Last modified by Mengting Qiu on 2024/04/02 16:44

From version 28.6
edited by Xiaoling
on 2022/06/06 17:04
Change comment: There is no comment for this version
To version 65.9
edited by Xiaoling
on 2022/07/08 15:38
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="848" width="848"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
... ... @@ -8,989 +8,830 @@
8 8  
9 9  
10 10  
11 -= 1. Introduction =
12 12  
13 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 14  
13 +
14 +**Table of Contents:**
15 +
16 +{{toc/}}
17 +
18 +
19 +
20 +
21 +
22 +
23 +
24 += 1.  Introduction =
25 +
26 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
27 +
15 15  (((
16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 -)))
29 +
18 18  
19 19  (((
20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
32 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
21 21  )))
22 22  
23 23  (((
24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
25 25  )))
26 26  
27 27  (((
28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
40 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
29 29  )))
30 30  
31 31  (((
32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
44 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
33 33  )))
34 34  
47 +
48 +)))
35 35  
36 36  [[image:1654503236291-817.png]]
37 37  
38 38  
39 -[[image:1654503265560-120.png]]
53 +[[image:1657245163077-232.png]]
40 40  
41 41  
42 42  
43 -== 1.2 ​Features ==
57 +== 1.2 ​ Features ==
44 44  
45 -* LoRaWAN 1.0.3 Class A
46 -* Ultra low power consumption
59 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
47 47  * Monitor Soil Moisture
48 48  * Monitor Soil Temperature
49 49  * Monitor Soil Conductivity
50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 51  * AT Commands to change parameters
52 52  * Uplink on periodically
53 53  * Downlink to change configure
54 54  * IP66 Waterproof Enclosure
55 -* 4000mAh or 8500mAh Battery for long term use
67 +* Ultra-Low Power consumption
68 +* AT Commands to change parameters
69 +* Micro SIM card slot for NB-IoT SIM
70 +* 8500mAh Battery for long term use
56 56  
57 -== 1.3 Specification ==
58 58  
59 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
73 +== 1.3  Specification ==
60 60  
61 -[[image:image-20220606162220-5.png]]
62 62  
76 +(% style="color:#037691" %)**Common DC Characteristics:**
63 63  
78 +* Supply Voltage: 2.1v ~~ 3.6v
79 +* Operating Temperature: -40 ~~ 85°C
64 64  
65 -== ​1.4 Applications ==
81 +(% style="color:#037691" %)**NB-IoT Spec:**
66 66  
67 -* Smart Agriculture
83 +* - B1 @H-FDD: 2100MHz
84 +* - B3 @H-FDD: 1800MHz
85 +* - B8 @H-FDD: 900MHz
86 +* - B5 @H-FDD: 850MHz
87 +* - B20 @H-FDD: 800MHz
88 +* - B28 @H-FDD: 700MHz
68 68  
69 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
70 -​
90 +Probe(% style="color:#037691" %)** Specification:**
71 71  
72 -== 1.5 Firmware Change log ==
92 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
73 73  
94 +[[image:image-20220708101224-1.png]]
74 74  
75 -**LSE01 v1.0 :**  Release
76 76  
77 77  
98 +== ​1.4  Applications ==
78 78  
79 -= 2. Configure LSE01 to connect to LoRaWAN network =
100 +* Smart Agriculture
80 80  
81 -== 2.1 How it works ==
102 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
103 +​
82 82  
83 -(((
84 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
85 -)))
105 +== 1.5  Pin Definitions ==
86 86  
87 -(((
88 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
89 -)))
90 90  
108 +[[image:1657246476176-652.png]]
91 91  
92 92  
93 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
94 94  
95 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
112 += 2.  Use NSE01 to communicate with IoT Server =
96 96  
114 +== 2.1  How it works ==
97 97  
98 -[[image:1654503992078-669.png]]
99 99  
117 +(((
118 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
119 +)))
100 100  
101 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
102 102  
122 +(((
123 +The diagram below shows the working flow in default firmware of NSE01:
124 +)))
103 103  
104 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
126 +[[image:image-20220708101605-2.png]]
105 105  
106 -Each LSE01 is shipped with a sticker with the default device EUI as below:
107 -
108 -[[image:image-20220606163732-6.jpeg]]
109 -
110 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
111 -
112 -**Add APP EUI in the application**
113 -
114 -
115 -[[image:1654504596150-405.png]]
116 -
117 -
118 -
119 -**Add APP KEY and DEV EUI**
120 -
121 -[[image:1654504683289-357.png]]
122 -
123 -
124 -
125 -**Step 2**: Power on LSE01
126 -
127 -
128 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
129 -
130 -[[image:image-20220606163915-7.png]]
131 -
132 -
133 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
134 -
135 -[[image:1654504778294-788.png]]
136 -
137 -
138 -
139 -== 2.3 Uplink Payload ==
140 -
141 -=== 2.3.1 MOD~=0(Default Mode) ===
142 -
143 -LSE01 will uplink payload via LoRaWAN with below payload format: 
144 -
145 -
146 -Uplink payload includes in total 11 bytes.
