Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 27 added, 0 removed)
- 1654506634463-199.png
- 1654506665940-119.png
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220606171726-9.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220606151504-2.jpeg||height=" 848" width="848"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 ... ... @@ -8,987 +8,830 @@ 8 8 9 9 10 10 11 -= 1. Introduction = 12 12 13 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 14 14 13 + 14 +**Table of Contents:** 15 + 16 +{{toc/}} 17 + 18 + 19 + 20 + 21 + 22 + 23 + 24 += 1. Introduction = 25 + 26 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 27 + 15 15 ((( 16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 -))) 29 + 18 18 19 19 ((( 20 - Itdetects (% style="color:#4f81bd" %)**SoilMoisture**(%%),(%style="color:#4f81bd"%)**Soil Temperature**(%%)and(%style="color:#4f81bd"%)**SoilConductivity**(%%),anduploadsthevalueviawirelesstoLoRaWANIoT Server.32 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 21 21 ))) 22 22 23 23 ((( 24 - TheLoRawirelesstechnologyusedin LES01 allows devicetoend data andreachextremely longrangesatlowdata-rates. It provides ultra-longrangespreadspectrumcommunicationandhighinterferenceimmunitywhilst minimizing current consumption.36 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 25 25 ))) 26 26 27 27 ((( 28 - LES01is powered by (%style="color:#4f81bd"%)**4000mAor8500mAhLi-SOCI2battery**(%%),Itisdesignedfor long termuseup to10 years.40 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 29 29 ))) 30 30 31 31 ((( 32 - Each LES01ispre-loadwithasetfuniquekeys for LoRaWANregistrations,register thesekeys to localLoRaWANserver anditwill autoconnectafterpower on.44 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 33 33 ))) 34 34 47 + 48 +))) 35 35 36 36 [[image:1654503236291-817.png]] 37 37 38 38 39 -[[image:16545 03265560-120.png]]53 +[[image:1657245163077-232.png]] 40 40 41 41 42 42 43 -== 1.2 Features == 57 +== 1.2 Features == 44 44 45 -* LoRaWAN 1.0.3 Class A 46 -* Ultra low power consumption 59 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 47 47 * Monitor Soil Moisture 48 48 * Monitor Soil Temperature 49 49 * Monitor Soil Conductivity 50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 51 * AT Commands to change parameters 52 52 * Uplink on periodically 53 53 * Downlink to change configure 54 54 * IP66 Waterproof Enclosure 55 -* 4000mAh or 8500mAh Battery for long term use 67 +* Ultra-Low Power consumption 68 +* AT Commands to change parameters 69 +* Micro SIM card slot for NB-IoT SIM 70 +* 8500mAh Battery for long term use 56 56 57 -== 1.3 Specification == 58 58 59 - MeasureVolume:Baseon thecentra pin ofthe probe, a cylinder with 7cm diameter and10cm height.73 +== 1.3 Specification == 60 60 61 -[[image:image-20220606162220-5.png]] 62 62 76 +(% style="color:#037691" %)**Common DC Characteristics:** 63 63 78 +* Supply Voltage: 2.1v ~~ 3.6v 79 +* Operating Temperature: -40 ~~ 85°C 64 64 65 - ==1.4 Applications==81 +(% style="color:#037691" %)**NB-IoT Spec:** 66 66 67 -* Smart Agriculture 83 +* - B1 @H-FDD: 2100MHz 84 +* - B3 @H-FDD: 1800MHz 85 +* - B8 @H-FDD: 900MHz 86 +* - B5 @H-FDD: 850MHz 87 +* - B20 @H-FDD: 800MHz 88 +* - B28 @H-FDD: 700MHz 68 68 69 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 70 - 90 +Probe(% style="color:#037691" %)** Specification:** 71 71 72 - == 1.5 FirmwareChangelog==92 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 73 73 94 +[[image:image-20220708101224-1.png]] 74 74 75 -**LSE01 v1.0 :** Release 76 76 77 77 98 +== 1.4 Applications == 78 78 79 - =2. Configure LSE01toconnectto LoRaWAN network =100 +* Smart Agriculture 80 80 81 -== 2.1 How it works == 102 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 103 + 82 82 83 -((( 84 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 85 -))) 105 +== 1.5 Pin Definitions == 86 86 87 -((( 88 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 89 -))) 90 90 108 +[[image:1657246476176-652.png]] 91 91 92 92 93 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 94 94 95 - Followingisanexamplefor how to join the [[TTNv3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Belowis the network structure;we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]]as a LoRaWANgateway in thisexample.112 += 2. Use NSE01 to communicate with IoT Server = 96 96 114 +== 2.1 How it works == 97 97 98 -[[image:1654503992078-669.png]] 99 99 117 +((( 118 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 119 +))) 100 100 101 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 102 102 122 +((( 123 +The diagram below shows the working flow in default firmware of NSE01: 124 +))) 103 103 104 - **Step 1**: Createa device in TTN with the OTAA keys fromLSE01.126 +[[image:image-20220708101605-2.png]] 105 105 106 -Each LSE01 is shipped with a sticker with the default device EUI as below: 107 - 108 -[[image:image-20220606163732-6.jpeg]] 109 - 110 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 111 - 112 -**Add APP EUI in the application** 113 - 114 - 115 -[[image:1654504596150-405.png]] 116 - 117 - 118 - 119 -**Add APP KEY and DEV EUI** 120 - 121 -[[image:1654504683289-357.png]] 122 - 123 - 124 - 125 -**Step 2**: Power on LSE01 126 - 127 - 128 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 129 - 130 -[[image:image-20220606163915-7.png]] 131 - 132 - 133 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 134 - 135 -[[image:1654504778294-788.png]] 136 - 137 - 138 - 139 -== 2.3 Uplink Payload == 140 - 141 -=== 2.3.1 MOD~=0(Default Mode) === 142 - 143 -LSE01 will uplink payload via LoRaWAN with below payload format: 144 - 145 - 146 -Uplink payload includes in total 11 bytes. 128 +((( 147 147 148 - 149 -|((( 150 -**Size** 151 - 152 -**(bytes)** 153 -)))|**2**|**2**|**2**|**2**|**2**|**1** 154 -|**Value**|[[BAT>>path:#bat]]|((( 155 -Temperature 156 - 157 -(Reserve, Ignore now) 158 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|((( 159 -MOD & Digital Interrupt 160 - 161 -(Optional) 162 162 ))) 163 163 164 -[[image:1654504881641-514.png]] 165 165 166 166 134 +== 2.2 Configure the NSE01 == 167 167 168 -=== 2.3.2 MOD~=1(Original value) === 169 169 170 - Thismodecangettheoriginal AD value of moistureand original conductivity (with temperature drift compensation).137 +=== 2.2.1 Test Requirement === 171 171 172 -|((( 173 -**Size** 174 174 175 -**(bytes)** 176 -)))|**2**|**2**|**2**|**2**|**2**|**1** 177 -|**Value**|[[BAT>>path:#bat]]|((( 178 -Temperature 140 +To use NSE01 in your city, make sure meet below requirements: 179 179 180 - (Reserve,Ignorenow)181 - )))|[[SoilMoisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[SoilConductivity(EC)>>path:#EC]](raw)|(((182 - MOD&DigitalInterrupt142 +* Your local operator has already distributed a NB-IoT Network there. 143 +* The local NB-IoT network used the band that NSE01 supports. 144 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 183 183 184 -(Optional) 146 +((( 147 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 185 185 ))) 186 186 187 -[[image:1654504907647-967.png]] 188 188 151 +[[image:1657249419225-449.png]] 189 189 190 190 191 -=== 2.3.3 Battery Info === 192 192 193 - Checkthebattery voltageforLSE01.155 +=== 2.2.2 Insert SIM card === 194 194 195 - Ex1:0x0B45=2885mV157 +Insert the NB-IoT Card get from your provider. 196 196 197 - Ex2:0x0B49=2889mV159 +User need to take out the NB-IoT module and insert the SIM card like below: 198 198 199 199 162 +[[image:1657249468462-536.png]] 200 200 201 -=== 2.3.4 Soil Moisture === 202 202 203 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 204 204 205 - Forexample,ifthedatayougetfromtheregister is __0x050xDC__,themoisturecontentinthesoil is166 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 206 206 207 - 208 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 209 - 210 - 211 - 212 -=== 2.3.5 Soil Temperature === 213 - 214 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 215 - 216 -**Example**: 217 - 218 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 219 - 220 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 221 - 222 - 223 - 224 -=== 2.3.6 Soil Conductivity (EC) === 225 - 226 226 ((( 227 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 228 -))) 229 - 230 230 ((( 231 - For example,ifthedatayougetfromtheregister is 0x000xC8,the soilconductivityis00C8(H)=200(D)=200uS/cm.170 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 232 232 ))) 233 - 234 -((( 235 -Generally, the EC value of irrigation water is less than 800uS / cm. 236 236 ))) 237 237 238 -((( 239 - 240 -))) 241 241 242 -((( 243 - 244 -))) 175 +**Connection:** 245 245 246 -= ==2.3.7MOD===177 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 247 247 248 - Firmwareversionatst v2.1 supportschanging mode.179 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 249 249 250 - Forexample,bytes[10]=90181 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 251 251 252 -mod=(bytes[10]>>7)&0x01=1. 253 253 184 +In the PC, use below serial tool settings: 254 254 255 -Downlink Command: 186 +* Baud: (% style="color:green" %)**9600** 187 +* Data bits:** (% style="color:green" %)8(%%)** 188 +* Stop bits: (% style="color:green" %)**1** 189 +* Parity: (% style="color:green" %)**None** 190 +* Flow Control: (% style="color:green" %)**None** 256 256 257 -If payload = 0x0A00, workmode=0 192 +((( 193 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 194 +))) 258 258 259 - If** **payload =** **0x0A01, workmode=1196 +[[image:image-20220708110657-3.png]] 260 260 198 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 261 261 262 262 263 -=== 2.3.8 Decode payload in The Things Network === 264 264 265 - WhileusingTTNnetwork,youcan add thepayload formattodecodethepayload.202 +=== 2.2.4 Use CoAP protocol to uplink data === 266 266 