Last modified by Mengting Qiu on 2024/04/02 16:44

From version 31.16
edited by Xiaoling
on 2022/06/07 09:25
Change comment: There is no comment for this version
To version 63.2
edited by Xiaoling
on 2022/07/08 14:18
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -8,63 +8,83 @@
8 8  
9 9  
10 10  
11 -= 1. Introduction =
12 12  
13 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 14  
15 -(((
16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 -)))
18 18  
19 -(((
20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
21 -)))
14 +**Table of Contents:**
22 22  
23 -(((
24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
25 -)))
26 26  
27 -(((
28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
29 -)))
30 30  
18 +
19 +
20 +
21 += 1.  Introduction =
22 +
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 +
31 31  (((
32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 -)))
26 +
34 34  
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
35 35  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
36 +
37 +)))
38 +
36 36  [[image:1654503236291-817.png]]
37 37  
38 38  
39 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
40 40  
41 41  
42 42  
43 43  == 1.2 ​Features ==
44 44  
45 -* LoRaWAN 1.0.3 Class A
46 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
47 47  * Monitor Soil Moisture
48 48  * Monitor Soil Temperature
49 49  * Monitor Soil Conductivity
50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 51  * AT Commands to change parameters
52 52  * Uplink on periodically
53 53  * Downlink to change configure
54 54  * IP66 Waterproof Enclosure
55 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
56 56  
62 +== 1.3  Specification ==
57 57  
58 58  
59 -== 1.3 Specification ==
65 +(% style="color:#037691" %)**Common DC Characteristics:**
60 60  
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
69 +
70 +(% style="color:#037691" %)**NB-IoT Spec:**
71 +
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
78 +
79 +(% style="color:#037691" %)**Probe Specification:**
80 +
61 61  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
62 62  
63 -[[image:image-20220606162220-5.png]]
83 +[[image:image-20220708101224-1.png]]
64 64  
65 65  
66 66  
67 -== ​1.4 Applications ==
87 +== ​1.4  Applications ==
68 68  
69 69  * Smart Agriculture
70 70  
... ... @@ -71,675 +71,579 @@
71 71  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
72 72  ​
73 73  
74 -== 1.5 Firmware Change log ==
94 +== 1.5  Pin Definitions ==
75 75  
76 76  
77 -**LSE01 v1.0 :**  Release
97 +[[image:1657246476176-652.png]]
78 78  
79 79  
80 80  
81 -= 2. Configure LSE01 to connect to LoRaWAN network =
101 += 2.  Use NSE01 to communicate with IoT Server =
82 82  
83 -== 2.1 How it works ==
103 +== 2.1  How it works ==
84 84  
105 +
85 85  (((
86 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
87 87  )))
88 88  
110 +
89 89  (((
90 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
112 +The diagram below shows the working flow in default firmware of NSE01:
91 91  )))
92 92  
115 +[[image:image-20220708101605-2.png]]
93 93  
94 -
95 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
96 -
97 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
98 -
99 -
100 -[[image:1654503992078-669.png]]
101 -
102 -
103 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
104 -
105 -
106 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
107 -
108 -Each LSE01 is shipped with a sticker with the default device EUI as below:
109 -
110 -[[image:image-20220606163732-6.jpeg]]
111 -
112 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
113 -
114 -**Add APP EUI in the application**
115 -
116 -
117 -[[image:1654504596150-405.png]]
118 -
119 -
120 -
121 -**Add APP KEY and DEV EUI**
122 -
123 -[[image:1654504683289-357.png]]
124 -
125 -
126 -
127 -**Step 2**: Power on LSE01
128 -
129 -
130 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
131 -
132 -[[image:image-20220606163915-7.png]]
133 -
134 -
135 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
136 -
137 -[[image:1654504778294-788.png]]
138 -
139 -
140 -
141 -== 2.3 Uplink Payload ==
142 -
143 -=== 2.3.1 MOD~=0(Default Mode) ===
144 -
145 -LSE01 will uplink payload via LoRaWAN with below payload format: 
146 -
147 -
148 -Uplink payload includes in total 11 bytes.