128 +(((
147 147  
148 -
149 -|(((
150 -**Size**
151 -
152 -**(bytes)**
153 -)))|**2**|**2**|**2**|**2**|**2**|**1**
154 -|**Value**|[[BAT>>path:#bat]]|(((
155 -Temperature
156 -
157 -(Reserve, Ignore now)
158 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
159 -MOD & Digital Interrupt
160 -
161 -(Optional)
162 162  )))
163 163  
164 -[[image:1654504881641-514.png]]
165 165  
166 166  
134 +== 2.2 ​ Configure the NSE01 ==
167 167  
168 -=== 2.3.2 MOD~=1(Original value) ===
169 169  
170 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
137 +=== 2.2.1 Test Requirement ===
171 171  
172 -|(((
173 -**Size**
174 174  
175 -**(bytes)**
176 -)))|**2**|**2**|**2**|**2**|**2**|**1**
177 -|**Value**|[[BAT>>path:#bat]]|(((
178 -Temperature
140 +To use NSE01 in your city, make sure meet below requirements:
179 179  
180 -(Reserve, Ignore now)
181 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
182 -MOD & Digital Interrupt
142 +* Your local operator has already distributed a NB-IoT Network there.
143 +* The local NB-IoT network used the band that NSE01 supports.
144 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
183 183  
184 -(Optional)
146 +(((
147 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
185 185  )))
186 186  
187 -[[image:1654504907647-967.png]]
188 188  
151 +[[image:1657249419225-449.png]]
189 189  
190 190  
191 -=== 2.3.3 Battery Info ===
192 192  
193 -Check the battery voltage for LSE01.
155 +=== 2.2.2 Insert SIM card ===
194 194  
195 -Ex1: 0x0B45 = 2885mV
157 +Insert the NB-IoT Card get from your provider.
196 196  
197 -Ex2: 0x0B49 = 2889mV
159 +User need to take out the NB-IoT module and insert the SIM card like below:
198 198  
199 199  
162 +[[image:1657249468462-536.png]]
200 200  
201 -=== 2.3.4 Soil Moisture ===
202 202  
203 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
204 204  
205 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
166 +=== 2.2.3 Connect USB TTL to NSE01 to configure it ===
206 206  
207 -
208 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
209 -
210 -
211 -
212 -=== 2.3.5 Soil Temperature ===
213 -
214 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
215 -
216 -**Example**:
217 -
218 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
219 -
220 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
221 -
222 -
223 -
224 -=== 2.3.6 Soil Conductivity (EC) ===
225 -
226 226  (((
227 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
228 -)))
229 -
230 230  (((
231 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
170 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
232 232  )))
233 -
234 -(((
235 -Generally, the EC value of irrigation water is less than 800uS / cm.
236 236  )))
237 237  
238 -(((
239 -
240 -)))
241 241  
242 -(((
243 -
244 -)))
175 +**Connection:**
245 245  
246 -=== 2.3.7 MOD ===
177 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
247 247  
248 -Firmware version at least v2.1 supports changing mode.
179 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
249 249  
250 -For example, bytes[10]=90
181 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
251 251  
252 -mod=(bytes[10]>>7)&0x01=1.