204 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 267 267 268 -[[image:1654505570700-128.png]] 269 269 270 - Thepayloaddecoder function for TTN ishere:207 +**Use below commands:** 271 271 272 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 209 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 210 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 211 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 273 273 213 +For parameter description, please refer to AT command set 274 274 275 - ==2.4Uplink Interval ==215 +[[image:1657249793983-486.png]] 276 276 277 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: 278 278 279 - [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]218 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 280 280 220 +[[image:1657249831934-534.png]] 281 281 282 282 283 -== 2.5 Downlink Payload == 284 284 285 - Bydefault,LSE50printsthe downlinkpayloadtonsoleport.224 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 286 286 287 - [[image:image-20220606165544-8.png]]226 +This feature is supported since firmware version v1.0.1 288 288 289 289 290 -**Examples:** 229 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 230 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 231 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 291 291 233 +[[image:1657249864775-321.png]] 292 292 293 -* **Set TDC** 294 294 295 - If the payload=0100003C,itmeans set the END Node’s TDC to 0x00003C=60(S), while type code is 01.236 +[[image:1657249930215-289.png]] 296 296 297 -Payload: 01 00 00 1E TDC=30S 298 298 299 -Payload: 01 00 00 3C TDC=60S 300 300 240 +=== 2.2.6 Use MQTT protocol to uplink data === 301 301 302 - ***Reset**242 +This feature is supported since firmware version v110 303 303 304 -If payload = 0x04FF, it will reset the LSE01 305 305 245 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 246 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 247 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 248 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 249 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 250 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 251 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 306 306 307 - * **CFM**253 +[[image:1657249978444-674.png]] 308 308 309 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 310 310 256 +[[image:1657249990869-686.png]] 311 311 312 312 313 -== 2.6 Show Data in DataCake IoT Server == 259 +((( 260 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 261 +))) 314 314 315 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 316 316 317 317 318 - **Step1**:Besurethatyour device isprogrammed and properlyconnectedtothenetwork atthis time.265 +=== 2.2.7 Use TCP protocol to uplink data === 319 319 320 - **Step 2**:ToconfiguretheApplication to forward data to DATACAKE you will needto addintegration. To add theDATACAKE integration,perform the following steps:267 +This feature is supported since firmware version v110 321 321 322 322 323 -[[image:1654505857935-743.png]] 270 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 271 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 324 324 273 +[[image:1657250217799-140.png]] 325 325 326 -[[image:1654505874829-548.png]] 327 327 328 - Step 3: Create an account or login Datacake.276 +[[image:1657250255956-604.png]] 329 329 330 -Step 4: Search the LSE01 and add DevEUI. 331 331 332 332 333 - [[image:1654505905236-553.png]]280 +=== 2.2.8 Change Update Interval === 334 334 282 +User can use below command to change the (% style="color:green" %)**uplink interval**. 335 335 336 - Afteradded,thesensordata arrive TTN,itwillalsoarriveandshow inMydevices.284 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 337 337 338 -[[image:1654505925508-181.png]] 286 +((( 287 +(% style="color:red" %)**NOTE:** 288 +))) 339 339 290 +((( 291 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 292 +))) 340 340 341 341 342 -== 2.7 Frequency Plans == 343 343 344 - TheLSE01uses OTAA mode and below frequencyplans by default. If user want to useit with differentfrequencyplan, please refer the AT commandsets.296 +== 2.3 Uplink Payload == 345 345 298 +In this mode, uplink payload includes in total 18 bytes 346 346 347 -=== 2.7.1 EU863-870 (EU868) === 300 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 301 +|=(% style="width: 50px;" %)((( 302 +**Size(bytes)** 303 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 304 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 348 348 349 - (%style="color:#037691"%)** Uplink:**306 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 350 350 351 -868.1 - SF7BW125 to SF12BW125 352 352 353 - 868.3-SF7BW125 to SF12BW125 and SF7BW250309 +[[image:image-20220708111918-4.png]] 354 354 355 -868.5 - SF7BW125 to SF12BW125 356 356 357 - 867.1-SF7BW125toSF12BW125312 +The payload is ASCII string, representative same HEX: 358 358 359 - 