Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 20 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -8,715 +8,618 @@ 8 8 9 9 10 10 11 -= 1. Introduction = 12 12 13 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 14 14 15 -((( 16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 -))) 18 18 19 -((( 20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 21 -))) 14 +**Table of Contents:** 22 22 23 -((( 24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 25 -))) 26 26 27 -((( 28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 29 -))) 30 30 31 -((( 32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 -))) 34 34 35 35 36 -[[image:1654503236291-817.png]] 37 37 21 += 1. Introduction = 38 38 39 - [[image:1654503265560-120.png]]23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 40 40 41 - 42 - 43 -== 1.2 Features == 44 - 45 -* LoRaWAN 1.0.3 Class A 46 -* Ultra low power consumption 47 -* Monitor Soil Moisture 48 -* Monitor Soil Temperature 49 -* Monitor Soil Conductivity 50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 -* AT Commands to change parameters 52 -* Uplink on periodically 53 -* Downlink to change configure 54 -* IP66 Waterproof Enclosure 55 -* 4000mAh or 8500mAh Battery for long term use 56 - 57 - 58 - 59 -== 1.3 Specification == 60 - 61 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 62 - 63 -[[image:image-20220606162220-5.png]] 64 - 65 - 66 - 67 -== 1.4 Applications == 68 - 69 -* Smart Agriculture 70 - 71 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 72 - 73 - 74 -== 1.5 Firmware Change log == 75 - 76 - 77 -**LSE01 v1.0 :** Release 78 - 79 - 80 - 81 -= 2. Configure LSE01 to connect to LoRaWAN network = 82 - 83 -== 2.1 How it works == 84 - 85 85 ((( 86 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 87 -))) 26 + 88 88 89 -((( 90 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 91 -))) 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 92 92 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 93 93 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 94 94 95 - ==2.2QuickguidetoconnecttoLoRaWANserver(OTAA) ==34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 96 96 97 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 98 - 99 - 100 -[[image:1654503992078-669.png]] 101 - 102 - 103 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 104 - 105 - 106 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 107 - 108 -Each LSE01 is shipped with a sticker with the default device EUI as below: 109 - 110 -[[image:image-20220606163732-6.jpeg]] 111 - 112 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 113 - 114 -**Add APP EUI in the application** 115 - 116 - 117 -[[image:1654504596150-405.png]] 118 - 119 - 120 - 121 -**Add APP KEY and DEV EUI** 122 - 123 -[[image:1654504683289-357.png]] 124 - 125 - 126 - 127 -**Step 2**: Power on LSE01 128 - 129 - 130 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 131 - 132 -[[image:image-20220606163915-7.png]] 133 - 134 - 135 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 136 - 137 -[[image:1654504778294-788.png]] 138 - 139 - 140 - 141 -== 2.3 Uplink Payload == 142 - 143 -=== 2.3.1 MOD~=0(Default Mode) === 144 - 145 -LSE01 will uplink payload via LoRaWAN with below payload format: 146 - 147 - 148 -Uplink payload includes in total 11 bytes. 