Last modified by Mengting Qiu on 2024/04/02 16:44

From version 31.16
edited by Xiaoling
on 2022/06/07 09:25
Change comment: There is no comment for this version
To version 45.6
edited by Xiaoling
on 2022/07/08 10:57
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -8,63 +8,87 @@
8 8  
9 9  
10 10  
11 -= 1. Introduction =
12 12  
13 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 14  
15 -(((
16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 -)))
18 18  
19 -(((
20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
21 -)))
14 +**Table of Contents:**
22 22  
23 -(((
24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
25 -)))
26 26  
27 -(((
28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
29 -)))
30 30  
18 +
19 +
20 +
21 += 1.  Introduction =
22 +
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 +
31 31  (((
32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 -)))
26 +
34 34  
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
35 35  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
36 +
37 +)))
38 +
36 36  [[image:1654503236291-817.png]]
37 37  
38 38  
39 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
40 40  
41 41  
42 42  
43 43  == 1.2 ​Features ==
44 44  
45 -* LoRaWAN 1.0.3 Class A
46 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
47 47  * Monitor Soil Moisture
48 48  * Monitor Soil Temperature
49 49  * Monitor Soil Conductivity
50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 51  * AT Commands to change parameters
52 52  * Uplink on periodically
53 53  * Downlink to change configure
54 54  * IP66 Waterproof Enclosure
55 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
56 56  
57 57  
58 58  
59 -== 1.3 Specification ==
64 +== 1.3  Specification ==
60 60  
66 +
67 +(% style="color:#037691" %)**Common DC Characteristics:**
68 +
69 +* Supply Voltage: 2.1v ~~ 3.6v
70 +* Operating Temperature: -40 ~~ 85°C
71 +
72 +
73 +(% style="color:#037691" %)**NB-IoT Spec:**
74 +
75 +* - B1 @H-FDD: 2100MHz
76 +* - B3 @H-FDD: 1800MHz
77 +* - B8 @H-FDD: 900MHz
78 +* - B5 @H-FDD: 850MHz
79 +* - B20 @H-FDD: 800MHz
80 +* - B28 @H-FDD: 700MHz
81 +
82 +
83 +(% style="color:#037691" %)**Probe Specification:**
84 +
61 61  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
62 62  
63 -[[image:image-20220606162220-5.png]]
87 +[[image:image-20220708101224-1.png]]
64 64  
65 65  
66 66  
67 -== ​1.4 Applications ==
91 +== ​1.4  Applications ==
68 68  
69 69  * Smart Agriculture
70 70  
... ... @@ -71,155 +71,308 @@
71 71  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
72 72  ​
73 73  
74 -== 1.5 Firmware Change log ==
98 +== 1.5  Pin Definitions ==
75 75  
76 76  
77 -**LSE01 v1.0 :**  Release
101 +[[image:1657246476176-652.png]]
78 78  
79 79  
80 80  
81 -= 2. Configure LSE01 to connect to LoRaWAN network =
105 += 2.  Use NSE01 to communicate with IoT Server =
82 82  
83 -== 2.1 How it works ==
107 +== 2.1  How it works ==
84 84  
109 +
85 85  (((
86 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
111 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
87 87  )))
88 88  
114 +
89 89  (((
90 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
116 +The diagram below shows the working flow in default firmware of NSE01:
91 91  )))
92 92  
119 +[[image:image-20220708101605-2.png]]
93 93  
121 +(((
122 +
123 +)))
94 94  
95 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
96 96  
97 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
98 98  
127 +== 2.2 ​ Configure the NSE01 ==
99 99  
100 -[[image:1654503992078-669.png]]
129 +=== 2.2.1 Test Requirement ===
101 101  
102 102  
103 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
132 +To use NSE01 in your city, make sure meet below requirements:
104 104  
134 +* Your local operator has already distributed a NB-IoT Network there.
135 +* The local NB-IoT network used the band that NSE01 supports.