867.3- SF7BW125to SF12BW125314 +0x72403155615900640c7817075e0a8c02f900 where: 360 360 361 -867.5 - SF7BW125 to SF12BW125 316 +* Device ID: 0x 724031556159 = 724031556159 317 +* Version: 0x0064=100=1.0.0 362 362 363 -867.7 - SF7BW125 to SF12BW125 319 +* BAT: 0x0c78 = 3192 mV = 3.192V 320 +* Singal: 0x17 = 23 321 +* Soil Moisture: 0x075e= 1886 = 18.86 % 322 +* Soil Temperature:0x0a8c =2700=27 °C 323 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 324 +* Interrupt: 0x00 = 0 364 364 365 -867.9 - SF7BW125 to SF12BW125 366 366 367 - 868.8-FSK327 +== 2.4 Payload Explanation and Sensor Interface == 368 368 369 369 370 - (%style="color:#037691"%)**Downlink:**330 +=== 2.4.1 Device ID === 371 371 372 - Uplinkchannels1-9(RX1)332 +By default, the Device ID equal to the last 6 bytes of IMEI. 373 373 374 - 869.525-SF9BW125(RX2downlinkonly)334 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 375 375 336 +**Example:** 376 376 338 +AT+DEUI=A84041F15612 377 377 378 - ===2.7.2US902-928(US915)===340 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 379 379 380 -Used in USA, Canada and South America. Default use CHE=2 381 381 382 -(% style="color:#037691" %)**Uplink:** 383 383 384 - 903.9- SF7BW125toSF10BW125344 +=== 2.4.2 Version Info === 385 385 386 - 904.1-SF7BW125toSF10BW125346 +Specify the software version: 0x64=100, means firmware version 1.00. 387 387 388 - 904.3-SF7BW125toSF10BW125348 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 389 389 390 -904.5 - SF7BW125 to SF10BW125 391 391 392 -904.7 - SF7BW125 to SF10BW125 393 393 394 - 904.9- SF7BW125toSF10BW125352 +=== 2.4.3 Battery Info === 395 395 396 -905.1 - SF7BW125 to SF10BW125 354 +((( 355 +Check the battery voltage for LSE01. 356 +))) 397 397 398 -905.3 - SF7BW125 to SF10BW125 358 +((( 359 +Ex1: 0x0B45 = 2885mV 360 +))) 399 399 362 +((( 363 +Ex2: 0x0B49 = 2889mV 364 +))) 400 400 401 -(% style="color:#037691" %)**Downlink:** 402 402 403 -923.3 - SF7BW500 to SF12BW500 404 404 405 - 923.9-SF7BW500toSF12BW500368 +=== 2.4.4 Signal Strength === 406 406 407 - 924.5-SF7BW500to SF12BW500370 +NB-IoT Network signal Strength. 408 408 409 - 925.1- SF7BW500toSF12BW500372 +**Ex1: 0x1d = 29** 410 410 411 - 925.7-SF7BW500toSF12BW500374 +(% style="color:blue" %)**0**(%%) -113dBm or less 412 412 413 - 926.3- SF7BW500toSF12BW500376 +(% style="color:blue" %)**1**(%%) -111dBm 414 414 415 - 926.9- SF7BW500toSF12BW500378 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 416 416 417 - 927.5- SF7BW500toSF12BW500380 +(% style="color:blue" %)**31** (%%) -51dBm or greater 418 418 419 - 923.3-SF12BW500(RX2downlinkonly)382 +(% style="color:blue" %)**99** (%%) Not known or not detectable 420 420 421 421 422 422 423 -=== 2. 7.3 CN470-510(CN470)===386 +=== 2.4.5 Soil Moisture === 424 424 425 -Used in China, Default use CHE=1 388 +((( 389 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 390 +))) 426 426 427 -(% style="color:#037691" %)**Uplink:** 392 +((( 393 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 394 +))) 428 428 429 -486.3 - SF7BW125 to SF12BW125 396 +((( 397 + 398 +))) 430 430 431 -486.5 - SF7BW125 to SF12BW125 400 +((( 401 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 402 +))) 432 432 433 -486.7 - SF7BW125 to SF12BW125 434 434 435 -486.9 - SF7BW125 to SF12BW125 436 436 437 -4 87.1-SF7BW125toSF12BW125406 +=== 2.4.6 Soil Temperature === 438 438 439 -487.3 - SF7BW125 to SF12BW125 408 +((( 409 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 410 +))) 440 440 441 -487.5 - SF7BW125 to SF12BW125 412 +((( 413 +**Example**: 414 +))) 442 442 443 -487.7 - SF7BW125 to SF12BW125 416 +((( 417 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 418 +))) 444 444 420 +((( 421 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 422 +))) 445 445 446 -(% style="color:#037691" %)**Downlink:** 447 447 448 -506.7 - SF7BW125 to SF12BW125 449 449 450 - 506.9-SF7BW125toSF12BW125426 +=== 2.4.7 Soil Conductivity (EC) === 451 451 452 -507.1 - SF7BW125 to SF12BW125 428 +((( 429 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 430 +))) 453 453 454 -507.3 - SF7BW125 to SF12BW125 432 +((( 433 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 434 +))) 455 455 456 -507.5 - SF7BW125 to SF12BW125 436 +((( 437 +Generally, the EC value of irrigation water is less than 800uS / cm. 438 +))) 457 457 458 -507.7 - SF7BW125 to SF12BW125 440 +((( 441 + 442 +))) 459 459 460 -507.9 - SF7BW125 to SF12BW125 444 +((( 445 + 446 +))) 461 461 462 - 508.1- SF7BW125toSF12BW125448 +=== 2.4.8 Digital Interrupt === 463 463 464 - 505.3-SF12BW125(RX2downlink only)450 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 465 465 452 +The command is: 466 466 454 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 467 467 468 -=== 2.7.4 AU915-928(AU915) === 469 469 470 - Defaultuse CHE=2457 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 471 471 472 -(% style="color:#037691" %)**Uplink:** 473 473 474 - 916.8 - SF7BW125 to SF12BW125460 +Example: 475 475 476 - 917.0-SF7BW125to SF12BW125462 +0x(00): Normal uplink packet. 