Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 5 added, 0 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220606151504-2.jpeg||height=" 848" width="848"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 ... ... @@ -8,35 +8,38 @@ 8 8 9 9 10 10 11 + 12 + 13 + 14 +**Table of Contents:** 15 + 16 + 17 + 18 + 19 + 20 + 11 11 = 1. Introduction = 12 12 13 13 == 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 14 14 15 15 ((( 16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 -))) 26 + 18 18 19 -((( 20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 21 -))) 28 +Dragino NSE01 is an **NB-IOT soil moisture & EC sensor** for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 22 22 23 -((( 24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 25 -))) 30 +It can detect **Soil Moisture, Soil Temperature and Soil Conductivity**, and upload its value to the server wirelessly. 26 26 27 -((( 28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 29 -))) 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 30 30 31 -((( 32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 34 +NSE01 are powered by **8500mAh Li-SOCI2** batteries, which can be used for up to 5 years. 35 + 36 + 33 33 ))) 34 34 35 - 36 36 [[image:1654503236291-817.png]] 37 37 38 38 39 -[[image:16545 03265560-120.png]]42 +[[image:1657245163077-232.png]] 40 40 41 41 42 42 ... ... @@ -85,7 +85,7 @@ 85 85 ))) 86 86 87 87 ((( 88 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3. UsingtheATCommands"]].91 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 89 89 ))) 90 90 91 91 ... ... @@ -101,7 +101,7 @@ 101 101 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 102 102 103 103 104 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 107 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 105 105 106 106 Each LSE01 is shipped with a sticker with the default device EUI as below: 107 107 ... ... @@ -122,7 +122,7 @@ 122 122 123 123 124 124 125 -**Step 2**: Power on LSE01 128 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01 126 126 127 127 128 128 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). ... ... @@ -130,7 +130,7 @@ 130 130 [[image:image-20220606163915-7.png]] 131 131 132 132 133 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 136 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 134 134 135 135 [[image:1654504778294-788.png]] 136 136 ... ... @@ -138,86 +138,104 @@ 138 138 139 139 == 2.3 Uplink Payload == 140 140 144 + 141 141 === 2.3.1 MOD~=0(Default Mode) === 142 142 143 143 LSE01 will uplink payload via LoRaWAN with below payload format: 144 144 145 - 149 +((( 146 146 Uplink payload includes in total 11 bytes. 147 - 151 +))) 148 148 153 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 149 149 |((( 150 150 **Size** 151 151 152 152 **(bytes)** 153 153 )))|**2**|**2**|**2**|**2**|**2**|**1** 154 -|**Value**|[[BAT>> path:#bat]]|(((159 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 155 155 Temperature 156 156 157 157 (Reserve, Ignore now) 158 -)))|[[Soil Moisture>> path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((163 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 159 159 MOD & Digital Interrupt 160 160 161 161 (Optional) 162 162 ))) 163 163 164 -[[image:1654504881641-514.png]] 165 - 166 - 167 - 168 168 === 2.3.2 MOD~=1(Original value) === 169 169 170 170 This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 171 171 173 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 172 172 |((( 173 173 **Size** 174 174 175 175 **(bytes)** 176 176 )))|**2**|**2**|**2**|**2**|**2**|**1** 177 -|**Value**|[[BAT>> path:#bat]]|(((179 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 178 178 Temperature 179 179 180 180 (Reserve, Ignore now) 181 -)))|[[Soil Moisture>> path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((183 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 182 182 MOD & Digital Interrupt 183 183 184 184 (Optional) 185 185 ))) 186 186 187 -[[image:1654504907647-967.png]] 188 - 189 - 190 - 191 191 === 2.3.3 Battery Info === 192 192 191 +((( 193 193 Check the battery voltage for LSE01. 193 +))) 194 194 195 +((( 195 195 Ex1: 0x0B45 = 2885mV 197 +))) 196 196 199 +((( 197 197 Ex2: 0x0B49 = 2889mV 201 +))) 198 198 199 199 200 200 201 201 === 2.3.4 Soil Moisture === 202 202 207 +((( 203 203 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 209 +))) 204 204 211 +((( 205 205 For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 213 +))) 206 206 215 +((( 216 + 217 +))) 207 207 219 +((( 208 208 (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 221 +))) 209 209 210 210 211 211 212 212 === 2.3.5 Soil Temperature === 213 213 227 +((( 214 214 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 229 +))) 215 215 231 +((( 216 216 **Example**: 233 +))) 217 217 235 +((( 218 218 If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 237 +))) 219 219 239 +((( 220 220 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 241 +))) 221 221 222 222 223 223 ... ... @@ -252,7 +252,7 @@ 252 252 mod=(bytes[10]>>7)&0x01=1. 