117 +(((
149 149  
150 -
151 -|(((
152 -**Size**
153 -
154 -**(bytes)**
155 -)))|**2**|**2**|**2**|**2**|**2**|**1**
156 -|**Value**|[[BAT>>path:#bat]]|(((
157 -Temperature
158 -
159 -(Reserve, Ignore now)
160 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
161 -MOD & Digital Interrupt
162 -
163 -(Optional)
164 164  )))
165 165  
166 -[[image:1654504881641-514.png]]
167 167  
168 168  
123 +== 2.2 ​ Configure the NSE01 ==
169 169  
170 -=== 2.3.2 MOD~=1(Original value) ===
171 171  
172 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
126 +=== 2.2.1 Test Requirement ===
173 173  
174 -|(((
175 -**Size**
176 176  
177 -**(bytes)**
178 -)))|**2**|**2**|**2**|**2**|**2**|**1**
179 -|**Value**|[[BAT>>path:#bat]]|(((
180 -Temperature
129 +To use NSE01 in your city, make sure meet below requirements:
181 181  
182 -(Reserve, Ignore now)
183 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
184 -MOD & Digital Interrupt
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
185 185  
186 -(Optional)
135 +(((
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
187 187  )))
188 188  
189 -[[image:1654504907647-967.png]]
190 190  
140 +[[image:1657249419225-449.png]]
191 191  
192 192  
193 -=== 2.3.3 Battery Info ===
194 194  
195 -Check the battery voltage for LSE01.
144 +=== 2.2.2 Insert SIM card ===
196 196  
197 -Ex1: 0x0B45 = 2885mV
146 +Insert the NB-IoT Card get from your provider.
198 198  
199 -Ex2: 0x0B49 = 2889mV
148 +User need to take out the NB-IoT module and insert the SIM card like below:
200 200  
201 201  
151 +[[image:1657249468462-536.png]]
202 202  
203 -=== 2.3.4 Soil Moisture ===
204 204  
205 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
206 206  
207 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
155 +=== 2.2.3 Connect USB TTL to NSE01 to configure it ===
208 208  
209 -
210 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
211 -
212 -
213 -
214 -=== 2.3.5 Soil Temperature ===
215 -
216 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
217 -
218 -**Example**:
219 -
220 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
221 -
222 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
223 -
224 -
225 -
226 -=== 2.3.6 Soil Conductivity (EC) ===
227 -
228 228  (((
229 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
230 -)))
231 -
232 232  (((
233 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
234 234  )))
235 -
236 -(((
237 -Generally, the EC value of irrigation water is less than 800uS / cm.
238 238  )))
239 239  
240 -(((
241 -
242 -)))
243 243  
244 -(((
245 -
246 -)))
164 +**Connection:**
247 247  
248 -=== 2.3.7 MOD ===
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
249 249  
250 -Firmware version at least v2.1 supports changing mode.
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
251 251  
252 -For example, bytes[10]=90
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
253 253  
254 -mod=(bytes[10]>>7)&0x01=1.
255 255  
173 +In the PC, use below serial tool settings:
256 256  
257 -Downlink Command:
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
258 258  
259 -If payload = 0x0A00, workmode=0
181 +(((
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 +)))
260 260  
261 -If** **payload =** **0x0A01, workmode=1
185 +[[image:image-20220708110657-3.png]]
262 262  
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
263 263  
264 264  
265 -=== 2.3.8 ​Decode payload in The Things Network ===
266 266  
267 -While using TTN network, you can add the payload format to decode the payload.
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
268 268  
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
269 269  
270 -[[image:1654505570700-128.png]]
271 271  
272 -The payload decoder function for TTN is here:
196 +**Use below commands:**
273 273  
274 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
275 275  
202 +For parameter description, please refer to AT command set
276 276  
277 -== 2.4 Uplink Interval ==
204 +[[image:1657249793983-486.png]]
278 278  
279 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
280 280  
281 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
282 282  
209 +[[image:1657249831934-534.png]]
283 283  
284 284  
285 -== 2.5 Downlink Payload ==
286 286  
287 -By default, LSE50 prints the downlink payload to console port.