477 477 478 - 917.2-SF7BW125to SF12BW125464 +0x(01): Interrupt Uplink Packet. 479 479 480 -917.4 - SF7BW125 to SF12BW125 481 481 482 -917.6 - SF7BW125 to SF12BW125 483 483 484 - 917.8- SF7BW125 toSF12BW125468 +=== 2.4.9 +5V Output === 485 485 486 - 918.0-SF7BW125 toSF12BW125470 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 487 487 488 -918.2 - SF7BW125 to SF12BW125 489 489 473 +The 5V output time can be controlled by AT Command. 490 490 491 -(% style="color: #037691" %)**Downlink:**475 +(% style="color:blue" %)**AT+5VT=1000** 492 492 493 - 923.3-SF7BW500 toSF12BW500477 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 494 494 495 -923.9 - SF7BW500 to SF12BW500 496 496 497 -924.5 - SF7BW500 to SF12BW500 498 498 499 - 925.1 - SF7BW500toSF12BW500481 +== 2.5 Downlink Payload == 500 500 501 - 925.7-SF7BW500toSF12BW500483 +By default, NSE01 prints the downlink payload to console port. 502 502 503 - 926.3-SF7BW500 to SF12BW500485 +[[image:image-20220708133731-5.png]] 504 504 505 -926.9 - SF7BW500 to SF12BW500 506 506 507 -927.5 - SF7BW500 to SF12BW500 488 +((( 489 +(% style="color:blue" %)**Examples:** 490 +))) 508 508 509 -923.3 - SF12BW500(RX2 downlink only) 492 +((( 493 + 494 +))) 510 510 496 +* ((( 497 +(% style="color:blue" %)**Set TDC** 498 +))) 511 511 500 +((( 501 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 502 +))) 512 512 513 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 504 +((( 505 +Payload: 01 00 00 1E TDC=30S 506 +))) 514 514 515 -(% style="color:#037691" %)**Default Uplink channel:** 508 +((( 509 +Payload: 01 00 00 3C TDC=60S 510 +))) 516 516 517 -923.2 - SF7BW125 to SF10BW125 512 +((( 513 + 514 +))) 518 518 519 -923.4 - SF7BW125 to SF10BW125 516 +* ((( 517 +(% style="color:blue" %)**Reset** 518 +))) 520 520 520 +((( 521 +If payload = 0x04FF, it will reset the NSE01 522 +))) 521 521 522 -(% style="color:#037691" %)**Additional Uplink Channel**: 523 523 524 -( OTAAmode,channeladded by JoinAcceptmessage)525 +* (% style="color:blue" %)**INTMOD** 525 525 526 - (%style="color:#037691" %)**AS920~~AS923for Japan,Malaysia,Singapore**:527 +Downlink Payload: 06000003, Set AT+INTMOD=3 527 527 528 -922.2 - SF7BW125 to SF10BW125 529 529 530 -922.4 - SF7BW125 to SF10BW125 531 531 532 - 922.6-SF7BW125toSF10BW125531 +== 2.6 LED Indicator == 533 533 534 -922.8 - SF7BW125 to SF10BW125 533 +((( 534 +The NSE01 has an internal LED which is to show the status of different state. 535 535 536 -923.0 - SF7BW125 to SF10BW125 537 537 538 -922.0 - SF7BW125 to SF10BW125 537 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 538 +* Then the LED will be on for 1 second means device is boot normally. 539 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 540 +* For each uplink probe, LED will be on for 500ms. 541 +))) 539 539 540 540 541 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 542 542 543 -923.6 - SF7BW125 to SF10BW125 544 544 545 - 923.8 - SF7BW125to SF10BW125546 +== 2.7 Installation in Soil == 546 546 547 - 924.0- SF7BW125toSF10BW125548 +__**Measurement the soil surface**__ 548 548 549 - 924.2-SF7BW125SF10BW125550 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 550 550 551 - 924.4 - SF7BW125to SF10BW125552 +[[image:1657259653666-883.png]] 552 552 553 -924.6 - SF7BW125 to SF10BW125 554 554 555 +((( 556 + 555 555 556 -(% style="color:#037691" %)** Downlink:** 557 - 558 -Uplink channels 1-8 (RX1) 559 - 560 -923.2 - SF10BW125 (RX2) 561 - 562 - 563 - 564 -=== 2.7.6 KR920-923 (KR920) === 565 - 566 -Default channel: 567 - 568 -922.1 - SF7BW125 to SF12BW125 569 - 570 -922.3 - SF7BW125 to SF12BW125 571 - 572 -922.5 - SF7BW125 to SF12BW125 573 - 574 - 575 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 576 - 577 -922.1 - SF7BW125 to SF12BW125 578 - 579 -922.3 - SF7BW125 to SF12BW125 580 - 581 -922.5 - SF7BW125 to SF12BW125 582 - 583 -922.7 - SF7BW125 to SF12BW125 584 - 585 -922.9 - SF7BW125 to SF12BW125 586 - 587 -923.1 - SF7BW125 to SF12BW125 588 - 589 -923.3 - SF7BW125 to SF12BW125 590 - 591 - 592 -(% style="color:#037691" %)**Downlink:** 593 - 594 -Uplink channels 1-7(RX1) 595 - 596 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 597 - 598 - 599 - 600 -=== 2.7.7 IN865-867 (IN865) === 601 - 602 -(% style="color:#037691" %)** Uplink:** 603 - 604 -865.0625 - SF7BW125 to SF12BW125 605 - 606 -865.4025 - SF7BW125 to SF12BW125 607 - 608 -865.9850 - SF7BW125 to SF12BW125 609 - 610 - 611 -(% style="color:#037691" %) **Downlink:** 612 - 613 -Uplink channels 1-3 (RX1) 614 - 615 -866.550 - SF10BW125 (RX2) 616 - 617 - 618 - 619 - 620 -== 2.8 LED Indicator == 621 - 622 -The LSE01 has an internal LED which is to show the status of different state. 623 - 624 - 625 -* Blink once when device power on. 626 -* Solid ON for 5 seconds once device successful Join the network. 