149 149 150 - 151 -|((( 152 -**Size** 153 - 154 -**(bytes)** 155 -)))|**2**|**2**|**2**|**2**|**2**|**1** 156 -|**Value**|[[BAT>>path:#bat]]|((( 157 -Temperature 158 - 159 -(Reserve, Ignore now) 160 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|((( 161 -MOD & Digital Interrupt 162 - 163 -(Optional) 164 164 ))) 165 165 166 -[[image:165450 4881641-514.png]]39 +[[image:1654503236291-817.png]] 167 167 168 168 42 +[[image:1657245163077-232.png]] 169 169 170 -=== 2.3.2 MOD~=1(Original value) === 171 171 172 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 173 173 174 -|((( 175 -**Size** 46 +== 1.2 Features == 176 176 177 -**(bytes)** 178 -)))|**2**|**2**|**2**|**2**|**2**|**1** 179 -|**Value**|[[BAT>>path:#bat]]|((( 180 -Temperature 181 181 182 -(Reserve, Ignore now) 183 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|((( 184 -MOD & Digital Interrupt 49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 50 +* Monitor Soil Moisture 51 +* Monitor Soil Temperature 52 +* Monitor Soil Conductivity 53 +* AT Commands to change parameters 54 +* Uplink on periodically 55 +* Downlink to change configure 56 +* IP66 Waterproof Enclosure 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 59 +* Micro SIM card slot for NB-IoT SIM 60 +* 8500mAh Battery for long term use 185 185 186 -(Optional) 187 -))) 62 +== 1.3 Specification == 188 188 189 -[[image:1654504907647-967.png]] 190 190 65 +(% style="color:#037691" %)**Common DC Characteristics:** 191 191 67 +* Supply Voltage: 2.1v ~~ 3.6v 68 +* Operating Temperature: -40 ~~ 85°C 192 192 193 - ===2.3.3 BatteryInfo===70 +(% style="color:#037691" %)**NB-IoT Spec:** 194 194 195 -Check the battery voltage for LSE01. 72 +* - B1 @H-FDD: 2100MHz 73 +* - B3 @H-FDD: 1800MHz 74 +* - B8 @H-FDD: 900MHz 75 +* - B5 @H-FDD: 850MHz 76 +* - B20 @H-FDD: 800MHz 77 +* - B28 @H-FDD: 700MHz 196 196 197 - Ex1:0x0B45=2885mV79 +(% style="color:#037691" %)**Probe Specification:** 198 198 199 - Ex2:0x0B49=2889mV81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 200 200 83 +[[image:image-20220708101224-1.png]] 201 201 202 202 203 -=== 2.3.4 Soil Moisture === 204 204 205 - Getthe moisture content of the soil.The value range of the register is 0-10000(Decimal), dividethis value by 100 toget the percentage of moisturein the soil.87 +== 1.4 Applications == 206 206 207 - Forexample, if the data you get fromtheregisters __0x05 0xDC__,the moisturecontent in the soil is89 +* Smart Agriculture 208 208 91 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 92 + 209 209 210 - (% style="color:#4f81bd" %)**05DC(H)= 1500(D)/100=15%.**94 +== 1.5 Pin Definitions == 211 211 212 212 97 +[[image:1657246476176-652.png]] 213 213 214 -=== 2.3.5 Soil Temperature === 215 215 216 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 217 217 218 - **Example**:101 += 2. Use NSE01 to communicate with IoT Server = 219 219 220 - If payload is 0105H: ((0x0105 & 0x8000)>>15===0),temp = 0105(H)/100=2.61°C103 +== 2.1 How it works == 221 221 222 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 223 223 224 - 225 - 226 -=== 2.3.6 Soil Conductivity (EC) === 227 - 228 228 ((( 229 - Obtain(%style="color:#4f81bd"%)**__solublesaltconcentration__**(%%)insoil or (% style="color:#4f81bd"%)**__soluble ionconcentrationinliquidfertilizer__**(%%)or(% style="color:#4f81bd"%)**__plantingmedium__**(%%). Thevaluerangeftheregister is0 - 20000(Decimal)(Canbegreaterthan20000).107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 230 230 ))) 231 231 232 -((( 233 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 234 -))) 235 235 236 236 ((( 237 - Generally,theEC valueof irrigationwateris lessthan800uS/ cm.112 +The diagram below shows the working flow in default firmware of NSE01: 238 238 ))) 239 239 240 -((( 241 - 242 -))) 115 +[[image:image-20220708101605-2.png]] 243 243 244 244 ((( 245 245 246 246 ))) 247 247 248 -=== 2.3.7 MOD === 249 249 250 -Firmware version at least v2.1 supports changing mode. 251 251 252 - Forxample,bytes[10]=90123 +== 2.2 Configure the NSE01 == 253 253 254 -mod=(bytes[10]>>7)&0x01=1. 255 255 126 +=== 2.2.1 Test Requirement === 256 256 257 -Downlink Command: 258 258 259 - If payload=0x0A00,workmode=0129 +To use NSE01 in your city, make sure meet below requirements: 260 260 261 -If** **payload =** **0x0A01, workmode=1 131 +* Your local operator has already distributed a NB-IoT Network there. 132 +* The local NB-IoT network used the band that NSE01 supports. 