253 253 254 254 255 -Downlink Command: 276 +**Downlink Command:** 256 256 257 257 If payload = 0x0A00, workmode=0 258 258 ... ... @@ -267,19 +267,21 @@ 267 267 268 268 [[image:1654505570700-128.png]] 269 269 291 +((( 270 270 The payload decoder function for TTN is here: 293 +))) 271 271 272 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 295 +((( 296 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 297 +))) 273 273 274 274 275 275 == 2.4 Uplink Interval == 276 276 277 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: 302 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 278 278 279 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 280 280 281 281 282 - 283 283 == 2.5 Downlink Payload == 284 284 285 285 By default, LSE50 prints the downlink payload to console port. ... ... @@ -287,24 +287,44 @@ 287 287 [[image:image-20220606165544-8.png]] 288 288 289 289 290 -**Examples:** 313 +((( 314 +(% style="color:blue" %)**Examples:** 315 +))) 291 291 317 +((( 318 + 319 +))) 292 292 293 -* **Set TDC** 321 +* ((( 322 +(% style="color:blue" %)**Set TDC** 323 +))) 294 294 325 +((( 295 295 If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 327 +))) 296 296 329 +((( 297 297 Payload: 01 00 00 1E TDC=30S 331 +))) 298 298 333 +((( 299 299 Payload: 01 00 00 3C TDC=60S 335 +))) 300 300 337 +((( 338 + 339 +))) 301 301 302 -* **Reset** 341 +* ((( 342 +(% style="color:blue" %)**Reset** 343 +))) 303 303 345 +((( 304 304 If payload = 0x04FF, it will reset the LSE01 347 +))) 305 305 306 306 307 -* **CFM** 350 +* (% style="color:blue" %)**CFM** 308 308 309 309 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 310 310 ... ... @@ -312,12 +312,21 @@ 312 312 313 313 == 2.6 Show Data in DataCake IoT Server == 314 314 358 +((( 315 315 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 360 +))) 316 316 362 +((( 363 + 364 +))) 317 317 318 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 366 +((( 367 +(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 368 +))) 319 319 320 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 370 +((( 371 +(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 372 +))) 321 321 322 322 323 323 [[image:1654505857935-743.png]] ... ... @@ -325,11 +325,12 @@ 325 325 326 326 [[image:1654505874829-548.png]] 327 327 328 -Step 3: Create an account or log in Datacake. 329 329 330 -Step 4:SearchtheLSE01andaddDevEUI.381 +(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 331 331 383 +(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 332 332 385 + 333 333 [[image:1654505905236-553.png]] 334 334 335 335 ... ... @@ -621,105 +621,123 @@ 621 621 622 622 The LSE01 has an internal LED which is to show the status of different state. 623 623 624 - 625 625 * Blink once when device power on. 626 626 * Solid ON for 5 seconds once device successful Join the network. 627 627 * Blink once when device transmit a packet. 628 628 629 -1. 630 -11. Installation in Soil 681 +== 2.9 Installation in Soil == 631 631 632 632 **Measurement the soil surface** 633 633 634 634 635 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] 686 +[[image:1654506634463-199.png]] 636 636 688 +((( 689 +((( 637 637 Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 691 +))) 692 +))) 638 638 639 639 640 640 696 +[[image:1654506665940-119.png]] 641 641 642 - 643 - 644 - 645 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]] 646 - 647 - 648 - 698 +((( 649 649 Dig a hole with diameter > 20CM. 700 +))) 650 650 702 +((( 651 651 Horizontal insert the probe to the soil and fill the hole for long term measurement. 704 +))) 652 652 653 653 707 +== 2.10 Firmware Change Log == 654 654 655 - 656 -1. 657 -11. Firmware Change Log 658 - 709 +((( 659 659 **Firmware download link:** 711 +))) 660 660 713 +((( 661 661 [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 715 +))) 662 662 717 +((( 718 + 719 +))) 663 663 664 -**Firmware Upgrade Method:** 721 +((( 722 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 723 +))) 665 665 666 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]] 725 +((( 726 + 727 +))) 667 667 668 - 729 +((( 669 669 **V1.0.** 731 +))) 670 670 733 +((( 671 671 Release 735 +))) 672 672 673 673 738 +== 2.11 Battery Analysis == 674 674 675 -1. 676 -11. Battery Analysis 677 -111. Battery Type 740 +=== 2.11.1 Battery Type === 678 678 742 +((( 679 679 The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 744 +))) 680 680 681 - 746 +((( 682 682 The battery is designed to last for more than 5 years for the LSN50. 748 +))) 683 683 750 +((( 751 +((( 752 +The battery-related documents are as below: 753 +))) 754 +))) 684 684 685 -The battery related documents as below: 686 - 687 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 688 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]] 689 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 690 - 691 -|((( 692 -JST-XH-2P connector 756 +* ((( 757 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 693 693 ))) 759 +* ((( 760 +[[Lithium-Thionyl Chloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 761 +))) 762 +* ((( 763 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]] 764 +))) 694 694 695 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]766 + [[image:image-20220610172436-1.png]] 696 696 697 697 698 698 699 -1. 700 -11. 701 -111. Battery Note 770 +=== 2.11.2 Battery Note === 702 702 772 +((( 703 703 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 774 +))) 704 704 705 705 706 -1. 707 -11. 708 -111. Replace the battery 709 709 778 +=== 2.11.3 Replace the battery === 779 + 780 +((( 710 710 If Battery is lower than 2.7v, user should replace the battery of LSE01. 