627 -* Blink once when device transmit a packet. 628 - 629 -1. 630 -11. Installation in Soil 631 - 632 -**Measurement the soil surface** 633 - 634 - 635 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] 636 - 637 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 638 - 639 - 640 - 641 - 642 - 643 - 644 - 645 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]] 646 - 647 - 648 - 558 +((( 649 649 Dig a hole with diameter > 20CM. 560 +))) 650 650 562 +((( 651 651 Horizontal insert the probe to the soil and fill the hole for long term measurement. 564 +))) 565 +))) 652 652 567 +[[image:1654506665940-119.png]] 653 653 569 +((( 570 + 571 +))) 654 654 655 655 656 -1. 657 -11. Firmware Change Log 574 +== 2.8 Firmware Change Log == 658 658 659 -**Firmware download link:** 660 660 661 - [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]577 +Download URL & Firmware Change log 662 662 579 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 663 663 664 -**Firmware Upgrade Method:** 665 665 666 - [[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]582 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 667 667 668 668 669 -**V1.0.** 670 670 671 - Release586 +== 2.9 Battery Analysis == 672 672 588 +=== 2.9.1 Battery Type === 673 673 674 674 675 -1. 676 -11. Battery Analysis 677 -111. Battery Type 591 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 678 678 679 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 680 680 594 +The battery is designed to last for several years depends on the actually use environment and update interval. 681 681 682 -The battery is designed to last for more than 5 years for the LSN50. 683 683 684 - 685 685 The battery related documents as below: 686 686 687 -* [[Battery Dimension>> url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],688 -* [[Lithium-Thionyl Chloride Battery >>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]689 -* [[Lithium-ion Battery-Capacitor datasheet>> url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[TechSpec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]599 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 600 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 601 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 690 690 691 - |(((692 - JST-XH-2P connector603 +((( 604 +[[image:image-20220708140453-6.png]] 693 693 ))) 694 694 695 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]] 696 696 697 697 609 +=== 2.9.2 Power consumption Analyze === 698 698 699 - 1.700 - 11.701 - 111. Battery Note611 +((( 612 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 613 +))) 702 702 703 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 704 704 616 +((( 617 +Instruction to use as below: 618 +))) 705 705 706 - 1.707 -1 1.708 - 111. Replace the battery620 +((( 621 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 622 +))) 709 709 710 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 711 711 625 +((( 626 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 627 +))) 712 712 713 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 629 +* ((( 630 +Product Model 631 +))) 632 +* ((( 633 +Uplink Interval 634 +))) 635 +* ((( 636 +Working Mode 637 +))) 714 714 639 +((( 640 +And the Life expectation in difference case will be shown on the right. 641 +))) 715 715 716 - The default battery pack of LSE01includesaER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case.The SPC can enlarge the battery life for high frequency use (updateperiod below 5 minutes)643 +[[image:image-20220708141352-7.jpeg]] 717 717 718 718 719 719 647 +=== 2.9.3 Battery Note === 720 720 649 +((( 650 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 651 +))) 721 721 722 722 723 -= 3. Using the AT Commands = 724 724 725 -== 3.1AccessATCommands==655 +=== 2.9.4 Replace the battery === 726 726 657 +((( 658 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 659 +))) 727 727 728 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 729 729 730 -[[image:1654501986557-872.png]] 731 731 663 += 3. Access NB-IoT Module = 732 732 733 -Or if you have below board, use below connection: 665 +((( 666 +Users can directly access the AT command set of the NB-IoT module. 667 +))) 734 734 669 +((( 670 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 671 +))) 735 735 736 -[[image:165 4502005655-729.png]]673 +[[image:1657261278785-153.png]] 737 737 738 738 739 739 740 - InthePC, you need toset the serial baud rate to (% style="color:green"%)**9600**(%%)to access theserialconsole for LSE01. LSE01 will output systeminfo once power onasbelow:677 += 4. Using the AT Commands = 741 741 679 +== 4.1 Access AT Commands == 742 742 743 - [[ima ge:1654502050864-459.png]]681 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 744 744 745 745 746 - Belowaretheavailablecommands,amoredetailedATCommandmanualcanbefoundat[[ATCommandManual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]684 +AT+<CMD>? : Help on <CMD> 747 747 686 +AT+<CMD> : Run <CMD> 748 748 749 - (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>?