133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 262 262 135 +((( 136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 137 +))) 263 263 264 264 265 - ===2.3.8 Decodepayload inThe Things Network ===140 +[[image:1657249419225-449.png]] 266 266 267 -While using TTN network, you can add the payload format to decode the payload. 268 268 269 269 270 - [[image:1654505570700-128.png]]144 +=== 2.2.2 Insert SIM card === 271 271 272 - ThepayloaddecoderfunctionforTTNis here:146 +Insert the NB-IoT Card get from your provider. 273 273 274 - LSE01 TTN Payload Decoder:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]148 +User need to take out the NB-IoT module and insert the SIM card like below: 275 275 276 276 277 - ==2.4Uplink Interval ==151 +[[image:1657249468462-536.png]] 278 278 279 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: 280 280 281 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 282 282 155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 283 283 157 +((( 158 +((( 159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 160 +))) 161 +))) 284 284 285 -== 2.5 Downlink Payload == 286 286 287 - By default, LSE50 prints the downlink payloadtoconsole port.164 +**Connection:** 288 288 289 - [[image:image-20220606165544-8.png]]166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 290 290 168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 291 291 292 - **Examples:**170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 293 293 294 294 295 - ***SetTDC**173 +In the PC, use below serial tool settings: 296 296 297 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 175 +* Baud: (% style="color:green" %)**9600** 176 +* Data bits:** (% style="color:green" %)8(%%)** 177 +* Stop bits: (% style="color:green" %)**1** 178 +* Parity: (% style="color:green" %)**None** 179 +* Flow Control: (% style="color:green" %)**None** 298 298 299 -Payload: 01 00 00 1E TDC=30S 181 +((( 182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 183 +))) 300 300 301 - Payload:1000 3C TDC=60S185 +[[image:image-20220708110657-3.png]] 302 302 187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 303 303 304 -* **Reset** 305 305 306 -If payload = 0x04FF, it will reset the LSE01 307 307 191 +=== 2.2.4 Use CoAP protocol to uplink data === 308 308 309 - ***CFM**193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 310 310 311 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 312 312 196 +**Use below commands:** 313 313 198 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 314 314 315 - == 2.6 ShowData inDataCakeIoT Server==202 +For parameter description, please refer to AT command set 316 316 317 -[[ DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]]to connect to TTN and see the data in DATACAKE. Below are the steps:204 +[[image:1657249793983-486.png]] 318 318 319 319 320 - **Step1**: Be sure thatyour deviceis programmed andproperlyconnectedtothenetworkat this time.207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 321 321 322 - **Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add theDATACAKE integration,perform the followingsteps:209 +[[image:1657249831934-534.png]] 323 323 324 324 325 -[[image:1654505857935-743.png]] 326 326 213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 327 327 328 - [[image:1654505874829-548.png]]215 +This feature is supported since firmware version v1.0.1 329 329 330 -Step 3: Create an account or log in Datacake. 331 331 332 -Step 4: Search the LSE01 and add DevEUI. 