192 mV = 3.192V 317 +* Singal: 0x17 = 23 318 +* Soil Moisture: 0x075e= 1886 = 18.86 % 319 +* Soil Temperature:0x0a8c =2700=27 °C 320 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 321 +* Interrupt: 0x00 = 0 410 410 411 -925.1 - SF7BW500 to SF12BW500 412 412 413 -925.7 - SF7BW500 to SF12BW500 414 414 415 -926.3 - SF7BW500 to SF12BW500 416 416 417 - 926.9-SF7BW500to SF12BW500326 +== 2.4 Payload Explanation and Sensor Interface == 418 418 419 -927.5 - SF7BW500 to SF12BW500 420 420 421 - 923.3 - SF12BW500(RX2 downlinkonly)329 +=== 2.4.1 Device ID === 422 422 331 +By default, the Device ID equal to the last 6 bytes of IMEI. 423 423 333 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 424 424 425 - === 2.7.3 CN470-510 (CN470) ===335 +**Example:** 426 426 427 - Used in China,Default use CHE=1337 +AT+DEUI=A84041F15612 428 428 429 - (%style="color:#037691"%)**Uplink:**339 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 430 430 431 -486.3 - SF7BW125 to SF12BW125 432 432 433 -486.5 - SF7BW125 to SF12BW125 434 434 435 -4 86.7 - SF7BW125toSF12BW125343 +=== 2.4.2 Version Info === 436 436 437 - 486.9-SF7BW125toSF12BW125345 +Specify the software version: 0x64=100, means firmware version 1.00. 438 438 439 -4 87.1-SF7BW125toSF12BW125347 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 440 440 441 -487.3 - SF7BW125 to SF12BW125 442 442 443 -487.5 - SF7BW125 to SF12BW125 444 444 445 -4 87.7- SF7BW125toSF12BW125351 +=== 2.4.3 Battery Info === 446 446 353 +((( 354 +Check the battery voltage for LSE01. 355 +))) 447 447 448 -(% style="color:#037691" %)**Downlink:** 357 +((( 358 +Ex1: 0x0B45 = 2885mV 359 +))) 449 449 450 -506.7 - SF7BW125 to SF12BW125 361 +((( 362 +Ex2: 0x0B49 = 2889mV 363 +))) 451 451 452 -506.9 - SF7BW125 to SF12BW125 453 453 454 -507.1 - SF7BW125 to SF12BW125 455 455 456 - 507.3-SF7BW125toSF12BW125367 +=== 2.4.4 Signal Strength === 457 457 458 - 507.5-SF7BW125to SF12BW125369 +NB-IoT Network signal Strength. 459 459 460 - 507.7- SF7BW125toSF12BW125371 +**Ex1: 0x1d = 29** 461 461 462 - 507.9-SF7BW125toSF12BW125373 +(% style="color:blue" %)**0**(%%) -113dBm or less 463 463 464 - 508.1-SF7BW125toSF12BW125375 +(% style="color:blue" %)**1**(%%) -111dBm 465 465 466 - 505.3 -SF12BW125(RX2downlink only)377 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 467 467 379 +(% style="color:blue" %)**31** (%%) -51dBm or greater 468 468 381 +(% style="color:blue" %)**99** (%%) Not known or not detectable 469 469 470 -=== 2.7.4 AU915-928(AU915) === 471 471 472 -Default use CHE=2 473 473 474 - (% style="color:#037691"%)**Uplink:**385 +=== 2.4.5 Soil Moisture === 475 475 476 -916.8 - SF7BW125 to SF12BW125 387 +((( 388 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 389 +))) 477 477 478 -917.0 - SF7BW125 to SF12BW125 391 +((( 392 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 393 +))) 479 479 480 -917.2 - SF7BW125 to SF12BW125 395 +((( 396 + 397 +))) 481 481 482 -917.4 - SF7BW125 to SF12BW125 399 +((( 400 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 401 +))) 483 483 484 -917.6 - SF7BW125 to SF12BW125 485 485 486 -917.8 - SF7BW125 to SF12BW125 487 487 488 - 918.0-SF7BW125toSF12BW125405 +=== 2.4.6 Soil Temperature === 489 489 490 -918.2 - SF7BW125 to SF12BW125 407 +((( 408 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 409 +))) 491 491 411 +((( 412 +**Example**: 413 +))) 492 492 493 -(% style="color:#037691" %)**Downlink:** 415 +((( 416 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 417 +))) 494 494 495 -923.3 - SF7BW500 to SF12BW500 419 +((( 420 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 421 +))) 496 496 497 -923.9 - SF7BW500 to SF12BW500 498 498 499 -924.5 - SF7BW500 to SF12BW500 500 500 501 - 925.1-SF7BW500toSF12BW500425 +=== 2.4.7 Soil Conductivity (EC) === 502 502 503 -925.7 - SF7BW500 to SF12BW500 427 +((( 428 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 429 +))) 504 504 505 -926.3 - SF7BW500 