136 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
105 105  
106 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
107 107  
108 -Each LSE01 is shipped with a sticker with the default device EUI as below:
139 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
109 109  
110 -[[image:image-20220606163732-6.jpeg]]
111 111  
112 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
142 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.gif]]
113 113  
114 -**Add APP EUI in the application**
115 115  
116 116  
117 -[[image:1654504596150-405.png]]
146 +=== 2.2.2 Insert SIM card ===
118 118  
148 +Insert the NB-IoT Card get from your provider.
119 119  
120 120  
121 -**Add APP KEY and DEV EUI**
151 +User need to take out the NB-IoT module and insert the SIM card like below:
122 122  
123 -[[image:1654504683289-357.png]]
124 124  
154 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.gif]]
125 125  
126 126  
127 -**Step 2**: Power on LSE01
157 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
128 128  
129 129  
130 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
160 +User need to configure NSE01 via serial port to set the **(% style="color:blue" %)Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
131 131  
132 -[[image:image-20220606163915-7.png]]
133 133  
134 134  
135 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
136 136  
137 -[[image:1654504778294-788.png]]
165 +Connection:
138 138  
167 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
139 139  
169 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
140 140  
171 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
172 +
173 +
174 +
175 +In the PC, use below serial tool settings:
176 +
177 +* Baud: ** (% style="background-color:green" %)9600**(%%)
178 +* Data bits:** (% style="background-color:green" %)8**(%%)
179 +* Stop bits: **(% style="background-color:green" %)1**(%%)
180 +* Parity: **(% style="background-color:green" %)None**(%%)
181 +* Flow Control: **(% style="background-color:green" %)None**
182 +
183 +
184 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the **(% style="background-color:green" %)password: 12345678**(%%) to access AT Command input.
185 +
186 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.jpg]]
187 +
188 +Note: the valid AT Commands can be found at:
189 +
190 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
191 +
192 +
193 +
194 +=== 2.2.4 Use CoAP protocol to uplink data === 
195 +
196 +
197 +(% style="background-color:red" %)Note: if you don’t have CoAP server, you can refer this link to set up one:
198 +
199 +[[http:~~/~~/wiki.dragino.com/index.php?title=Set_up_CoAP_Server>>url:http://wiki.dragino.com/index.php?title=Set_up_CoAP_Server]]
200 +
201 +
202 +Use below commands:
203 +
204 +* **(% style="color:blue" %)AT+PRO=1**  (%%)  ~/~/ Set to use CoAP protocol to uplink
205 +* **(% style="color:blue" %)AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
206 +* **(% style="color:blue" %)AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%)      ~/~/Set COAP resource path
207 +
208 +
209 +For parameter description, please refer to AT command set
210 +
211 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.jpg]]
212 +
213 +
214 +After configure the server address and **(% style="color:green" %)reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
215 +
216 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.jpg]]
217 +
218 +
219 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
220 +
221 +
222 +This feature is supported since firmware version v1.0.1
223 +
224 +
225 +* **AT+PRO=2   ** ~/~/ Set to use UDP protocol to uplink
226 +* **AT+SERVADDR=120.24.4.116,5601   **~/~/ to set UDP server address and port
227 +* **AT+CFM=1       **~/~/If the server does not respond, this command is unnecessary
228 +
229 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.jpg]]
230 +
231 +
232 +
233 +
234 +
235 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.jpg]]
236 +
237 +
238 +1.
239 +11.