218 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 333 333 222 +[[image:1657249864775-321.png]] 334 334 335 -[[image:1654505905236-553.png]] 336 336 225 +[[image:1657249930215-289.png]] 337 337 338 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 339 339 340 -[[image:1654505925508-181.png]] 341 341 229 +=== 2.2.6 Use MQTT protocol to uplink data === 342 342 231 +This feature is supported since firmware version v110 343 343 344 -== 2.7 Frequency Plans == 345 345 346 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 234 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 237 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 238 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 347 347 242 +[[image:1657249978444-674.png]] 348 348 349 -=== 2.7.1 EU863-870 (EU868) === 350 350 351 - (% style="color:#037691" %)** Uplink:**245 +[[image:1657249990869-686.png]] 352 352 353 -868.1 - SF7BW125 to SF12BW125 354 354 355 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 248 +((( 249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 250 +))) 356 356 357 -868.5 - SF7BW125 to SF12BW125 358 358 359 -867.1 - SF7BW125 to SF12BW125 360 360 361 - 867.3-SF7BW125toSF12BW125254 +=== 2.2.7 Use TCP protocol to uplink data === 362 362 363 - 867.5-SF7BW125toSF12BW125256 +This feature is supported since firmware version v110 364 364 365 -867.7 - SF7BW125 to SF12BW125 366 366 367 -867.9 - SF7BW125 to SF12BW125 259 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 368 368 369 - 868.8-FSK262 +[[image:1657250217799-140.png]] 370 370 371 371 372 - (% style="color:#037691" %)** Downlink:**265 +[[image:1657250255956-604.png]] 373 373 374 -Uplink channels 1-9 (RX1) 375 375 376 -869.525 - SF9BW125 (RX2 downlink only) 377 377 269 +=== 2.2.8 Change Update Interval === 378 378 271 +User can use below command to change the (% style="color:green" %)**uplink interval**. 379 379 380 -== =2.7.2US902-928(US915)===273 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 381 381 382 -Used in USA, Canada and South America. Default use CHE=2 275 +((( 276 +(% style="color:red" %)**NOTE:** 277 +))) 383 383 384 -(% style="color:#037691" %)**Uplink:** 279 +((( 280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 281 +))) 385 385 386 -903.9 - SF7BW125 to SF10BW125 387 387 388 -904.1 - SF7BW125 to SF10BW125 389 389 390 - 904.3-SF7BW125 toSF10BW125285 +== 2.3 Uplink Payload == 391 391 392 - 904.5-SF7BW125toSF10BW125287 +In this mode, uplink payload includes in total 18 bytes 393 393 394 -904.7 - SF7BW125 to SF10BW125 289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 290 +|=(% style="width: 50px;" %)((( 291 +**Size(bytes)** 292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 395 395 396 - 904.9-SF7BW125to SF10BW125295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 397 397 398 -905.1 - SF7BW125 to SF10BW125 399 399 400 - 905.3-SF7BW125 to SF10BW125298 +[[image:image-20220708111918-4.png]] 401 401 402 402 403 - (%style="color:#037691"%)**Downlink:**301 +The payload is ASCII string, representative same HEX: 404 404 405 - 923.3 - SF7BW500to SF12BW500303 +0x72403155615900640c7817075e0a8c02f900 where: 406 406 407 -923.9 - SF7BW500 to SF12BW500 305 +* Device ID: 0x 724031556159 = 724031556159 306 +* Version: 0x0064=100=1.0.0 408 408 409 -924.5 - SF7BW500 to SF12BW500 308 +* BAT: 0x0c78 = 3192 mV = 3.192V 309 +* Singal: 0x17 = 23 310 +* Soil Moisture: 0x075e= 1886 = 18.86 % 311 +* Soil Temperature:0x0a8c =2700=27 °C 312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 313 +* Interrupt: 0x00 = 0 410 410 411 - 925.1-SF7BW500to SF12BW500315 +== 2.4 Payload Explanation and Sensor Interface == 412 412 413 -925.7 - SF7BW500 to SF12BW500 414 414 415 - 926.3-SF7BW500 to SF12BW500318 +=== 2.4.1 Device ID === 416 416 417 - 926.9-SF7BW500toSF12BW500320 +By default, the Device ID equal to the last 6 bytes of IMEI. 418 418 419 - 927.5-SF7BW500toSF12BW500322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 420 420 421 - 923.3 - SF12BW500(RX2 downlink only)324 +**Example:** 422 422 326 +AT+DEUI=A84041F15612 423 423 328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 424 424 425 -=== 2.7.3 CN470-510 (CN470) === 426 426 427 -Used in China, Default use CHE=1 428 428 429 - (%style="color:#037691" %)**Uplink:**332 +=== 2.4.2 Version Info === 430 430 431 - 486.3-SF7BW125toSF12BW125334 +Specify the software version: 0x64=100, means firmware version 1.00. 