to SF12BW500 431 +((( 432 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 433 +))) 506 506 507 -926.9 - SF7BW500 to SF12BW500 435 +((( 436 +Generally, the EC value of irrigation water is less than 800uS / cm. 437 +))) 508 508 509 -927.5 - SF7BW500 to SF12BW500 439 +((( 440 + 441 +))) 510 510 511 -923.3 - SF12BW500(RX2 downlink only) 443 +((( 444 + 445 +))) 512 512 447 +=== 2.4.8 Digital Interrupt === 513 513 449 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 514 514 515 - ===2.7.5AS920-923 & AS923-925 (AS923) ===451 +The command is: 516 516 517 -(% style="color: #037691" %)**DefaultUplinkchannel:**453 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 518 518 519 -923.2 - SF7BW125 to SF10BW125 520 520 521 - 923.4-SF7BW125toSF10BW125456 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 522 522 523 523 524 - (% style="color:#037691" %)**Additional Uplink Channel**:459 +Example: 525 525 526 -( OTAAmode, channeladded by JoinAcceptmessage)461 +0x(00): Normal uplink packet. 527 527 528 -( % style="color:#037691" %)**AS920~~AS923forJapan,Malaysia, Singapore**:463 +0x(01): Interrupt Uplink Packet. 529 529 530 -922.2 - SF7BW125 to SF10BW125 531 531 532 -922.4 - SF7BW125 to SF10BW125 533 533 534 - 922.6- SF7BW125 toSF10BW125467 +=== 2.4.9 +5V Output === 535 535 536 - 922.8 -SF7BW125 toSF10BW125469 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 537 537 538 -923.0 - SF7BW125 to SF10BW125 539 539 540 - 922.0- SF7BW125 toSF10BW125472 +The 5V output time can be controlled by AT Command. 541 541 474 +(% style="color:blue" %)**AT+5VT=1000** 542 542 543 - (%style="color:#037691"%)**AS923~~AS925 forBrunei,Cambodia,HongKong,Indonesia,Laos,Taiwan,Thailand,Vietnam**:476 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 544 544 545 -923.6 - SF7BW125 to SF10BW125 546 546 547 -923.8 - SF7BW125 to SF10BW125 548 548 549 - 924.0- SF7BW125toSF10BW125480 +== 2.5 Downlink Payload == 550 550 551 - 924.2-SF7BW125toSF10BW125482 +By default, NSE01 prints the downlink payload to console port. 552 552 553 - 924.4-SF7BW125 to SF10BW125484 +[[image:image-20220708133731-5.png]] 554 554 555 -924.6 - SF7BW125 to SF10BW125 556 556 487 +((( 488 +(% style="color:blue" %)**Examples:** 489 +))) 557 557 558 -(% style="color:#037691" %)** Downlink:** 491 +((( 492 + 493 +))) 559 559 560 -Uplink channels 1-8 (RX1) 495 +* ((( 496 +(% style="color:blue" %)**Set TDC** 497 +))) 561 561 562 -923.2 - SF10BW125 (RX2) 499 +((( 500 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 501 +))) 563 563 503 +((( 504 +Payload: 01 00 00 1E TDC=30S 505 +))) 564 564 507 +((( 508 +Payload: 01 00 00 3C TDC=60S 509 +))) 565 565 566 -=== 2.7.6 KR920-923 (KR920) === 511 +((( 512 + 513 +))) 567 567 568 -Default channel: 515 +* ((( 516 +(% style="color:blue" %)**Reset** 517 +))) 569 569 570 -922.1 - SF7BW125 to SF12BW125 519 +((( 520 +If payload = 0x04FF, it will reset the NSE01 521 +))) 571 571 572 -922.3 - SF7BW125 to SF12BW125 573 573 574 - 922.5-SF7BW125toSF12BW125524 +* (% style="color:blue" %)**INTMOD** 575 575 526 +Downlink Payload: 06000003, Set AT+INTMOD=3 576 576 577 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 578 578 579 -922.1 - SF7BW125 to SF12BW125 580 580 581 - 922.3-SF7BW125toSF12BW125530 +== 2.6 LED Indicator == 582 582 583 -922.5 - SF7BW125 to SF12BW125 532 +((( 533 +The NSE01 has an internal LED which is to show the status of different state. 584 584 585 -922.7 - SF7BW125 to SF12BW125 586 586 587 -922.9 - SF7BW125 to SF12BW125 536 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 537 +* Then the LED will be on for 1 second means device is boot normally. 