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
288 288  
289 -[[image:image-20220606165544-8.png]]
215 +This feature is supported since firmware version v1.0.1
290 290  
291 291  
292 -**Examples:**
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
293 293  
222 +[[image:1657249864775-321.png]]
294 294  
295 -* **Set TDC**
296 296  
297 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
225 +[[image:1657249930215-289.png]]
298 298  
299 -Payload:    01 00 00 1E    TDC=30S
300 300  
301 -Payload:    01 00 00 3C    TDC=60S
302 302  
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
303 303  
304 -* **Reset**
231 +This feature is supported since firmware version v110
305 305  
306 -If payload = 0x04FF, it will reset the LSE01
307 307  
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
308 308  
309 -* **CFM**
242 +[[image:1657249978444-674.png]]
310 310  
311 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
312 312  
245 +[[image:1657249990869-686.png]]
313 313  
314 314  
315 -== 2.6 ​Show Data in DataCake IoT Server ==
248 +(((
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
250 +)))
316 316  
317 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
318 318  
319 319  
320 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
254 +=== 2.2.7 Use TCP protocol to uplink data ===
321 321  
322 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
256 +This feature is supported since firmware version v110
323 323  
324 324  
325 -[[image:1654505857935-743.png]]
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
326 326  
262 +[[image:1657250217799-140.png]]
327 327  
328 -[[image:1654505874829-548.png]]
329 329  
330 -Step 3: Create an account or log in Datacake.
265 +[[image:1657250255956-604.png]]
331 331  
332 -Step 4: Search the LSE01 and add DevEUI.
333 333  
334 334  
335 -[[image:1654505905236-553.png]]
269 +=== 2.2.8 Change Update Interval ===
336 336  
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
337 337  
338 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
339 339  
340 -[[image:1654505925508-181.png]]
275 +(((
276 +(% style="color:red" %)**NOTE:**
277 +)))
341 341  
279 +(((
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
281 +)))
342 342  
343 343  
344 -== 2.7 Frequency Plans ==
345 345  
346 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
285 +== 2.3  Uplink Payload ==
347 347  
287 +In this mode, uplink payload includes in total 18 bytes
348 348  
349 -=== 2.7.1 EU863-870 (EU868) ===
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
350 350  
351 -(% style="color:#037691" %)** Uplink:**
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
352 352  
353 -868.1 - SF7BW125 to SF12BW125
354 354  
355 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
298 +[[image:image-20220708111918-4.png]]
356 356  
357 -868.5 - SF7BW125 to SF12BW125
358 358  
359 -867.1 - SF7BW125 to SF12BW125
301 +The payload is ASCII string, representative same HEX:
360 360  
361 -867.3 - SF7BW125 to SF12BW125
303 +0x72403155615900640c7817075e0a8c02f900 where:
362 362  
363 -867.5 - SF7BW125 to SF12BW125
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
364 364  
365 -867.7 - SF7BW125 to SF12BW125
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
366 366  
367 -867.9 - SF7BW125 to SF12BW125
315 +== 2.4  Payload Explanation and Sensor Interface ==
368 368  
369 -868.8 - FSK
370 370  
318 +=== 2.4.1  Device ID ===
371 371  
372 -(% style="color:#037691" %)** Downlink:**
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
373 373  
374 -Uplink channels 1-9 (RX1)
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
375 375  
376 -869.525 - SF9BW125 (RX2 downlink only)
324 +**Example:**
377 377  
326 +AT+DEUI=A84041F15612
378 378  
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
379 379  
380 -=== 2.7.2 US902-928(US915) ===
381 381  
382 -Used in USA, Canada and South America. Default use CHE=2
383 383  
384 -(% style="color:#037691" %)**Uplink:**
332 +=== 2.4.2  Version Info ===
385 385  
386 -903.9 - SF7BW125 to SF10BW125
334 +Specify the software version: 0x64=100, means firmware version 1.00.
387 387  
388 -904.1 - SF7BW125 to SF10BW125
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
389 389  
390 -904.3 - SF7BW125 to SF10BW125
391 391  
392 -904.5 - SF7BW125 to SF10BW125
393 393  
394 -904.7 - SF7BW125 to SF10BW125
340 +=== 2.4. Battery Info ===
395 395  
396 -904.9 - SF7BW125 to SF10BW125
342 +(((
343 +Check the battery voltage for LSE01.
344 +)))
397 397  
398 -905.1 - SF7BW125 to SF10BW125
346 +(((
347 +Ex1: 0x0B45 = 2885mV
348 +)))
399 399  
400 -905.3 - SF7BW125 to SF10BW125
350 +(((
351 +Ex2: 0x0B49 = 2889mV
352 +)))
401 401  
402 402  
403 -(% style="color:#037691" %)**Downlink:**
404 404  
405 -923.3 - SF7BW500 to SF12BW500
356 +=== 2.4.4  Signal Strength ===
406 406  
407 -923.9 - SF7BW500 to SF12BW500
358 +NB-IoT Network signal Strength.