432 432 433 - 486.5-SF7BW125toSF12BW125336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 434 434 435 -486.7 - SF7BW125 to SF12BW125 436 436 437 -486.9 - SF7BW125 to SF12BW125 438 438 439 -4 87.1- SF7BW125toSF12BW125340 +=== 2.4.3 Battery Info === 440 440 441 -487.3 - SF7BW125 to SF12BW125 342 +((( 343 +Check the battery voltage for LSE01. 344 +))) 442 442 443 -487.5 - SF7BW125 to SF12BW125 346 +((( 347 +Ex1: 0x0B45 = 2885mV 348 +))) 444 444 445 -487.7 - SF7BW125 to SF12BW125 350 +((( 351 +Ex2: 0x0B49 = 2889mV 352 +))) 446 446 447 447 448 -(% style="color:#037691" %)**Downlink:** 449 449 450 - 506.7-SF7BW125toSF12BW125356 +=== 2.4.4 Signal Strength === 451 451 452 - 506.9-SF7BW125to SF12BW125358 +NB-IoT Network signal Strength. 453 453 454 - 507.1- SF7BW125toSF12BW125360 +**Ex1: 0x1d = 29** 455 455 456 - 507.3-SF7BW125toSF12BW125362 +(% style="color:blue" %)**0**(%%) -113dBm or less 457 457 458 - 507.5-SF7BW125toSF12BW125364 +(% style="color:blue" %)**1**(%%) -111dBm 459 459 460 - 507.7- SF7BW125toSF12BW125366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 461 461 462 - 507.9-SF7BW125toSF12BW125368 +(% style="color:blue" %)**31** (%%) -51dBm or greater 463 463 464 - 508.1-SF7BW125toSF12BW125370 +(% style="color:blue" %)**99** (%%) Not known or not detectable 465 465 466 -505.3 - SF12BW125 (RX2 downlink only) 467 467 468 468 374 +=== 2.4.5 Soil Moisture === 469 469 470 -=== 2.7.4 AU915-928(AU915) === 376 +((( 377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 378 +))) 471 471 472 -Default use CHE=2 380 +((( 381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 382 +))) 473 473 474 -(% style="color:#037691" %)**Uplink:** 384 +((( 385 + 386 +))) 475 475 476 -916.8 - SF7BW125 to SF12BW125 388 +((( 389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 390 +))) 477 477 478 -917.0 - SF7BW125 to SF12BW125 479 479 480 -917.2 - SF7BW125 to SF12BW125 481 481 482 - 917.4-SF7BW125toSF12BW125394 +=== 2.4.6 Soil Temperature === 483 483 484 -917.6 - SF7BW125 to SF12BW125 396 +((( 397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 398 +))) 485 485 486 -917.8 - SF7BW125 to SF12BW125 400 +((( 401 +**Example**: 402 +))) 487 487 488 -918.0 - SF7BW125 to SF12BW125 404 +((( 405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 406 +))) 489 489 490 -918.2 - SF7BW125 to SF12BW125 408 +((( 409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 410 +))) 491 491 492 492 493 -(% style="color:#037691" %)**Downlink:** 494 494 495 - 923.3-SF7BW500toSF12BW500414 +=== 2.4.7 Soil Conductivity (EC) === 496 496 497 -923.9 - SF7BW500 to SF12BW500 416 +((( 417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 418 +))) 498 498 499 -924.5 - SF7BW500 to SF12BW500 420 +((( 421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 422 +))) 500 500 501 -925.1 - SF7BW500 to SF12BW500 424 +((( 425 +Generally, the EC value of irrigation water is less than 800uS / cm. 426 +))) 502 502 503 -925.7 - SF7BW500 to SF12BW500 428 +((( 429 + 430 +))) 504 504 505 -926.3 - SF7BW500 to SF12BW500 432 +((( 433 + 434 +))) 506 506 507 - 926.9-SF7BW500toSF12BW500436 +=== 2.4.8 Digital Interrupt === 508 508 509 - 927.5-SF7BW500toSF12BW500438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 510 510 511 - 923.3- SF12BW500(RX2 downlinkonly)440 +The command is: 512 512 442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 513 513 514 514 515 - ===2.7.5AS920-923&AS923-925(AS923)===445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 516 516 517 -(% style="color:#037691" %)**Default Uplink channel:** 518 518 519 - 923.2 - SF7BW125 to SF10BW125448 +Example: 520 520 521 - 923.4-SF7BW125to SF10BW125450 +0x(00): Normal uplink packet. 522 522 452 +0x(01): Interrupt Uplink Packet. 