240 +111. Use MQTT protocol to uplink data
241 +
242 +
243 +This feature is supported since firmware version v110
244 +
245 +
246 +* **AT+PRO=3   ** ~/~/Set to use MQTT protocol to uplink
247 +* **AT+SERVADDR=120.24.4.116,1883   **~/~/Set MQTT server address and port
248 +* **AT+CLIENT=CLIENT **~/~/Set up the CLIENT of MQTT
249 +* **AT+UNAME=UNAME                           **~/~/Set the username of MQTT
250 +* **AT+PWD=PWD                                      **~/~/Set the password of MQTT
251 +* **AT+PUBTOPIC=NSE01_PUB   **~/~/Set the sending topic of MQTT
252 +* **AT+SUBTOPIC=NSE01_SUB    **~/~/Set the subscription topic of MQTT
253 +
254 +
255 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.gif]]
256 +
257 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.jpg]]
258 +
259 +
260 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
261 +
262 +
263 +1.
264 +11.
265 +111. Use TCP protocol to uplink data
266 +
267 +
268 +This feature is supported since firmware version v110
269 +
270 +
271 +* **AT+PRO=4   ** ~/~/ Set to use TCP protocol to uplink
272 +* **AT+SERVADDR=120.24.4.116,5600   **~/~/ to set TCP server address and port
273 +
274 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.jpg]]
275 +
276 +
277 +
278 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
279 +
280 +
281 +1.
282 +11.
283 +111. Change Update Interval
284 +
285 +User can use below command to change the **uplink interval**.
286 +
287 +**~ AT+TDC=600      **~/~/ Set Update Interval to 600s
288 +
289 +
290 +**NOTE:**
291 +
292 +1. By default, the device will send an uplink message every 1 hour.
293 +
294 +
295 +
296 +
297 +
298 +
299 +
141 141  == 2.3 Uplink Payload ==
142 142  
302 +
143 143  === 2.3.1 MOD~=0(Default Mode) ===
144 144  
145 145  LSE01 will uplink payload via LoRaWAN with below payload format: 
146 146  
147 -
307 +(((
148 148  Uplink payload includes in total 11 bytes.
149 -
309 +)))
150 150  
311 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
151 151  |(((
152 152  **Size**
153 153  
154 154  **(bytes)**
155 155  )))|**2**|**2**|**2**|**2**|**2**|**1**
156 -|**Value**|[[BAT>>path:#bat]]|(((
317 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
157 157  Temperature
158 158  
159 159  (Reserve, Ignore now)
160 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
321 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
161 161  MOD & Digital Interrupt
162 162  
163 163  (Optional)
164 164  )))
165 165  
166 -[[image:1654504881641-514.png]]
167 -
168 -
169 -
170 170  === 2.3.2 MOD~=1(Original value) ===
171 171  
172 172  This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
173 173  
331 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
174 174  |(((
175 175  **Size**
176 176  
177 177  **(bytes)**
178 178  )))|**2**|**2**|**2**|**2**|**2**|**1**
179 -|**Value**|[[BAT>>path:#bat]]|(((
337 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
180 180  Temperature
181 181  
182 182  (Reserve, Ignore now)
183 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
341 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
184 184  MOD & Digital Interrupt
185 185  
186 186  (Optional)
187 187  )))
188 188  
189 -[[image:1654504907647-967.png]]
190 -
191 -
192 -
193 193  === 2.3.3 Battery Info ===
194 194  
349 +(((
195 195  Check the battery voltage for LSE01.
351 +)))
196 196  
353 +(((
197 197  Ex1: 0x0B45 = 2885mV
355 +)))
198 198  
357 +(((
199 199  Ex2: 0x0B49 = 2889mV
359 +)))
200 200  
201 201  
202 202  
203 203  === 2.3.4 Soil Moisture ===
204 204  
365 +(((
205 205  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
367 +)))
206 206  
369 +(((
207 207  For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
371 +)))
208 208  
373 +(((
374 +
375 +)))
209 209  
377 +(((
210 210  (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
379 +)))
211 211  
212 212  
213 213  
214 214  === 2.3.5 Soil Temperature ===
215 215  
385 +(((
216 216   Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
387 +)))
217 217  
389 +(((
218 218  **Example**:
391 +)))
219 219  
393 +(((
220 220  If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
395 +)))
221 221  
397 +(((
222 222  If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
399 +)))
223 223  
224 224  
225 225  
... ... @@ -254,7 +254,7 @@
254 254  mod=(bytes[10]>>7)&0x01=1.