**(%%)Helpon<CMD>688 +AT+<CMD>=<value> : Set the value 750 750 751 - (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>**(%%): Run <CMD>690 +AT+<CMD>=? : Get the value 752 752 753 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 754 754 755 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 756 - 757 - 758 758 (% style="color:#037691" %)**General Commands**(%%) 759 759 760 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention695 +AT : Attention 761 761 762 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help697 +AT? : Short Help 763 763 764 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset699 +ATZ : MCU Reset 765 765 766 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval701 +AT+TDC : Application Data Transmission Interval 767 767 703 +AT+CFG : Print all configurations 768 768 769 - (%style="color:#037691"%)**Keys,IDsand EUIs management**705 +AT+CFGMOD : Working mode selection 770 770 771 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI707 +AT+INTMOD : Set the trigger interrupt mode 772 772 773 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey709 +AT+5VT : Set extend the time of 5V power 774 774 775 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key711 +AT+PRO : Choose agreement 776 776 777 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress713 +AT+WEIGRE : Get weight or set weight to 0 778 778 779 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI715 +AT+WEIGAP : Get or Set the GapValue of weight 780 780 781 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)717 +AT+RXDL : Extend the sending and receiving time 782 782 783 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network719 +AT+CNTFAC : Get or set counting parameters 784 784 785 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode721 +AT+SERVADDR : Server Address 786 786 787 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 788 788 789 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network724 +(% style="color:#037691" %)**COAP Management** 790 790 791 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode726 +AT+URI : Resource parameters 792 792 793 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 794 794 795 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format729 +(% style="color:#037691" %)**UDP Management** 796 796 797 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat731 +AT+CFM : Upload confirmation mode (only valid for UDP) 798 798 799 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 800 800 801 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data734 +(% style="color:#037691" %)**MQTT Management** 802 802 736 +AT+CLIENT : Get or Set MQTT client 803 803 804 - (%style="color:#037691"%)**LoRaNetworkManagement**738 +AT+UNAME : Get or Set MQTT Username 805 805 806 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate740 +AT+PWD : Get or Set MQTT password 807 807 808 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA742 +AT+PUBTOPIC : Get or Set MQTT publish topic 809 809 810 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting744 +AT+SUBTOPIC : Get or Set MQTT subscription topic 811 811 812 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 813 813 814 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink747 +(% style="color:#037691" %)**Information** 815 815 816 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink749 +AT+FDR : Factory Data Reset 817 817 818 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1751 +AT+PWORD : Serial Access Password 819 819 820 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 821 821 822 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 823 823 824 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1755 += 5. FAQ = 825 825 826 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2757 +== 5.1 How to Upgrade Firmware == 827 827 828 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 829 829 830 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 760 +((( 761 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 762 +))) 831 831 832 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 833 - 834 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 835 - 836 - 837 -(% style="color:#037691" %)**Information** 838 - 839 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 840 - 841 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 842 - 843 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 844 - 845 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 846 - 847 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 848 - 849 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 850 - 851 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 852 - 853 - 854 -= 4. FAQ = 855 - 856 -== 4.1 How to change the LoRa Frequency Bands/Region? == 857 - 858 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]]. 