<
From version < 31.10 >
edited by Xiaoling
on 2022/06/06 17:25
To version < 35.1 >
edited by Xiaoling
on 2022/06/10 17:24
>
Change comment: Uploaded new attachment "image-20220610172436-1.png", version {1}

Summary

Details

Page properties
Content
... ... @@ -1,13 +1,17 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="848" width="848"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 +**Contents:**
6 6  
8 +{{toc/}}
7 7  
8 8  
9 9  
10 10  
13 +
14 +
11 11  = 1. Introduction =
12 12  
13 13  == 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
... ... @@ -54,6 +54,8 @@
54 54  * IP66 Waterproof Enclosure
55 55  * 4000mAh or 8500mAh Battery for long term use
56 56  
61 +
62 +
57 57  == 1.3 Specification ==
58 58  
59 59  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
... ... @@ -85,7 +85,7 @@
85 85  )))
86 86  
87 87  (((
88 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]].
94 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
89 89  )))
90 90  
91 91  
... ... @@ -138,86 +138,107 @@
138 138  
139 139  == 2.3 Uplink Payload ==
140 140  
147 +=== ===
148 +
141 141  === 2.3.1 MOD~=0(Default Mode) ===
142 142  
143 143  LSE01 will uplink payload via LoRaWAN with below payload format: 
144 144  
145 -
153 +(((
146 146  Uplink payload includes in total 11 bytes.
147 -
155 +)))
148 148  
157 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
149 149  |(((
150 150  **Size**
151 151  
152 152  **(bytes)**
153 153  )))|**2**|**2**|**2**|**2**|**2**|**1**
154 -|**Value**|[[BAT>>path:#bat]]|(((
163 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
155 155  Temperature
156 156  
157 157  (Reserve, Ignore now)
158 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
167 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
159 159  MOD & Digital Interrupt
160 160  
161 161  (Optional)
162 162  )))
163 163  
164 -[[image:1654504881641-514.png]]
165 165  
166 -
167 -
168 168  === 2.3.2 MOD~=1(Original value) ===
169 169  
170 170  This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
171 171  
178 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
172 172  |(((
173 173  **Size**
174 174  
175 175  **(bytes)**
176 176  )))|**2**|**2**|**2**|**2**|**2**|**1**
177 -|**Value**|[[BAT>>path:#bat]]|(((
184 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
178 178  Temperature
179 179  
180 180  (Reserve, Ignore now)
181 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
182 182  MOD & Digital Interrupt
183 183  
184 184  (Optional)
185 185  )))
186 186  
187 -[[image:1654504907647-967.png]]
188 188  
189 -
190 -
191 191  === 2.3.3 Battery Info ===
192 192  
197 +(((
193 193  Check the battery voltage for LSE01.
199 +)))
194 194  
201 +(((
195 195  Ex1: 0x0B45 = 2885mV
203 +)))
196 196  
205 +(((
197 197  Ex2: 0x0B49 = 2889mV
207 +)))
198 198  
199 199  
200 200  
201 201  === 2.3.4 Soil Moisture ===
202 202  
213 +(((
203 203  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
215 +)))
204 204  
217 +(((
205 205  For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
219 +)))
206 206  
221 +(((
222 +
223 +)))
207 207  
225 +(((
208 208  (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
227 +)))
209 209  
210 210  
211 211  
212 212  === 2.3.5 Soil Temperature ===
213 213  
233 +(((
214 214   Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
235 +)))
215 215  
237 +(((
216 216  **Example**:
239 +)))
217 217  
241 +(((
218 218  If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
243 +)))
219 219  
245 +(((
220 220  If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
247 +)))
221 221  
222 222  
223 223  
... ... @@ -252,7 +252,7 @@
252 252  mod=(bytes[10]>>7)&0x01=1.
253 253  
254 254  
255 -Downlink Command:
282 +**Downlink Command:**
256 256  
257 257  If payload = 0x0A00, workmode=0
258 258  
... ... @@ -267,19 +267,22 @@
267 267  
268 268  [[image:1654505570700-128.png]]
269 269  
297 +(((
270 270  The payload decoder function for TTN is here:
299 +)))
271 271  
301 +(((
272 272  LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
303 +)))
273 273  
274 274  
306 +
275 275  == 2.4 Uplink Interval ==
276 276  
277 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
309 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
278 278  
279 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
280 280  
281 281  
282 -
283 283  == 2.5 Downlink Payload ==
284 284  
285 285  By default, LSE50 prints the downlink payload to console port.
... ... @@ -287,21 +287,41 @@
287 287  [[image:image-20220606165544-8.png]]
288 288  
289 289  
320 +(((
290 290  **Examples:**
322 +)))
291 291  
324 +(((
325 +
326 +)))
292 292  
293 -* **Set TDC**
328 +* (((
329 +**Set TDC**
330 +)))
294 294  
332 +(((
295 295  If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