253 253  
184 +In the PC, use below serial tool settings:
254 254  
255 -Downlink Command:
186 +* Baud:  (% style="color:green" %)**9600**
187 +* Data bits:** (% style="color:green" %)8(%%)**
188 +* Stop bits: (% style="color:green" %)**1**
189 +* Parity:  (% style="color:green" %)**None**
190 +* Flow Control: (% style="color:green" %)**None**
256 256  
257 -If payload = 0x0A00, workmode=0
192 +(((
193 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
194 +)))
258 258  
259 -If** **payload =** **0x0A01, workmode=1
196 +[[image:image-20220708110657-3.png]]
260 260  
198 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
261 261  
262 262  
263 -=== 2.3.8 ​Decode payload in The Things Network ===
264 264  
265 -While using TTN network, you can add the payload format to decode the payload.
202 +=== 2.2.4 Use CoAP protocol to uplink data ===
266 266  
204 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
267 267  
268 -[[image:1654505570700-128.png]]
269 269  
270 -The payload decoder function for TTN is here:
207 +**Use below commands:**
271 271  
272 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
209 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
210 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
211 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
273 273  
213 +For parameter description, please refer to AT command set
274 274  
275 -== 2.4 Uplink Interval ==
215 +[[image:1657249793983-486.png]]
276 276  
277 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
278 278  
279 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
218 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
280 280  
220 +[[image:1657249831934-534.png]]
281 281  
282 282  
283 -== 2.5 Downlink Payload ==
284 284  
285 -By default, LSE50 prints the downlink payload to console port.
224 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
286 286  
287 -[[image:image-20220606165544-8.png]]
226 +This feature is supported since firmware version v1.0.1
288 288  
289 289  
290 -**Examples:**
229 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
230 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
231 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
291 291  
233 +[[image:1657249864775-321.png]]
292 292  
293 -* **Set TDC**
294 294  
295 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
236 +[[image:1657249930215-289.png]]
296 296  
297 -Payload:    01 00 00 1E    TDC=30S
298 298  
299 -Payload:    01 00 00 3C    TDC=60S
300 300  
240 +=== 2.2.6 Use MQTT protocol to uplink data ===
301 301  
302 -* **Reset**
242 +This feature is supported since firmware version v110
303 303  
304 -If payload = 0x04FF, it will reset the LSE01
305 305  
245 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
246 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
247 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
248 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
249 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
250 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
251 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
306 306  
307 -* **CFM**
253 +[[image:1657249978444-674.png]]
308 308  
309 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
310 310  
256 +[[image:1657249990869-686.png]]
311 311  
312 312  
313 -== 2.6 ​Show Data in DataCake IoT Server ==
259 +(((
260 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
261 +)))
314 314  
315 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
316 316  
317 317  
318 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
265 +=== 2.2.7 Use TCP protocol to uplink data ===
319 319  
320 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
267 +This feature is supported since firmware version v110
321 321  
322 322  
323 -[[image:1654505857935-743.png]]
270 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
271 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
324 324  
273 +[[image:1657250217799-140.png]]
325 325  
326 -[[image:1654505874829-548.png]]
327 327  
328 -Step 3: Create an account or log in Datacake.
276 +[[image:1657250255956-604.png]]
329 329  
330 -Step 4: Search the LSE01 and add DevEUI.
331 331  
332 332  
333 -[[image:1654505905236-553.png]]
280 +=== 2.2.8 Change Update Interval ===
334 334  
282 +User can use below command to change the (% style="color:green" %)**uplink interval**.
335 335  
336 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
284 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
337 337  
338 -[[image:1654505925508-181.png]]
286 +(((
287 +(% style="color:red" %)**NOTE:**
288 +)))
339 339  
290 +(((
291 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
292 +)))
340 340  
341 341  
342 -== 2.7 Frequency Plans ==
343 343  
344 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
296 +== 2.3  Uplink Payload ==
345 345  
298 +In this mode, uplink payload includes in total 18 bytes
346 346  
347 -=== 2.7.1 EU863-870 (EU868) ===
300 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
301 +|=(% style="width: 50px;" %)(((
302 +**Size(bytes)**
303 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
304 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
348 348  
349 -(% style="color:#037691" %)** Uplink:**
306 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
350 350  
351 -868.1 - SF7BW125 to SF12BW125
352 352  
353 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
309 +[[image:image-20220708111918-4.png]]
354 354  
355 -868.5 - SF7BW125 to SF12BW125
356 356  
357 -867.1 - SF7BW125 to SF12BW125
312 +The payload is ASCII string, representative same HEX:
358 358  
359 -867.3 - SF7BW125 to SF12BW125
314 +0x72403155615900640c7817075e0a8c02f900 where:
360 360  
361 -867.5 - SF7BW125 to SF12BW125
316 +* Device ID: 0x 724031556159 = 724031556159
317 +* Version: 0x0064=100=1.0.0
362 362  
363 -867.7 - SF7BW125 to SF12BW125
319 +* BAT: 0x0c78 = 3192 mV = 3.192V
320 +* Singal: 0x17 = 23
321 +* Soil Moisture: 0x075e= 1886 = 18.86  %
322 +* Soil Temperature:0x0a8c =2700=27 °C
323 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
324 +* Interrupt: 0x00 = 0
364 364  
365 -867.9 - SF7BW125 to SF12BW125
366 366  
367 -868.8 - FSK
327 +== 2.4  Payload Explanation and Sensor Interface ==
368 368  
369 369  
370 -(% style="color:#037691" %)** Downlink:**
330 +=== 2.4.1  Device ID ===
371 371  
372 -Uplink channels 1-9 (RX1)
332 +By default, the Device ID equal to the last 6 bytes of IMEI.