523 523 524 -(% style="color:#037691" %)**Additional Uplink Channel**: 525 525 526 -(OTAA mode, channel added by JoinAccept message) 527 527 528 - (% style="color:#037691"%)**AS920~~AS923forJapan,Malaysia, Singapore**:456 +=== 2.4.9 +5V Output === 529 529 530 - 922.2 -SF7BW125 toSF10BW125458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 531 531 532 -922.4 - SF7BW125 to SF10BW125 533 533 534 - 922.6- SF7BW125 toSF10BW125461 +The 5V output time can be controlled by AT Command. 535 535 536 - 922.8- SF7BW125toSF10BW125463 +(% style="color:blue" %)**AT+5VT=1000** 537 537 538 - 923.0-SF7BW125 toSF10BW125465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 539 539 540 -922.0 - SF7BW125 to SF10BW125 541 541 542 542 543 - (% style="color:#037691"%)**AS923 ~~ AS925for Brunei, Cambodia, HongKong, Indonesia, Laos, Taiwan, Thailand,Vietnam**:469 +== 2.5 Downlink Payload == 544 544 545 - 923.6-SF7BW125toSF10BW125471 +By default, NSE01 prints the downlink payload to console port. 546 546 547 - 923.8- SF7BW125to SF10BW125473 +[[image:image-20220708133731-5.png]] 548 548 549 -924.0 - SF7BW125 to SF10BW125 550 550 551 -924.2 - SF7BW125 to SF10BW125 552 552 553 -924.4 - SF7BW125 to SF10BW125 477 +((( 478 +(% style="color:blue" %)**Examples:** 479 +))) 554 554 555 -924.6 - SF7BW125 to SF10BW125 481 +((( 482 + 483 +))) 556 556 485 +* ((( 486 +(% style="color:blue" %)**Set TDC** 487 +))) 557 557 558 -(% style="color:#037691" %)** Downlink:** 489 +((( 490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 491 +))) 559 559 560 -Uplink channels 1-8 (RX1) 493 +((( 494 +Payload: 01 00 00 1E TDC=30S 495 +))) 561 561 562 -923.2 - SF10BW125 (RX2) 497 +((( 498 +Payload: 01 00 00 3C TDC=60S 499 +))) 563 563 501 +((( 502 + 503 +))) 564 564 505 +* ((( 506 +(% style="color:blue" %)**Reset** 507 +))) 565 565 566 -=== 2.7.6 KR920-923 (KR920) === 509 +((( 510 +If payload = 0x04FF, it will reset the NSE01 511 +))) 567 567 568 -Default channel: 569 569 570 - 922.1-SF7BW125toSF12BW125514 +* (% style="color:blue" %)**INTMOD** 571 571 572 - 922.3-SF7BW125toSF12BW125516 +Downlink Payload: 06000003, Set AT+INTMOD=3 573 573 574 -922.5 - SF7BW125 to SF12BW125 575 575 576 576 577 - (% style="color:#037691"%)**Uplink:(OTAA mode, channel added by JoinAcceptmessage)**520 +== 2.6 LED Indicator == 578 578 579 -922.1 - SF7BW125 to SF12BW125 522 +((( 523 +The NSE01 has an internal LED which is to show the status of different state. 580 580 581 -922.3 - SF7BW125 to SF12BW125 582 582 583 -922.5 - SF7BW125 to SF12BW125 526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 527 +* Then the LED will be on for 1 second means device is boot normally. 528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 529 +* For each uplink probe, LED will be on for 500ms. 530 +))) 584 584 585 -922.7 - SF7BW125 to SF12BW125 586 586 587 -922.9 - SF7BW125 to SF12BW125 588 588 589 -923.1 - SF7BW125 to SF12BW125 590 590 591 - 923.3 - SF7BW125to SF12BW125535 +== 2.7 Installation in Soil == 592 592 537 +__**Measurement the soil surface**__ 593 593 594 - (%style="color:#037691" %)**Downlink:**539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 595 595 596 - Uplink channels1-7(RX1)541 +[[image:1657259653666-883.png]] 597 597 598 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 599 599 544 +((( 545 + 600 600 547 +((( 548 +Dig a hole with diameter > 20CM. 549 +))) 601 601 602 -=== 2.7.7 IN865-867 (IN865) === 551 +((( 552 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 553 +))) 554 +))) 603 603 604 - (% style="color:#037691" %)** Uplink:**556 +[[image:1654506665940-119.png]] 605 605 606 -865.0625 - SF7BW125 to SF12BW125 558 +((( 559 + 560 +))) 607 607 608 -865.4025 - SF7BW125 to SF12BW125 609 609 610 - 865.9850- SF7BW125toSF12BW125563 +== 2.8 Firmware Change Log == 611 611 612 612 613 - (% style="color:#037691"%)**Downlink:**566 +Download URL & Firmware Change log 614 614 615 - Uplinkchannels1-3 (RX1)568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 616 616 617 -866.550 - SF10BW125 (RX2) 618 618 571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 619 619 620 620 621 621 622 -== 2. 