538 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 539 +* For each uplink probe, LED will be on for 500ms. 540 +))) 588 588 589 -923.1 - SF7BW125 to SF12BW125 590 590 591 -923.3 - SF7BW125 to SF12BW125 592 592 593 593 594 - (%style="color:#037691" %)**Downlink:**545 +== 2.7 Installation in Soil == 595 595 596 - Uplinkchannels1-7(RX1)547 +__**Measurement the soil surface**__ 597 597 598 - 921.9-SF12BW125(RX2downlinkonly;SF12BW125might bechangedSF9BW125)549 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 599 599 551 +[[image:1657259653666-883.png]] 600 600 601 601 602 -=== 2.7.7 IN865-867 (IN865) === 554 +((( 555 + 603 603 604 -(% style="color:#037691" %)** Uplink:** 557 +((( 558 +Dig a hole with diameter > 20CM. 559 +))) 605 605 606 -865.0625 - SF7BW125 to SF12BW125 561 +((( 562 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 563 +))) 564 +))) 607 607 608 - 865.4025SF7BW125 to SF12BW125566 +[[image:1654506665940-119.png]] 609 609 610 -865.9850 - SF7BW125 to SF12BW125 568 +((( 569 + 570 +))) 611 611 612 612 613 - (% style="color:#037691"%)**Downlink:**573 +== 2.8 Firmware Change Log == 614 614 615 -Uplink channels 1-3 (RX1) 616 616 617 - 866.550-SF10BW125(RX2)576 +Download URL & Firmware Change log 618 618 578 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 619 619 620 620 581 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 621 621 622 -== 2.8 LED Indicator == 623 623 624 -The LSE01 has an internal LED which is to show the status of different state. 625 625 626 -* Blink once when device power on. 627 -* Solid ON for 5 seconds once device successful Join the network. 628 -* Blink once when device transmit a packet. 585 +== 2.9 Battery Analysis == 629 629 630 -== 2.9 InstallationinSoil==587 +=== 2.9.1 Battery Type === 631 631 632 -**Measurement the soil surface** 633 633 590 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 634 634 635 -[[image:1654506634463-199.png]] 636 636 637 -((( 638 -((( 639 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 640 -))) 641 -))) 593 +The battery is designed to last for several years depends on the actually use environment and update interval. 642 642 643 643 644 - [[image:1654506665940-119.png]]596 +The battery related documents as below: 645 645 646 - (((647 - Digahole withmeter >CM.648 - )))598 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 599 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 600 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 649 649 650 650 ((( 651 - Horizontal insert the probe to the soiland fill the hole for longterm measurement.603 +[[image:image-20220708140453-6.png]] 652 652 ))) 653 653 654 654 655 -== 2.10 Firmware Change Log == 656 656 657 -((( 658 -**Firmware download link:** 659 -))) 608 +=== 2.9.2 Power consumption Analyze === 660 660 661 661 ((( 662 - [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]611 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 663 663 ))) 664 664 665 -((( 666 - 667 -))) 668 668 669 669 ((( 670 - **Firmware Upgrade Method: **[[Firmware UpgradeInstruction>>doc:Main.FirmwareUpgrade Instructionfor STM32 baseproducts.WebHome]]616 +Instruction to use as below: 671 671 ))) 672 672 673 673 ((( 674 - 620 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 675 675 ))) 676 676 677 -((( 678 -**V1.0.** 679 -))) 680 680 681 681 ((( 682 - Release625 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 683 683 ))) 684 684 685 - 686 -== 2.11 Battery Analysis == 687 - 688 -=== 2.11.1 Battery Type === 689 - 690 -((( 691 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 692 -))) 693 - 694 -((( 695 -The battery is designed to last for more than 5 years for the LSN50. 696 -))) 697 - 698 -((( 699 -((( 700 -The battery-related documents are as below: 701 -))) 702 -))) 703 - 704 704 * ((( 705 - [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],629 +Product Model 706 706 ))) 707 707 * ((( 708 - [[Lithium-ThionylChloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],632 +Uplink Interval 709 709 ))) 710 710 * ((( 711 - [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]],[[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]635 +Working Mode 712 712 ))) 713 713 714 - [[image:image-20220606171726-9.png]] 638 +((( 639 +And the Life expectation in difference case will be shown on the right. 