373 373  
374 -869.525 - SF9BW125 (RX2 downlink only)
334 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
375 375  
336 +**Example:**
376 376  
338 +AT+DEUI=A84041F15612
377 377  
378 -=== 2.7.2 US902-928(US915) ===
340 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
379 379  
380 -Used in USA, Canada and South America. Default use CHE=2
381 381  
382 -(% style="color:#037691" %)**Uplink:**
383 383  
384 -903.9 - SF7BW125 to SF10BW125
344 +=== 2.4.2  Version Info ===
385 385  
386 -904.1 - SF7BW125 to SF10BW125
346 +Specify the software version: 0x64=100, means firmware version 1.00.
387 387  
388 -904.3 - SF7BW125 to SF10BW125
348 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
389 389  
390 -904.5 - SF7BW125 to SF10BW125
391 391  
392 -904.7 - SF7BW125 to SF10BW125
393 393  
394 -904.9 - SF7BW125 to SF10BW125
352 +=== 2.4. Battery Info ===
395 395  
396 -905.1 - SF7BW125 to SF10BW125
354 +(((
355 +Check the battery voltage for LSE01.
356 +)))
397 397  
398 -905.3 - SF7BW125 to SF10BW125
358 +(((
359 +Ex1: 0x0B45 = 2885mV
360 +)))
399 399  
362 +(((
363 +Ex2: 0x0B49 = 2889mV
364 +)))
400 400  
401 -(% style="color:#037691" %)**Downlink:**
402 402  
403 -923.3 - SF7BW500 to SF12BW500
404 404  
405 -923.9 - SF7BW500 to SF12BW500
368 +=== 2.4.4  Signal Strength ===
406 406  
407 -924.5 - SF7BW500 to SF12BW500
370 +NB-IoT Network signal Strength.
408 408  
409 -925.1 - SF7BW500 to SF12BW500
372 +**Ex1: 0x1d = 29**
410 410  
411 -925.7 - SF7BW500 to SF12BW500
374 +(% style="color:blue" %)**0**(%%)  -113dBm or less
412 412  
413 -926.3 - SF7BW500 to SF12BW500
376 +(% style="color:blue" %)**1**(%%)  -111dBm
414 414  
415 -926.9 - SF7BW500 to SF12BW500
378 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
416 416  
417 -927.5 - SF7BW500 to SF12BW500
380 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
418 418  
419 -923.3 - SF12BW500(RX2 downlink only)
382 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
420 420  
421 421  
422 422  
423 -=== 2.7.3 CN470-510 (CN470) ===
386 +=== 2.4.5  Soil Moisture ===
424 424  
425 -Used in China, Default use CHE=1
388 +(((
389 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
390 +)))
426 426  
427 -(% style="color:#037691" %)**Uplink:**
392 +(((
393 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
394 +)))
428 428  
429 -486.3 - SF7BW125 to SF12BW125
396 +(((
397 +
398 +)))
430 430  
431 -486.5 - SF7BW125 to SF12BW125
400 +(((
401 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
402 +)))
432 432  
433 -486.7 - SF7BW125 to SF12BW125
434 434  
435 -486.9 - SF7BW125 to SF12BW125
436 436  
437 -487.1 - SF7BW125 to SF12BW125
406 +=== 2.4. Soil Temperature ===
438 438  
439 -487.3 - SF7BW125 to SF12BW125
408 +(((
409 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
410 +)))
440 440  
441 -487.5 - SF7BW125 to SF12BW125
412 +(((
413 +**Example**:
414 +)))
442 442  
443 -487.7 - SF7BW125 to SF12BW125
416 +(((
417 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
418 +)))
444 444  
420 +(((
421 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
422 +)))
445 445  
446 -(% style="color:#037691" %)**Downlink:**
447 447  
448 -506.7 - SF7BW125 to SF12BW125
449 449  
450 -506.9 - SF7BW125 to SF12BW125
426 +=== 2.4.7  Soil Conductivity (EC) ===
451 451  
452 -507.1 - SF7BW125 to SF12BW125
428 +(((
429 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
430 +)))
453 453  
454 -507.3 - SF7BW125 to SF12BW125
432 +(((
433 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
434 +)))
455 455  
456 -507.5 - SF7BW125 to SF12BW125
436 +(((
437 +Generally, the EC value of irrigation water is less than 800uS / cm.