782 +))) 711 711 712 - 784 +((( 713 713 You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 786 +))) 714 714 715 - 788 +((( 716 716 The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 790 +))) 717 717 718 718 719 719 720 - 721 - 722 - 723 723 = 3. Using the AT Commands = 724 724 725 725 == 3.1 Access AT Commands == ... ... @@ -727,13 +727,13 @@ 727 727 728 728 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 729 729 730 -[[image:1654501986557-872.png]] 801 +[[image:1654501986557-872.png||height="391" width="800"]] 731 731 732 732 733 733 Or if you have below board, use below connection: 734 734 735 735 736 -[[image:1654502005655-729.png]] 807 +[[image:1654502005655-729.png||height="503" width="801"]] 737 737 738 738 739 739 ... ... @@ -740,10 +740,10 @@ 740 740 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 741 741 742 742 743 - [[image:1654502050864-459.png]] 814 + [[image:1654502050864-459.png||height="564" width="806"]] 744 744 745 745 746 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>> url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]817 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 747 747 748 748 749 749 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> ... ... @@ -855,20 +855,38 @@ 855 855 856 856 == 4.1 How to change the LoRa Frequency Bands/Region? == 857 857 858 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]]. 929 +((( 930 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 859 859 When downloading the images, choose the required image file for download. 932 +))) 860 860 934 +((( 935 + 936 +))) 861 861 938 +((( 862 862 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 940 +))) 863 863 942 +((( 943 + 944 +))) 864 864 946 +((( 865 865 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 948 +))) 866 866 950 +((( 951 + 952 +))) 867 867 954 +((( 868 868 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 956 +))) 869 869 870 870 [[image:image-20220606154726-3.png]] 871 871 960 + 872 872 When you use the TTN network, the US915 frequency bands use are: 873 873 874 874 * 903.9 - SF7BW125 to SF10BW125 ... ... @@ -881,37 +881,47 @@ 881 881 * 905.3 - SF7BW125 to SF10BW125 882 882 * 904.6 - SF8BW500 883 883 973 +((( 884 884 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 885 885 886 -(% class="box infomessage" %) 887 -((( 888 -**AT+CHE=2** 976 +* (% style="color:#037691" %)**AT+CHE=2** 977 +* (% style="color:#037691" %)**ATZ** 889 889 ))) 890 890 891 -(% class="box infomessage" %) 892 892 ((( 893 -**ATZ** 894 -))) 981 + 895 895 896 896 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 984 +))) 897 897 986 +((( 987 + 988 +))) 898 898 990 +((( 899 899 The **AU915** band is similar. Below are the AU915 Uplink Channels. 992 +))) 900 900 901 901 [[image:image-20220606154825-4.png]] 902 902 903 903 997 +== 4.2 Can I calibrate LSE01 to different soil types? == 904 904 999 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 1000 + 1001 + 905 905 = 5. Trouble Shooting = 906 906 907 -== 5.1 Why I can ’t join TTN in US915 / AU915 bands? ==1004 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 908 908 909 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. LoRaWANCommunication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.1006 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 910 910 911 911 912 -== 5.2 AT Command input doesn ’t work ==1009 +== 5.2 AT Command input doesn't work == 913 913 914 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1011 +((( 1012 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1013 +))) 915 915 916 916 917 917 == 5.3 Device rejoin in at the second uplink packet == ... ... @@ -923,7 +923,9 @@ 923 923 924 924 (% style="color:#4f81bd" %)**Cause for this issue:** 925 925 1025 +((( 926 926 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 1027 +))) 927 927 928 928 929 929 (% style="color:#4f81bd" %)**Solution: ** ... ... @@ -930,7 +930,7 @@ 930 930 931 931 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 932 932 933 -[[image:1654500929571-736.png]] 1034 +[[image:1654500929571-736.png||height="458" width="832"]] 934 934 935 935 936 936 = 6. Order Info = ... ... @@ -955,10 +955,17 @@ 955 955 * (% style="color:red" %)**4**(%%): 4000mAh battery 956 956 * (% style="color:red" %)**8**(%%): 8500mAh battery 957 957 1059 +(% class="wikigeneratedid" %) 1060 +((( 1061 + 1062 +))) 1063 + 958 958 = 7. Packing Info = 959 959 960 960 ((( 961 -**Package Includes**: 1067 + 1068 + 1069 +(% style="color:#037691" %)**Package Includes**: 962 962 ))) 963 963 964 964 * ((( ... ... @@ -967,10 +967,8 @@ 967 967 968 968 ((( 969 969 970 -))) 971 971 972 -((( 973 -**Dimension and weight**: 1079 +(% style="color:#037691" %)**Dimension and weight**: 974 974 ))) 975 975 976 976 * ((( ... ... @@ -984,6 +984,8 @@ 984 984 ))) 985 985 * ((( 986 986 Weight / pcs : g 1093 + 1094 + 987 987 ))) 988 988 989 989 = 8. Support = ... ... @@ -990,5 +990,3 @@ 990 990 991 991 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 992 992 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 993 - 994 -
- 1654506634463-199.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1654506665940-119.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +423.3 KB - Content
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- image-20220606171726-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +171.0 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content