640 +))) 715 715 642 +[[image:image-20220708141352-7.jpeg]] 716 716 717 717 718 -=== 2.11.2 Battery Note === 719 719 646 +=== 2.9.3 Battery Note === 647 + 720 720 ((( 721 721 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 722 722 ))) ... ... @@ -723,299 +723,186 @@ 723 723 724 724 725 725 726 -=== 2. 11.3Replace the battery ===654 +=== 2.9.4 Replace the battery === 727 727 728 728 ((( 729 - IfBattery is lower than 2.7v,usershouldreplace the battery ofLSE01.657 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 730 730 ))) 731 731 660 + 661 + 662 += 3. Access NB-IoT Module = 663 + 732 732 ((( 733 - You can changethe battery in the LSE01.The type of battery isnot limitedas longas the outputis between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the maincircuit. If you need to use a battery with lessthan 3.3v, pleaseremovethe D1and shortcut thewopadsofitso therewon’tbe voltage drop between battery andmain board.665 +Users can directly access the AT command set of the NB-IoT module. 734 734 ))) 735 735 736 736 ((( 737 -The defaultbattery packof LSE01 includesa ER18505 plussupercapacitor.Ifusercan’tfind this pack locally, theycan find ER18505orequivalence,whichwillalsoworkinmostcase.The SPC can enlargethebattery lifeforigh frequency use(updateperiod below5minutes)669 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 738 738 ))) 739 739 672 +[[image:1657261278785-153.png]] 740 740 741 741 742 -= 3. Using the AT Commands = 743 743 744 -= =3.1AccessAT Commands ==676 += 4. Using the AT Commands = 745 745 678 +== 4.1 Access AT Commands == 746 746 747 - LSE01supportsATCommandsetn the stock firmware.Youcanuse a USB toTTLadaptertoconnect to LSE01forusing ATcommand,asbelow.680 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 748 748 749 -[[image:1654501986557-872.png]] 750 750 683 +AT+<CMD>? : Help on <CMD> 751 751 752 - Orifyouhavebelowboard,usebelowconnection:685 +AT+<CMD> : Run <CMD> 753 753 687 +AT+<CMD>=<value> : Set the value 754 754 755 - [[image:1654502005655-729.png]]689 +AT+<CMD>=? : Get the value 756 756 757 757 758 - 759 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 760 - 761 - 762 - [[image:1654502050864-459.png]] 763 - 764 - 765 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 766 - 767 - 768 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 769 - 770 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 771 - 772 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 773 - 774 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 775 - 776 - 777 777 (% style="color:#037691" %)**General Commands**(%%) 778 778 779 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention694 +AT : Attention 780 780 781 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help696 +AT? : Short Help 782 782 783 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset698 +ATZ : MCU Reset 784 784 785 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval700 +AT+TDC : Application Data Transmission Interval 786 786 702 +AT+CFG : Print all configurations 787 787 788 - (%style="color:#037691"%)**Keys,IDsand EUIs management**704 +AT+CFGMOD : Working mode selection 789 789 790 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI706 +AT+INTMOD : Set the trigger interrupt mode 791 791 792 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey708 +AT+5VT : Set extend the time of 5V power 793 793 794 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key710 +AT+PRO : Choose agreement 795 795 796 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress712 +AT+WEIGRE : Get weight or set weight to 0 797 797 798 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI714 +AT+WEIGAP : Get or Set the GapValue of weight 799 799 800 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)716 +AT+RXDL : Extend the sending and receiving time 801 801 802 