438 +)))
457 457  
458 -507.7 - SF7BW125 to SF12BW125
440 +(((
441 +
442 +)))
459 459  
460 -507.9 - SF7BW125 to SF12BW125
444 +(((
445 +
446 +)))
461 461  
462 -508.1 - SF7BW125 to SF12BW125
448 +=== 2.4.8  Digital Interrupt ===
463 463  
464 -505.3 - SF12BW125 (RX2 downlink only)
450 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
465 465  
452 +The command is:
466 466  
454 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
467 467  
468 -=== 2.7.4 AU915-928(AU915) ===
469 469  
470 -Default use CHE=2
457 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
471 471  
472 -(% style="color:#037691" %)**Uplink:**
473 473  
474 -916.8 - SF7BW125 to SF12BW125
460 +Example:
475 475  
476 -917.0 - SF7BW125 to SF12BW125
462 +0x(00): Normal uplink packet.
477 477  
478 -917.2 - SF7BW125 to SF12BW125
464 +0x(01): Interrupt Uplink Packet.
479 479  
480 -917.4 - SF7BW125 to SF12BW125
481 481  
482 -917.6 - SF7BW125 to SF12BW125
483 483  
484 -917.8 - SF7BW125 to SF12BW125
468 +=== 2.4.9  ​+5V Output ===
485 485  
486 -918.0 - SF7BW125 to SF12BW125
470 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
487 487  
488 -918.2 - SF7BW125 to SF12BW125
489 489  
473 +The 5V output time can be controlled by AT Command.
490 490  
491 -(% style="color:#037691" %)**Downlink:**
475 +(% style="color:blue" %)**AT+5VT=1000**
492 492  
493 -923.3 - SF7BW500 to SF12BW500
477 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
494 494  
495 -923.9 - SF7BW500 to SF12BW500
496 496  
497 -924.5 - SF7BW500 to SF12BW500
498 498  
499 -925.1 - SF7BW500 to SF12BW500
481 +== 2.5  Downlink Payload ==
500 500  
501 -925.7 - SF7BW500 to SF12BW500
483 +By default, NSE01 prints the downlink payload to console port.
502 502  
503 -926.3 - SF7BW500 to SF12BW500
485 +[[image:image-20220708133731-5.png]]
504 504  
505 -926.9 - SF7BW500 to SF12BW500
506 506  
507 -927.5 - SF7BW500 to SF12BW500
488 +(((
489 +(% style="color:blue" %)**Examples:**
490 +)))
508 508  
509 -923.3 - SF12BW500(RX2 downlink only)
492 +(((
493 +
494 +)))
510 510  
496 +* (((
497 +(% style="color:blue" %)**Set TDC**
498 +)))
511 511  
500 +(((
501 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
502 +)))
512 512  
513 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
504 +(((
505 +Payload:    01 00 00 1E    TDC=30S
506 +)))
514 514  
515 -**Default Uplink channel:**
508 +(((
509 +Payload:    01 00 00 3C    TDC=60S
510 +)))
516 516  
517 -923.2 - SF7BW125 to SF10BW125
512 +(((
513 +
514 +)))
518 518  
519 -923.4 - SF7BW125 to SF10BW125
516 +* (((
517 +(% style="color:blue" %)**Reset**
518 +)))
520 520  
520 +(((
521 +If payload = 0x04FF, it will reset the NSE01
522 +)))
521 521  
522 -**Additional Uplink Channel**:
523 523  
524 -(OTAA mode, channel added by JoinAccept message)
525 +* (% style="color:blue" %)**INTMOD**
525 525  
526 -**AS920~~AS923 for Japan, Malaysia, Singapore**:
527 +Downlink Payload: 06000003, Set AT+INTMOD=3
527 527  
528 -922.2 - SF7BW125 to SF10BW125
529 529  
530 -922.4 - SF7BW125 to SF10BW125
531 531  
532 -922.6 - SF7BW125 to SF10BW125
531 +== 2.6  ​LED Indicator ==
533 533  
534 -922.8 - SF7BW125 to SF10BW125
533 +(((
534 +The NSE01 has an internal LED which is to show the status of different state.