408 408  
409 -924.5 - SF7BW500 to SF12BW500
360 +**Ex1: 0x1d = 29**
410 410  
411 -925.1 - SF7BW500 to SF12BW500
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
412 412  
413 -925.7 - SF7BW500 to SF12BW500
364 +(% style="color:blue" %)**1**(%%)  -111dBm
414 414  
415 -926.3 - SF7BW500 to SF12BW500
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
416 416  
417 -926.9 - SF7BW500 to SF12BW500
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
418 418  
419 -927.5 - SF7BW500 to SF12BW500
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
420 420  
421 -923.3 - SF12BW500(RX2 downlink only)
422 422  
423 423  
374 +=== 2.4.5  Soil Moisture ===
424 424  
425 -=== 2.7.3 CN470-510 (CN470) ===
376 +(((
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 +)))
426 426  
427 -Used in China, Default use CHE=1
380 +(((
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 +)))
428 428  
429 -(% style="color:#037691" %)**Uplink:**
384 +(((
385 +
386 +)))
430 430  
431 -486.3 - SF7BW125 to SF12BW125
388 +(((
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 +)))
432 432  
433 -486.5 - SF7BW125 to SF12BW125
434 434  
435 -486.7 - SF7BW125 to SF12BW125
436 436  
437 -486.9 - SF7BW125 to SF12BW125
394 +=== 2.4. Soil Temperature ===
438 438  
439 -487.1 - SF7BW125 to SF12BW125
396 +(((
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 +)))
440 440  
441 -487.3 - SF7BW125 to SF12BW125
400 +(((
401 +**Example**:
402 +)))
442 442  
443 -487.5 - SF7BW125 to SF12BW125
404 +(((
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 +)))
444 444  
445 -487.7 - SF7BW125 to SF12BW125
408 +(((
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 +)))
446 446  
447 447  
448 -(% style="color:#037691" %)**Downlink:**
449 449  
450 -506.7 - SF7BW125 to SF12BW125
414 +=== 2.4.7  Soil Conductivity (EC) ===
451 451  
452 -506.9 - SF7BW125 to SF12BW125
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
453 453  
454 -507.1 - SF7BW125 to SF12BW125
420 +(((
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +)))
455 455  
456 -507.3 - SF7BW125 to SF12BW125
424 +(((
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
426 +)))
457 457  
458 -507.5 - SF7BW125 to SF12BW125
428 +(((
429 +
430 +)))
459 459  
460 -507.7 - SF7BW125 to SF12BW125
432 +(((
433 +
434 +)))
461 461  
462 -507.9 - SF7BW125 to SF12BW125
436 +=== 2.4.8  Digital Interrupt ===
463 463  
464 -508.1 - SF7BW125 to SF12BW125
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
465 465  
466 -505.3 - SF12BW125 (RX2 downlink only)
440 +The command is:
467 467  
442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
468 468  
469 469  
470 -=== 2.7.4 AU915-928(AU915) ===
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
471 471  
472 -Default use CHE=2
473 473  
474 -(% style="color:#037691" %)**Uplink:**
448 +Example:
475 475  
476 -916.8 - SF7BW125 to SF12BW125
450 +0x(00): Normal uplink packet.
477 477  
478 -917.0 - SF7BW125 to SF12BW125
452 +0x(01): Interrupt Uplink Packet.
479 479  
480 -917.2 - SF7BW125 to SF12BW125
481 481  
482 -917.4 - SF7BW125 to SF12BW125
483 483  
484 -917.6 - SF7BW125 to SF12BW125
456 +=== 2.4.9  ​+5V Output ===
485 485  
486 -917.8 - SF7BW125 to SF12BW125
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
487 487  
488 -918.0 - SF7BW125 to SF12BW125
489 489  
490 -918.2 - SF7BW125 to SF12BW125
461 +The 5V output time can be controlled by AT Command.
491 491  
463 +(% style="color:blue" %)**AT+5VT=1000**
492 492  
493 -(% style="color:#037691" %)**Downlink:**
465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
494 494  
495 -923.3 - SF7BW500 to SF12BW500
496 496  
497 -923.9 - SF7BW500 to SF12BW500
498 498  
499 -924.5 - SF7BW500 to SF12BW500
469 +== 2.5  Downlink Payload ==
500 500  
501 -925.1 - SF7BW500 to SF12BW500
471 +By default, NSE01 prints the downlink payload to console port.