8LED Indicator ==575 +== 2.9 Battery Analysis == 623 623 624 - TheLSE01has an internal LED which isto show thestatus of differentstate.577 +=== 2.9.1 Battery Type === 625 625 626 -* Blink once when device power on. 627 -* Solid ON for 5 seconds once device successful Join the network. 628 -* Blink once when device transmit a packet. 629 629 630 - ==2.9Installation inSoil==580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 631 631 632 -**Measurement the soil surface** 633 633 583 +The battery is designed to last for several years depends on the actually use environment and update interval. 634 634 635 -[[image:1654506634463-199.png]] 636 636 637 -((( 638 -((( 639 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 640 -))) 641 -))) 586 +The battery related documents as below: 642 642 588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 643 643 644 -[[image:1654506665940-119.png]] 645 - 646 646 ((( 647 - Digaholewith diameter >20CM.593 +[[image:image-20220708140453-6.png]] 648 648 ))) 649 649 650 -((( 651 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 652 -))) 653 653 654 654 655 - ==2.10Firmware Change Log ==598 +2.9.2 656 656 657 -((( 658 -**Firmware download link:** 659 -))) 600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 660 660 661 -((( 662 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 663 -))) 664 664 665 -((( 666 - 667 -))) 603 +Instruction to use as below: 668 668 669 -((( 670 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 671 -))) 672 672 673 -((( 674 - 675 -))) 606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 676 676 677 -((( 678 -**V1.0.** 679 -))) 608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 680 680 681 -((( 682 -Release 683 -))) 684 684 611 +Step 2: Open it and choose 685 685 686 -== 2.11 Battery Analysis == 613 +* Product Model 614 +* Uplink Interval 615 +* Working Mode 687 687 688 - ===2.11.1BatteryType===617 +And the Life expectation in difference case will be shown on the right. 689 689 690 -((( 691 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 692 -))) 693 693 694 -((( 695 -The battery is designed to last for more than 5 years for the LSN50. 696 -))) 697 697 698 -((( 699 -((( 700 -The battery-related documents are as below: 701 -))) 702 -))) 621 +=== 2.9.3 Battery Note === 703 703 704 -* ((( 705 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 706 -))) 707 -* ((( 708 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 709 -))) 710 -* ((( 711 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 712 -))) 713 - 714 - [[image:image-20220606171726-9.png]] 715 - 716 - 717 - 718 -=== 2.11.2 Battery Note === 719 - 720 720 ((( 721 721 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 722 722 ))) ... ... @@ -723,22 +723,12 @@ 723 723 724 724 725 725 726 -=== 2. 11.3Replace the battery ===629 +=== 2.9.4 Replace the battery === 727 727 728 -((( 729 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 730 -))) 631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 731 731 732 -((( 733 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 734 -))) 735 735 736 -((( 737 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 738 -))) 739 739 740 - 741 - 742 742 = 3. Using the AT Commands = 743 743 744 744 == 3.1 Access AT Commands == ... ... @@ -746,13 +746,13 @@ 746 746 747 747 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 748 748 749 -[[image:1654501986557-872.png]] 642 +[[image:1654501986557-872.png||height="391" width="800"]] 750 750 751 751 752 752 Or if you have below board, use below connection: 753 753 754 754 755 -[[image:1654502005655-729.png]] 648 +[[image:1654502005655-729.png||height="503" width="801"]] 756 756 757 757 758 758 ... ... @@ -759,10 +759,10 @@ 759 759 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 760 760 761 761 762 - [[image:1654502050864-459.png]] 655 + [[image:1654502050864-459.png||height="564" width="806"]] 763 763 764 764 765 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>> url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 766 766 767 767 768 768 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> ... ... @@ -874,20 +874,38 @@ 874 874 875 875 == 4.1 How to change the LoRa Frequency Bands/Region? == 876 876 877 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10FirmwareChangeLog"]]. 