535 535  
536 -923.0 - SF7BW125 to SF10BW125
537 537  
538 -922.0 - SF7BW125 to SF10BW125
537 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
538 +* Then the LED will be on for 1 second means device is boot normally.
539 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
540 +* For each uplink probe, LED will be on for 500ms.
541 +)))
539 539  
540 540  
541 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
542 542  
543 -923.6 - SF7BW125 to SF10BW125
544 544  
545 -923.8 - SF7BW125 to SF10BW125
546 +== 2.7  Installation in Soil ==
546 546  
547 -924.0 - SF7BW125 to SF10BW125
548 +__**Measurement the soil surface**__
548 548  
549 -924.2 - SF7BW125 to SF10BW125
550 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
550 550  
551 -924.4 - SF7BW125 to SF10BW125
552 +[[image:1657259653666-883.png]] ​
552 552  
553 -924.6 - SF7BW125 to SF10BW125
554 554  
555 +(((
556 +
555 555  
556 -
557 -**Downlink:**
558 -
559 -Uplink channels 1-8 (RX1)
560 -
561 -923.2 - SF10BW125 (RX2)
562 -
563 -
564 -1.
565 -11.
566 -111. KR920-923 (KR920)
567 -
568 -Default channel:
569 -
570 -922.1 - SF7BW125 to SF12BW125
571 -
572 -922.3 - SF7BW125 to SF12BW125
573 -
574 -922.5 - SF7BW125 to SF12BW125
575 -
576 -
577 -Uplink: (OTAA mode, channel added by JoinAccept message)
578 -
579 -922.1 - SF7BW125 to SF12BW125
580 -
581 -922.3 - SF7BW125 to SF12BW125
582 -
583 -922.5 - SF7BW125 to SF12BW125
584 -
585 -922.7 - SF7BW125 to SF12BW125
586 -
587 -922.9 - SF7BW125 to SF12BW125
588 -
589 -923.1 - SF7BW125 to SF12BW125
590 -
591 -923.3 - SF7BW125 to SF12BW125
592 -
593 -
594 -Downlink:
595 -
596 -Uplink channels 1-7(RX1)
597 -
598 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
599 -
600 -
601 -1.
602 -11.
603 -111. IN865-867 (IN865)
604 -
605 -Uplink:
606 -
607 -865.0625 - SF7BW125 to SF12BW125
608 -
609 -865.4025 - SF7BW125 to SF12BW125
610 -
611 -865.9850 - SF7BW125 to SF12BW125
612 -
613 -
614 -Downlink:
615 -
616 -Uplink channels 1-3 (RX1)
617 -
618 -866.550 - SF10BW125 (RX2)
619 -
620 -
621 -1.
622 -11. LED Indicator
623 -
624 -The LSE01 has an internal LED which is to show the status of different state.
625 -
626 -
627 -* Blink once when device power on.
628 -* Solid ON for 5 seconds once device successful Join the network.
629 -* Blink once when device transmit a packet.
630 -
631 -1.
632 -11. Installation in Soil
633 -
634 -**Measurement the soil surface**
635 -
636 -
637 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] ​
638 -
639 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
640 -
641 -
642 -
643 -
644 -
645 -
646 -
647 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
648 -
649 -
650 -
558 +(((
651 651  Dig a hole with diameter > 20CM.
560 +)))
652 652  
562 +(((
653 653  Horizontal insert the probe to the soil and fill the hole for long term measurement.