502 502  
503 -925.7 - SF7BW500 to SF12BW500
473 +[[image:image-20220708133731-5.png]]
504 504  
505 -926.3 - SF7BW500 to SF12BW500
506 506  
507 -926.9 - SF7BW500 to SF12BW500
508 508  
509 -927.5 - SF7BW500 to SF12BW500
477 +(((
478 +(% style="color:blue" %)**Examples:**
479 +)))
510 510  
511 -923.3 - SF12BW500(RX2 downlink only)
481 +(((
482 +
483 +)))
512 512  
485 +* (((
486 +(% style="color:blue" %)**Set TDC**
487 +)))
513 513  
489 +(((
490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
491 +)))
514 514  
515 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
493 +(((
494 +Payload:    01 00 00 1E    TDC=30S
495 +)))
516 516  
517 -(% style="color:#037691" %)**Default Uplink channel:**
497 +(((
498 +Payload:    01 00 00 3C    TDC=60S
499 +)))
518 518  
519 -923.2 - SF7BW125 to SF10BW125
501 +(((
502 +
503 +)))
520 520  
521 -923.4 - SF7BW125 to SF10BW125
505 +* (((
506 +(% style="color:blue" %)**Reset**
507 +)))
522 522  
509 +(((
510 +If payload = 0x04FF, it will reset the NSE01
511 +)))
523 523  
524 -(% style="color:#037691" %)**Additional Uplink Channel**:
525 525  
526 -(OTAA mode, channel added by JoinAccept message)
514 +* (% style="color:blue" %)**INTMOD**
527 527  
528 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
516 +Downlink Payload: 06000003, Set AT+INTMOD=3
529 529  
530 -922.2 - SF7BW125 to SF10BW125
531 531  
532 -922.4 - SF7BW125 to SF10BW125
533 533  
534 -922.6 - SF7BW125 to SF10BW125
520 +== 2.6  ​LED Indicator ==
535 535  
536 -922.8 - SF7BW125 to SF10BW125
522 +(((
523 +The NSE01 has an internal LED which is to show the status of different state.
537 537  
538 -923.0 - SF7BW125 to SF10BW125
539 539  
540 -922.0 - SF7BW125 to SF10BW125
526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
527 +* Then the LED will be on for 1 second means device is boot normally.
528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
529 +* For each uplink probe, LED will be on for 500ms.
530 +)))
541 541  
542 542  
543 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
544 544  
545 -923.6 - SF7BW125 to SF10BW125
546 546  
547 -923.8 - SF7BW125 to SF10BW125
535 +== 2.7  Installation in Soil ==
548 548  
549 -924.0 - SF7BW125 to SF10BW125
537 +__**Measurement the soil surface**__
550 550  
551 -924.2 - SF7BW125 to SF10BW125
539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
552 552  
553 -924.4 - SF7BW125 to SF10BW125
541 +[[image:1657259653666-883.png]] ​
554 554  
555 -924.6 - SF7BW125 to SF10BW125
556 556  
544 +(((
545 +
557 557  
558 -(% style="color:#037691" %)** Downlink:**
547 +(((
548 +Dig a hole with diameter > 20CM.
549 +)))
559 559  
560 -Uplink channels 1-8 (RX1)
551 +(((
552 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
553 +)))
554 +)))
561 561  
562 -923.2 - SF10BW125 (RX2)
556 +[[image:1654506665940-119.png]]
563 563  
558 +(((
559 +
560 +)))
564 564  
565 565  
566 -=== 2.7.6 KR920-923 (KR920) ===
563 +== 2. ​Firmware Change Log ==
567 567  
568 -Default channel:
569 569  
570 -922.1 - SF7BW125 to SF12BW125
566 +Download URL & Firmware Change log
571 571  
572 -922.3 - SF7BW125 to SF12BW125
568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
573 573  
574 -922.5 - SF7BW125 to SF12BW125
575 575  
571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
576 576  
577 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
578 578  
579 -922.1 - SF7BW125 to SF12BW125
580 580  
581 -922.3 - SF7BW125 to SF12BW125
575 +== 2. Battery Analysis ==
582 582  
583 -922.5 - SF7BW125 to SF12BW125
577 +=== 2.9.1  ​Battery Type ===
584 584  
585 -922.7 - SF7BW125 to SF12BW125
586 586  
587 -922.9 - SF7BW125 to SF12BW125
580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
588 588  
589 -923.1 - SF7BW125 to SF12BW125
590 590  
591 -923.3 - SF7BW125 to SF12BW125
583 +The battery is designed to last for several years depends on the actually use environment and update interval. 