255 255  
256 256  
257 -Downlink Command:
434 +**Downlink Command:**
258 258  
259 259  If payload = 0x0A00, workmode=0
260 260  
... ... @@ -269,19 +269,21 @@
269 269  
270 270  [[image:1654505570700-128.png]]
271 271  
449 +(((
272 272  The payload decoder function for TTN is here:
451 +)))
273 273  
274 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
453 +(((
454 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
455 +)))
275 275  
276 276  
277 277  == 2.4 Uplink Interval ==
278 278  
279 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
460 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
280 280  
281 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
282 282  
283 283  
284 -
285 285  == 2.5 Downlink Payload ==
286 286  
287 287  By default, LSE50 prints the downlink payload to console port.
... ... @@ -289,24 +289,44 @@
289 289  [[image:image-20220606165544-8.png]]
290 290  
291 291  
292 -**Examples:**
471 +(((
472 +(% style="color:blue" %)**Examples:**
473 +)))
293 293  
475 +(((
476 +
477 +)))
294 294  
295 -* **Set TDC**
479 +* (((
480 +(% style="color:blue" %)**Set TDC**
481 +)))
296 296  
483 +(((
297 297  If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
485 +)))
298 298  
487 +(((
299 299  Payload:    01 00 00 1E    TDC=30S
489 +)))
300 300  
491 +(((
301 301  Payload:    01 00 00 3C    TDC=60S
493 +)))
302 302  
495 +(((
496 +
497 +)))
303 303  
304 -* **Reset**
499 +* (((
500 +(% style="color:blue" %)**Reset**
501 +)))
305 305  
503 +(((
306 306  If payload = 0x04FF, it will reset the LSE01
505 +)))
307 307  
308 308  
309 -* **CFM**
508 +* (% style="color:blue" %)**CFM**
310 310  
311 311  Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
312 312  
... ... @@ -314,12 +314,21 @@
314 314  
315 315  == 2.6 ​Show Data in DataCake IoT Server ==
316 316  
516 +(((
317 317  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
518 +)))
318 318  
520 +(((
521 +
522 +)))
319 319  
320 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
524 +(((
525 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
526 +)))
321 321  
322 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
528 +(((
529 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
530 +)))
323 323  
324 324  
325 325  [[image:1654505857935-743.png]]
... ... @@ -327,11 +327,12 @@
327 327  
328 328  [[image:1654505874829-548.png]]
329 329  
330 -Step 3: Create an account or log in Datacake.
331 331  
332 -Step 4: Search the LSE01 and add DevEUI.
539 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
333 333  
541 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
334 334  
543 +
335 335  [[image:1654505905236-553.png]]
336 336  
337 337  
... ... @@ -641,6 +641,7 @@
641 641  )))
642 642  
643 643  
853 +
644 644  [[image:1654506665940-119.png]]
645 645  
646 646  (((
... ... @@ -702,16 +702,16 @@
702 702  )))
703 703  
704 704  * (((
705 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
915 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
706 706  )))
707 707  * (((
708 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
918 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
709 709  )))
710 710  * (((
711 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
921 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
712 712  )))
713 713  
714 - [[image:image-20220606171726-9.png]]
924 + [[image:image-20220610172436-1.png]]
715 715  
716 716  
717 717  
... ... @@ -746,13 +746,13 @@
746 746  
747 747  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
748 748  
749 -[[image:1654501986557-872.png]]
959 +[[image:1654501986557-872.png||height="391" width="800"]]
750 750  
751 751  
752 752  Or if you have below board, use below connection:
753 753  
754 754  
755 -[[image:1654502005655-729.png]]
965 +[[image:1654502005655-729.png||height="503" width="801"]]
756 756  
757 757  
758 758  
... ... @@ -759,10 +759,10 @@
759 759  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
760 760  
761 761  
762 - [[image:1654502050864-459.png]]
972 + [[image:1654502050864-459.png||height="564" width="806"]]
763 763  
764 764  
765 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
975 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
766 766  
767 767  
768 768  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -874,20 +874,38 @@
874 874  
875 875  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
876 876  
877 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10FirmwareChangeLog"]].