564 +)))
565 +)))
654 654  
567 +[[image:1654506665940-119.png]]
655 655  
569 +(((
570 +
571 +)))
656 656  
657 657  
658 -1.
659 -11. ​Firmware Change Log
574 +== 2.8  ​Firmware Change Log ==
660 660  
661 -**Firmware download link:**
662 662  
663 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
577 +Download URL & Firmware Change log
664 664  
579 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
665 665  
666 -**Firmware Upgrade Method:**
667 667  
668 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]
582 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
669 669  
670 670  
671 -**V1.0.**
672 672  
673 -Release
586 +== 2.9  ​Battery Analysis ==
674 674  
588 +=== 2.9.1  ​Battery Type ===
675 675  
676 676  
677 -1.
678 -11. ​Battery Analysis
679 -111. ​Battery Type
591 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
680 680  
681 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
682 682  
594 +The battery is designed to last for several years depends on the actually use environment and update interval. 
683 683  
684 -The battery is designed to last for more than 5 years for the LSN50.
685 685  
686 -
687 687  The battery related documents as below:
688 688  
689 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
690 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]
691 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
599 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
600 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
601 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
692 692  
693 -|(((
694 -JST-XH-2P connector
603 +(((
604 +[[image:image-20220708140453-6.png]]
695 695  )))
696 696  
697 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
698 698  
699 699  
609 +=== 2.9.2  Power consumption Analyze ===
700 700  
701 -1.
702 -11.
703 -111. ​Battery Note
611 +(((
612 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
613 +)))
704 704  
705 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
706 706  
616 +(((
617 +Instruction to use as below:
618 +)))
707 707  
708 -1.
709 -11.
710 -111. ​Replace the battery
620 +(((
621 +(% style="color:blue" %)**Step 1 **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
622 +)))
711 711  
712 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
713 713  
625 +(((
626 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
627 +)))
714 714  
715 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
629 +* (((
630 +Product Model
631 +)))
632 +* (((
633 +Uplink Interval
634 +)))
635 +* (((
636 +Working Mode
637 +)))
716 716  
639 +(((
640 +And the Life expectation in difference case will be shown on the right.
641 +)))
717 717  
718 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
643 +[[image:image-20220708141352-7.jpeg]]
719 719  
720 720  
721 721  
647 +=== 2.9.3  ​Battery Note ===
722 722  
649 +(((
650 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
651 +)))
723 723  
724 724  
725 -= 3. ​Using the AT Commands =
726 726  
727 -== 3.1 Access AT Commands ==
655 +=== 2.9.4  Replace the battery ===
728 728  
657 +(((
658 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
659 +)))
729 729  
730 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
731 731  
732 -[[image:1654501986557-872.png]]
733 733  
663 += 3. ​ Access NB-IoT Module =
734 734  
735 -Or if you have below board, use below connection:
665 +(((
666 +Users can directly access the AT command set of the NB-IoT module.
667 +)))
736 736  
669 +(((
670 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
671 +)))
737 737  
738 -[[image:1654502005655-729.png]]
673 +[[image:1657261278785-153.png]]
739 739  
740 740  
741 741  
742 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
677 += 4.  Using the AT Commands =
743 743  
679 +== 4.1  Access AT Commands ==
744 744  
745 - [[image:1654502050864-459.png]]
681 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
746 746  
747 747  
748 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
684 +AT+<CMD>?  : Help on <CMD>
749 749  
686 +AT+<CMD>         : Run <CMD>
750 750  
751 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
688 +AT+<CMD>=<value> : Set the value
752 752  
753 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
690 +AT+<CMD>=?  : Get the value
754 754  
755 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
756 756  
757 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
758 -
759 -
760 760  (% style="color:#037691" %)**General Commands**(%%)      
761 761  
762 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
695 +AT  : Attention       
763 763  
764 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
697 +AT?  : Short Help     
765 765  
766 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
699 +ATZ  : MCU Reset    
767 767  
768 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
701 +AT+TDC  : Application Data Transmission Interval
769 769  
703 +AT+CFG  : Print all configurations
770 770  
771 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
705 +AT+CFGMOD           : Working mode selection
772 772  
773 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
707 +AT+INTMOD            : Set the trigger interrupt mode
774 774  
775 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
709 +AT+5VT  : Set extend the time of 5V power  
776 776  
777 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
711 +AT+PRO  : Choose agreement
778 778  
779 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
713 +AT+WEIGRE  : Get weight or set weight to 0
780 780  
781 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
715 +AT+WEIGAP  : Get or Set the GapValue of weight
782 782  