592 592  
593 593  
594 -(% style="color:#037691" %)**Downlink:**
586 +The battery related documents as below:
595 595  
596 -Uplink channels 1-7(RX1)
588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
597 597  
598 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
599 -
600 -
601 -
602 -=== 2.7.7 IN865-867 (IN865) ===
603 -
604 -(% style="color:#037691" %)** Uplink:**
605 -
606 -865.0625 - SF7BW125 to SF12BW125
607 -
608 -865.4025 - SF7BW125 to SF12BW125
609 -
610 -865.9850 - SF7BW125 to SF12BW125
611 -
612 -
613 -(% style="color:#037691" %) **Downlink:**
614 -
615 -Uplink channels 1-3 (RX1)
616 -
617 -866.550 - SF10BW125 (RX2)
618 -
619 -
620 -
621 -
622 -== 2.8 LED Indicator ==
623 -
624 -The LSE01 has an internal LED which is to show the status of different state.
625 -
626 -* Blink once when device power on.
627 -* Solid ON for 5 seconds once device successful Join the network.
628 -* Blink once when device transmit a packet.
629 -
630 -== 2.9 Installation in Soil ==
631 -
632 -**Measurement the soil surface**
633 -
634 -
635 -[[image:1654506634463-199.png]] ​
636 -
637 637  (((
638 -(((
639 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
593 +[[image:image-20220708140453-6.png]]
640 640  )))
641 -)))
642 642  
643 643  
644 -[[image:1654506665940-119.png]]
645 645  
646 -(((
647 -Dig a hole with diameter > 20CM.
648 -)))
598 +=== 2.9.2  Power consumption Analyze ===
649 649  
650 650  (((
651 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
601 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
652 652  )))
653 653  
654 654  
655 -== 2.10 ​Firmware Change Log ==
656 -
657 657  (((
658 -**Firmware download link:**
606 +Instruction to use as below:
659 659  )))
660 660  
661 661  (((
662 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
610 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
663 663  )))
664 664  
665 -(((
666 -
667 -)))
668 668  
669 669  (((
670 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
615 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
671 671  )))
672 672  
673 -(((
674 -
618 +* (((
619 +Product Model
675 675  )))
676 -
677 -(((
678 -**V1.0.**
621 +* (((
622 +Uplink Interval
679 679  )))
624 +* (((
625 +Working Mode
626 +)))
680 680  
681 681  (((
682 -Release
629 +And the Life expectation in difference case will be shown on the right.
683 683  )))
684 684  
632 +[[image:image-20220708141352-7.jpeg]]
685 685  
686 -== 2.11 ​Battery Analysis ==
687 687  
688 -=== 2.11.1 ​Battery Type ===
689 689  
690 -(((
691 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
692 -)))
636 +=== 2.9.3  ​Battery Note ===
693 693  
694 694  (((
695 -The battery is designed to last for more than 5 years for the LSN50.
639 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
696 696  )))
697 697  
698 -(((
699 -(((
700 -The battery-related documents are as below:
701 -)))
702 -)))
703 703  
704 -* (((
705 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
706 -)))
707 -* (((
708 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
709 -)))
710 -* (((
711 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
712 -)))
713 713  
714 - [[image:image-20220606171726-9.png]]
644 +=== 2.9.4  Replace the battery ===
715 715  
716 -
717 -
718 -=== 2.11.2 ​Battery Note ===
719 -
720 720  (((
721 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
647 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
722 722  )))
723 723  
724 724  
725 725  
726 -=== 2.11.3 Replace the battery ===
652 += 3. ​ Access NB-IoT Module =
727 727  
728 728  (((
729 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
655 +Users can directly access the AT command set of the NB-IoT module.