770 +((( 771 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 878 878 When downloading the images, choose the required image file for download. 773 +))) 879 879 775 +((( 776 + 777 +))) 880 880 779 +((( 881 881 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 781 +))) 882 882 783 +((( 784 + 785 +))) 883 883 787 +((( 884 884 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 789 +))) 885 885 791 +((( 792 + 793 +))) 886 886 795 +((( 887 887 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 797 +))) 888 888 889 889 [[image:image-20220606154726-3.png]] 890 890 801 + 891 891 When you use the TTN network, the US915 frequency bands use are: 892 892 893 893 * 903.9 - SF7BW125 to SF10BW125 ... ... @@ -900,37 +900,47 @@ 900 900 * 905.3 - SF7BW125 to SF10BW125 901 901 * 904.6 - SF8BW500 902 902 814 +((( 903 903 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 904 904 905 -(% class="box infomessage" %) 906 -((( 907 -**AT+CHE=2** 817 +* (% style="color:#037691" %)**AT+CHE=2** 818 +* (% style="color:#037691" %)**ATZ** 908 908 ))) 909 909 910 -(% class="box infomessage" %) 911 911 ((( 912 -**ATZ** 913 -))) 822 + 914 914 915 915 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 825 +))) 916 916 827 +((( 828 + 829 +))) 917 917 831 +((( 918 918 The **AU915** band is similar. Below are the AU915 Uplink Channels. 833 +))) 919 919 920 920 [[image:image-20220606154825-4.png]] 921 921 922 922 838 +== 4.2 Can I calibrate LSE01 to different soil types? == 923 923 840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 841 + 842 + 924 924 = 5. Trouble Shooting = 925 925 926 -== 5.1 Why I can ’t join TTN in US915 / AU915 bands? ==845 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 927 927 928 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. LoRaWANCommunication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 929 929 930 930 931 -== 5.2 AT Command input doesn ’t work ==850 +== 5.2 AT Command input doesn't work == 932 932 933 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 852 +((( 853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 854 +))) 934 934 935 935 936 936 == 5.3 Device rejoin in at the second uplink packet == ... ... @@ -942,7 +942,9 @@ 942 942 943 943 (% style="color:#4f81bd" %)**Cause for this issue:** 944 944 866 +((( 945 945 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 868 +))) 946 946 947 947 948 948 (% style="color:#4f81bd" %)**Solution: ** ... ... @@ -949,7 +949,7 @@ 949 949 950 950 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 951 951 952 -[[image:1654500929571-736.png]] 875 +[[image:1654500929571-736.png||height="458" width="832"]] 953 953 954 954 955 955 = 6. Order Info = ... ... @@ -982,7 +982,9 @@ 982 982 = 7. Packing Info = 983 983 984 984 ((( 985 -**Package Includes**: 908 + 909 + 910 +(% style="color:#037691" %)**Package Includes**: 986 986 ))) 987 987 988 988 * ((( ... ... @@ -991,10 +991,8 @@ 991 991 992 992 ((( 993 993 994 -))) 995 995 996 -((( 997 -**Dimension and weight**: 920 +(% style="color:#037691" %)**Dimension and weight**: 998 998 ))) 999 999 1000 1000 * ((( ... ... @@ -1009,7 +1009,6 @@ 1009 1009 * ((( 1010 1010 Weight / pcs : g 1011 1011 1012 - 1013 1013 1014 1014 ))) 1015 1015 ... ... @@ -1017,5 +1017,3 @@ 1017 1017 1018 1018 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1019 1019 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1020 - 1021 -
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content