859 -When downloading the images, choose the required image file for download. 860 - 861 - 862 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 863 - 864 - 865 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 866 - 867 - 868 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 869 - 870 -[[image:image-20220606154726-3.png]] 871 - 872 -When you use the TTN network, the US915 frequency bands use are: 873 - 874 -* 903.9 - SF7BW125 to SF10BW125 875 -* 904.1 - SF7BW125 to SF10BW125 876 -* 904.3 - SF7BW125 to SF10BW125 877 -* 904.5 - SF7BW125 to SF10BW125 878 -* 904.7 - SF7BW125 to SF10BW125 879 -* 904.9 - SF7BW125 to SF10BW125 880 -* 905.1 - SF7BW125 to SF10BW125 881 -* 905.3 - SF7BW125 to SF10BW125 882 -* 904.6 - SF8BW500 883 - 884 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 885 - 886 -(% class="box infomessage" %) 887 887 ((( 888 - **AT+CHE=2**765 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 889 889 ))) 890 890 891 -(% class="box infomessage" %) 892 892 ((( 893 - **ATZ**769 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 894 894 ))) 895 895 896 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 897 897 898 898 899 - The**AU915**band is similar. Beloware the AU915 UplinkChannels.774 += 6. Trouble Shooting = 900 900 901 - [[image:image-20220606154825-4.png]]776 +== 6.1 Connection problem when uploading firmware == 902 902 903 903 779 +(% class="wikigeneratedid" %) 780 +((( 781 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]] 782 +))) 904 904 905 -= 5. Trouble Shooting = 906 906 907 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 908 908 909 - Itis due to channel mapping.Please see the [[Eight Channel Mode>>doc:Main.LoRaWANCommunicationDebug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]sectionabove fordetails.786 +== 6.2 AT Command input doesn't work == 910 910 788 +((( 789 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 790 +))) 911 911 912 -== 5.2 AT Command input doesn’t work == 913 913 914 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 915 915 794 += 7. Order Info = 916 916 917 -== 5.3 Device rejoin in at the second uplink packet == 918 918 919 -(% style="color:#4f81bd" %)** Issue describe as below:**797 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 920 920 921 -[[image:1654500909990-784.png]] 922 922 800 +(% class="wikigeneratedid" %) 801 +((( 802 + 803 +))) 923 923 924 - (% style="color:#4f81bd"%)**Causeforthis issue:**805 += 8. Packing Info = 925 925 926 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 807 +((( 808 + 927 927 810 +(% style="color:#037691" %)**Package Includes**: 928 928 929 -(% style="color:#4f81bd" %)**Solution: ** 930 930 931 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 813 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 814 +* External antenna x 1 815 +))) 932 932 933 -[[image:1654500929571-736.png]] 817 +((( 818 + 934 934 820 +(% style="color:#037691" %)**Dimension and weight**: 935 935 936 -= 6. Order Info = 937 937 938 - 939 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 940 - 941 - 942 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 943 - 944 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 945 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 946 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 947 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 948 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 949 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 950 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 951 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 952 - 953 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 954 - 955 -* (% style="color:red" %)**4**(%%): 4000mAh battery 956 -* (% style="color:red" %)**8**(%%): 8500mAh battery 957 - 958 -= 7. Packing Info = 959 - 960 -((( 961 -**Package Includes**: 823 +* Size: 195 x 125 x 55 mm 824 +* Weight: 420g 962 962 ))) 963 963 964 -* ((( 965 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 966 -))) 967 - 968 968 ((( 969 969 970 -))) 971 971 972 -((( 973 -**Dimension and weight**: 974 -))) 975 975 976 -* ((( 977 -Device Size: cm 831 + 978 978 ))) 979 -* ((( 980 -Device Weight: g 981 -))) 982 -* ((( 983 -Package Size / pcs : cm 984 -))) 985 -* ((( 986 -Weight / pcs : g 987 -))) 988 988 989 -= 8. Support =834 += 9. Support = 990 990 991 991 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 992 992 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 993 - 994 -
- 1654506634463-199.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1654506665940-119.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +423.3 KB - Content
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- image-20220606171726-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +171.0 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content