334 +)))
296 296  
336 +(((
297 297  Payload:    01 00 00 1E    TDC=30S
338 +)))
298 298  
340 +(((
299 299  Payload:    01 00 00 3C    TDC=60S
342 +)))
300 300  
344 +(((
345 +
346 +)))
301 301  
302 -* **Reset**
348 +* (((
349 +**Reset**
350 +)))
303 303  
352 +(((
304 304  If payload = 0x04FF, it will reset the LSE01
354 +)))
305 305  
306 306  
307 307  * **CFM**
... ... @@ -312,12 +312,21 @@
312 312  
313 313  == 2.6 ​Show Data in DataCake IoT Server ==
314 314  
365 +(((
315 315  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
367 +)))
316 316  
369 +(((
370 +
371 +)))
317 317  
373 +(((
318 318  **Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
375 +)))
319 319  
377 +(((
320 320  **Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
379 +)))
321 321  
322 322  
323 323  [[image:1654505857935-743.png]]
... ... @@ -745,13 +745,13 @@
745 745  
746 746  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
747 747  
748 -[[image:1654501986557-872.png]]
807 +[[image:1654501986557-872.png||height="391" width="800"]]
749 749  
750 750  
751 751  Or if you have below board, use below connection:
752 752  
753 753  
754 -[[image:1654502005655-729.png]]
813 +[[image:1654502005655-729.png||height="503" width="801"]]
755 755  
756 756  
757 757  
... ... @@ -758,7 +758,7 @@
758 758  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
759 759  
760 760  
761 - [[image:1654502050864-459.png]]
820 + [[image:1654502050864-459.png||height="564" width="806"]]
762 762  
763 763  
764 764  Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
... ... @@ -873,20 +873,38 @@
873 873  
874 874  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
875 875  
876 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
935 +(((
936 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
877 877  When downloading the images, choose the required image file for download. ​
938 +)))
878 878  
940 +(((
941 +
942 +)))
879 879  
944 +(((
880 880  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
946 +)))
881 881  
948 +(((
949 +
950 +)))
882 882  
952 +(((
883 883  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
954 +)))
884 884  
956 +(((
957 +
958 +)))
885 885  
960 +(((
886 886  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
962 +)))
887 887  
888 888  [[image:image-20220606154726-3.png]]
889 889  
966 +
890 890  When you use the TTN network, the US915 frequency bands use are:
891 891  
892 892  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -899,7 +899,9 @@
899 899  * 905.3 - SF7BW125 to SF10BW125
900 900  * 904.6 - SF8BW500
901 901  
979 +(((
902 902  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
981 +)))
903 903  
904 904  (% class="box infomessage" %)
905 905  (((
... ... @@ -911,10 +911,17 @@
911 911  **ATZ**
912 912  )))
913 913  
993 +(((
914 914  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
995 +)))
915 915  
997 +(((
998 +
999 +)))
916 916  
1001 +(((
917 917  The **AU915** band is similar. Below are the AU915 Uplink Channels.
1003 +)))
918 918  
919 919  [[image:image-20220606154825-4.png]]
920 920  
... ... @@ -929,7 +929,9 @@
929 929  
930 930  == 5.2 AT Command input doesn’t work ==
931 931  
1018 +(((
932 932  In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1020 +)))
933 933  
934 934  
935 935  == 5.3 Device rejoin in at the second uplink packet ==
... ... @@ -941,7 +941,9 @@
941 941  
942 942  (% style="color:#4f81bd" %)**Cause for this issue:**
943 943  
1032 +(((
944 944  The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1034 +)))
945 945  
946 946  
947 947  (% style="color:#4f81bd" %)**Solution: **
... ... @@ -948,7 +948,7 @@
948 948  
949 949  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
950 950  
951 -[[image:1654500929571-736.png]]
1041 +[[image:1654500929571-736.png||height="458" width="832"]]
952 952  
953 953  
954 954  = 6. ​Order Info =
... ... @@ -973,7 +973,6 @@
973 973  * (% style="color:red" %)**4**(%%): 4000mAh battery
974 974  * (% style="color:red" %)**8**(%%): 8500mAh battery
975 975  
976 -
977 977  (% class="wikigeneratedid" %)
978 978  (((
979 979  
... ... @@ -982,7 +982,9 @@
982 982  = 7. Packing Info =
983 983  
984 984  (((
985 -**Package Includes**:
1074 +
1075 +
1076 +(% style="color:#037691" %)**Package Includes**:
986 986  )))
987 987  
988 988  * (((
... ... @@ -991,10 +991,8 @@
991 991  
992 992  (((
993 993  
994 -)))
995 995  
996 -(((
997 -**Dimension and weight**:
1086 +(% style="color:#037691" %)**Dimension and weight**:
998 998  )))
999 999  
1000 1000  * (((
... ... @@ -1008,6 +1008,8 @@
1008 1008  )))
1009 1009  * (((
1010 1010  Weight / pcs : g
1100 +
1101 +
1011 1011  )))
1012 1012  
1013 1013  = 8. Support =
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0