1087 +(((
1088 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
878 878  When downloading the images, choose the required image file for download. ​
1090 +)))
879 879  
1092 +(((
1093 +
1094 +)))
880 880  
1096 +(((
881 881  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
1098 +)))
882 882  
1100 +(((
1101 +
1102 +)))
883 883  
1104 +(((
884 884  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1106 +)))
885 885  
1108 +(((
1109 +
1110 +)))
886 886  
1112 +(((
887 887  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1114 +)))
888 888  
889 889  [[image:image-20220606154726-3.png]]
890 890  
1118 +
891 891  When you use the TTN network, the US915 frequency bands use are:
892 892  
893 893  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -900,37 +900,47 @@
900 900  * 905.3 - SF7BW125 to SF10BW125
901 901  * 904.6 - SF8BW500
902 902  
1131 +(((
903 903  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
904 904  
905 -(% class="box infomessage" %)
906 -(((
907 -**AT+CHE=2**
1134 +* (% style="color:#037691" %)**AT+CHE=2**
1135 +* (% style="color:#037691" %)**ATZ**
908 908  )))
909 909  
910 -(% class="box infomessage" %)
911 911  (((
912 -**ATZ**
913 -)))
1139 +
914 914  
915 915  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1142 +)))
916 916  
1144 +(((
1145 +
1146 +)))
917 917  
1148 +(((
918 918  The **AU915** band is similar. Below are the AU915 Uplink Channels.
1150 +)))
919 919  
920 920  [[image:image-20220606154825-4.png]]
921 921  
922 922  
1155 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
923 923  
1157 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1158 +
1159 +
924 924  = 5. Trouble Shooting =
925 925  
926 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
1162 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
927 927  
928 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1164 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
929 929  
930 930  
931 -== 5.2 AT Command input doesnt work ==
1167 +== 5.2 AT Command input doesn't work ==
932 932  
933 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1169 +(((
1170 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1171 +)))
934 934  
935 935  
936 936  == 5.3 Device rejoin in at the second uplink packet ==
... ... @@ -942,7 +942,9 @@
942 942  
943 943  (% style="color:#4f81bd" %)**Cause for this issue:**
944 944  
1183 +(((
945 945  The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1185 +)))
946 946  
947 947  
948 948  (% style="color:#4f81bd" %)**Solution: **
... ... @@ -949,7 +949,7 @@
949 949  
950 950  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
951 951  
952 -[[image:1654500929571-736.png]]
1192 +[[image:1654500929571-736.png||height="458" width="832"]]
953 953  
954 954  
955 955  = 6. ​Order Info =
... ... @@ -982,7 +982,9 @@
982 982  = 7. Packing Info =
983 983  
984 984  (((
985 -**Package Includes**:
1225 +
1226 +
1227 +(% style="color:#037691" %)**Package Includes**:
986 986  )))
987 987  
988 988  * (((
... ... @@ -991,10 +991,8 @@
991 991  
992 992  (((
993 993  
994 -)))
995 995  
996 -(((
997 -**Dimension and weight**:
1237 +(% style="color:#037691" %)**Dimension and weight**:
998 998  )))
999 999  
1000 1000  * (((
... ... @@ -1009,7 +1009,6 @@
1009 1009  * (((
1010 1010  Weight / pcs : g
1011 1011  
1012 -
1013 1013  
1014 1014  )))
1015 1015  
... ... @@ -1017,5 +1017,3 @@
1017 1017  
1018 1018  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1019 1019  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1020 -
1021 -
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content