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network718 +AT+CNTFAC : Get or set counting parameters 803 803 804 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode720 +AT+SERVADDR : Server Address 805 805 806 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 807 807 808 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network723 +(% style="color:#037691" %)**COAP Management** 809 809 810 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode725 +AT+URI : Resource parameters 811 811 812 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 813 813 814 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format728 +(% style="color:#037691" %)**UDP Management** 815 815 816 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat730 +AT+CFM : Upload confirmation mode (only valid for UDP) 817 817 818 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 819 819 820 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data733 +(% style="color:#037691" %)**MQTT Management** 821 821 735 +AT+CLIENT : Get or Set MQTT client 822 822 823 - (%style="color:#037691"%)**LoRaNetworkManagement**737 +AT+UNAME : Get or Set MQTT Username 824 824 825 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate739 +AT+PWD : Get or Set MQTT password 826 826 827 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA741 +AT+PUBTOPIC : Get or Set MQTT publish topic 828 828 829 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting743 +AT+SUBTOPIC : Get or Set MQTT subscription topic 830 830 831 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 832 832 833 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink746 +(% style="color:#037691" %)**Information** 834 834 835 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink748 +AT+FDR : Factory Data Reset 836 836 837 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1750 +AT+PWORD : Serial Access Password 838 838 839 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 840 840 841 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 842 842 843 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1754 += 5. FAQ = 844 844 845 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2756 +== 5.1 How to Upgrade Firmware == 846 846 847 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 848 848 849 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 759 +((( 760 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 761 +))) 850 850 851 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 852 - 853 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 854 - 855 - 856 -(% style="color:#037691" %)**Information** 857 - 858 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 859 - 860 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 861 - 862 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 863 - 864 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 865 - 866 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 867 - 868 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 869 - 870 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 871 - 872 - 873 -= 4. FAQ = 874 - 875 -== 4.1 How to change the LoRa Frequency Bands/Region? == 876 - 877 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10FirmwareChangeLog"]]. 878 -When downloading the images, choose the required image file for download. 879 - 880 - 881 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 882 - 883 - 884 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 885 - 886 - 887 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 888 - 889 -[[image:image-20220606154726-3.png]] 890 - 891 -When you use the TTN network, the US915 frequency bands use are: 892 - 893 -* 903.9 - SF7BW125 to SF10BW125 894 -* 904.1 - SF7BW125 to SF10BW125 895 -* 904.3 - SF7BW125 to SF10BW125 896 -* 904.5 - SF7BW125 to SF10BW125 897 -* 904.7 - SF7BW125 to SF10BW125 898 -* 904.9 - SF7BW125 to SF10BW125 899 -* 905.1 - SF7BW125 to SF10BW125 900 -* 905.3 - SF7BW125 to SF10BW125 901 -* 904.6 - SF8BW500 902 - 903 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 904 - 905 -(% class="box infomessage" %) 906 906 ((( 907 - **AT+CHE=2**764 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 908 908 ))) 909 909 910 -(% class="box infomessage" %) 911 911 ((( 912 - **ATZ**768 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 913 913 ))) 914 914 915 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 916 916 917 917 918 - The**AU915**band is similar. Beloware the AU915 UplinkChannels.773 += 6. Trouble Shooting = 919 919 920 - [[image:image-20220606154825-4.png]]775 +== 6.1 Connection problem when uploading firmware == 921 921 922 922 778 +(% class="wikigeneratedid" %) 779 +((( 780 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]] 781 +))) 923 923 924 -= 5. Trouble Shooting = 925 925 926 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 927 927 928 - Itis due to channel mapping.Please see the [[Eight Channel Mode>>doc:Main.LoRaWANCommunicationDebug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]sectionabove fordetails.785 +== 6.2 AT Command input doesn't work == 929 929 787 +((( 788 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 789 +))) 930 930 931 -== 5.2 AT Command input doesn’t work == 932 932 933 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 934 934 793 += 7. Order Info = 935 935 936 -== 5.3 Device rejoin in at the second uplink packet == 937 937 938 -(% style="color:#4f81bd" %)** Issue describe as below:**796 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 939 939 940 -[[image:1654500909990-784.png]] 941 941 942 - 943 -(% style="color:#4f81bd" %)**Cause for this issue:** 944 - 945 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 946 - 947 - 948 -(% style="color:#4f81bd" %)**Solution: ** 949 - 950 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 951 - 952 -[[image:1654500929571-736.png]] 953 - 954 - 955 -= 6. Order Info = 956 - 957 - 958 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 959 - 960 - 961 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 962 - 963 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 964 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 965 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 966 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 967 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 968 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 969 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 970 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 971 - 972 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 973 - 974 -* (% style="color:red" %)**4**(%%): 4000mAh battery 975 -* (% style="color:red" %)**8**(%%): 8500mAh battery 976 - 977 977 (% class="wikigeneratedid" %) 978 978 ((( 979 979 980 980 ))) 981 981 982 -= 7. Packing Info =804 += 8. Packing Info = 983 983 984 984 ((( 985 -**Package Includes**: 986 -))) 807 + 987 987 988 -* ((( 989 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 809 +(% style="color:#037691" %)**Package Includes**: 810 + 811 + 812 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 813 +* External antenna x 1 990 990 ))) 991 991 992 992 ((( 993 993 994 -))) 995 995 996 -((( 997 -**Dimension and weight**: 998 -))) 819 +(% style="color:#037691" %)**Dimension and weight**: 999 999 1000 -* ((( 1001 -Device Size: cm 821 + 822 +* Size: 195 x 125 x 55 mm 823 +* Weight: 420g 1002 1002 ))) 1003 -* ((( 1004 -Device Weight: g 1005 -))) 1006 -* ((( 1007 -Package Size / pcs : cm 1008 -))) 1009 -* ((( 1010 -Weight / pcs : g 1011 1011 826 +((( 827 + 1012 1012 829 + 1013 1013 1014 1014 ))) 1015 1015 1016 -= 8. Support =833 += 9. Support = 1017 1017 1018 1018 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1019 1019 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1020 - 1021 -
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content