730 730  )))
731 731  
732 732  (((
733 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
659 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]
734 734  )))
735 735  
736 -(((
737 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
738 -)))
662 +[[image:1657261119050-993.png]]
739 739  
664 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.jpg]]
740 740  
741 741  
742 -= 3. ​Using the AT Commands =
743 743  
744 744  == 3.1 Access AT Commands ==
745 745  
... ... @@ -746,13 +746,13 @@
746 746  
747 747  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
748 748  
749 -[[image:1654501986557-872.png]]
673 +[[image:1654501986557-872.png||height="391" width="800"]]
750 750  
751 751  
752 752  Or if you have below board, use below connection:
753 753  
754 754  
755 -[[image:1654502005655-729.png]]
679 +[[image:1654502005655-729.png||height="503" width="801"]]
756 756  
757 757  
758 758  
... ... @@ -759,10 +759,10 @@
759 759  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
760 760  
761 761  
762 - [[image:1654502050864-459.png]]
686 + [[image:1654502050864-459.png||height="564" width="806"]]
763 763  
764 764  
765 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
689 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
766 766  
767 767  
768 768  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -874,20 +874,38 @@
874 874  
875 875  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
876 876  
877 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10FirmwareChangeLog"]].
801 +(((
802 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
878 878  When downloading the images, choose the required image file for download. ​
804 +)))
879 879  
806 +(((
807 +
808 +)))
880 880  
810 +(((
881 881  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
812 +)))
882 882  
814 +(((
815 +
816 +)))
883 883  
818 +(((
884 884  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
820 +)))
885 885  
822 +(((
823 +
824 +)))
886 886  
826 +(((
887 887  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
828 +)))
888 888  
889 889  [[image:image-20220606154726-3.png]]
890 890  
832 +
891 891  When you use the TTN network, the US915 frequency bands use are:
892 892  
893 893  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -900,37 +900,47 @@
900 900  * 905.3 - SF7BW125 to SF10BW125
901 901  * 904.6 - SF8BW500
902 902  
845 +(((
903 903  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
904 904  
905 -(% class="box infomessage" %)
906 -(((
907 -**AT+CHE=2**
848 +* (% style="color:#037691" %)**AT+CHE=2**
849 +* (% style="color:#037691" %)**ATZ**
908 908  )))
909 909  
910 -(% class="box infomessage" %)
911 911  (((
912 -**ATZ**
913 -)))
853 +
914 914  
915 915  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
856 +)))
916 916  
858 +(((
859 +
860 +)))
917 917  
862 +(((
918 918  The **AU915** band is similar. Below are the AU915 Uplink Channels.
864 +)))
919 919  
920 920  [[image:image-20220606154825-4.png]]
921 921  
922 922  
869 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
923 923  
871 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
872 +
873 +
924 924  = 5. Trouble Shooting =
925 925  
926 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
876 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
927 927  
928 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
878 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
929 929  
930 930  
931 -== 5.2 AT Command input doesnt work ==
881 +== 5.2 AT Command input doesn't work ==
932 932  
933 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
883 +(((
884 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
885 +)))
934 934  
935 935  
936 936  == 5.3 Device rejoin in at the second uplink packet ==
... ... @@ -942,7 +942,9 @@
942 942  
943 943  (% style="color:#4f81bd" %)**Cause for this issue:**
944 944  
897 +(((
945 945  The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
899 +)))
946 946  
947 947  
948 948  (% style="color:#4f81bd" %)**Solution: **
... ... @@ -949,7 +949,7 @@
949 949  
950 950  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
951 951  
952 -[[image:1654500929571-736.png]]
906 +[[image:1654500929571-736.png||height="458" width="832"]]
953 953  
954 954  
955 955  = 6. ​Order Info =
... ... @@ -982,7 +982,9 @@
982 982  = 7. Packing Info =
983 983  
984 984  (((
985 -**Package Includes**:
939 +
940 +
941 +(% style="color:#037691" %)**Package Includes**:
986 986  )))
987 987  
988 988  * (((
... ... @@ -991,10 +991,8 @@
991 991  
992 992  (((
993 993  
994 -)))
995 995  
996 -(((
997 -**Dimension and weight**:
951 +(% style="color:#037691" %)**Dimension and weight**:
998 998  )))
999 999  
1000 1000  * (((
... ... @@ -1009,7 +1009,6 @@
1009 1009  * (((
1010 1010  Weight / pcs : g
1011 1011  
1012 -
1013 1013  
1014 1014  )))
1015 1015  
... ... @@ -1017,5 +1017,3 @@
1017 1017  
1018 1018  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1019 1019  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1020 -
1021 -
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content