783 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
717 +AT+RXDL  : Extend the sending and receiving time
784 784  
785 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
719 +AT+CNTFAC  : Get or set counting parameters
786 786  
787 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
721 +AT+SERVADDR  : Server Address
788 788  
789 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
790 790  
791 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
724 +(% style="color:#037691" %)**COAP Management**      
792 792  
793 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
726 +AT+URI            : Resource parameters
794 794  
795 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
796 796  
797 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
729 +(% style="color:#037691" %)**UDP Management**
798 798  
799 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
731 +AT+CFM          : Upload confirmation mode (only valid for UDP)
800 800  
801 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
802 802  
803 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
734 +(% style="color:#037691" %)**MQTT Management**
804 804  
736 +AT+CLIENT               : Get or Set MQTT client
805 805  
806 -(% style="color:#037691" %)**LoRa Network Management**
738 +AT+UNAME  : Get or Set MQTT Username
807 807  
808 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
740 +AT+PWD                  : Get or Set MQTT password
809 809  
810 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
742 +AT+PUBTOPI : Get or Set MQTT publish topic
811 811  
812 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
744 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
813 813  
814 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
815 815  
816 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
747 +(% style="color:#037691" %)**Information**          
817 817  
818 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
749 +AT+FDR  : Factory Data Reset
819 819  
820 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
751 +AT+PWOR : Serial Access Password
821 821  
822 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
823 823  
824 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
825 825  
826 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
755 += ​5.  FAQ =
827 827  
828 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
757 +== 5.1 How to Upgrade Firmware ==
829 829  
830 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
831 831  
832 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
760 +(((
761 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
762 +)))
833 833  
834 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
835 -
836 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
837 -
838 -
839 -(% style="color:#037691" %)**Information** 
840 -
841 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
842 -
843 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
844 -
845 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
846 -
847 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
848 -
849 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
850 -
851 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
852 -
853 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
854 -
855 -
856 -= ​4. FAQ =
857 -
858 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
859 -
860 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
861 -When downloading the images, choose the required image file for download. ​
862 -
863 -
864 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
865 -
866 -
867 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
868 -
869 -
870 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
871 -
872 -[[image:image-20220606154726-3.png]]
873 -
874 -When you use the TTN network, the US915 frequency bands use are:
875 -
876 -* 903.9 - SF7BW125 to SF10BW125
877 -* 904.1 - SF7BW125 to SF10BW125
878 -* 904.3 - SF7BW125 to SF10BW125
879 -* 904.5 - SF7BW125 to SF10BW125
880 -* 904.7 - SF7BW125 to SF10BW125
881 -* 904.9 - SF7BW125 to SF10BW125
882 -* 905.1 - SF7BW125 to SF10BW125
883 -* 905.3 - SF7BW125 to SF10BW125
884 -* 904.6 - SF8BW500
885 -
886 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
887 -
888 -(% class="box infomessage" %)
889 889  (((
890 -**AT+CHE=2**
765 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
891 891  )))
892 892  
893 -(% class="box infomessage" %)
894 894  (((
895 -**ATZ**
769 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
896 896  )))
897 897  
898 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
899 899  
900 900  
901 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
774 += 6.  Trouble Shooting =
902 902  
903 -[[image:image-20220606154825-4.png]]
776 +== 6.1  ​Connection problem when uploading firmware ==
904 904  
905 905  
779 +(% class="wikigeneratedid" %)
780 +(((
781 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
782 +)))
906 906  
907 -= 5. Trouble Shooting =
908 908  
909 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
910 910  
911 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
786 +== 6. AT Command input doesn't work ==
912 912  
788 +(((
789 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
790 +)))
913 913  
914 -== 5.2 AT Command input doesn’t work ==
915 915  
916 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
917 917  
794 += 7. ​ Order Info =
918 918  
919 -== 5.3 Device rejoin in at the second uplink packet ==
920 920  
921 -(% style="color:#4f81bd" %)**Issue describe as below:**
797 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
922 922  
923 -[[image:1654500909990-784.png]]
924 924  
800 +(% class="wikigeneratedid" %)
801 +(((
802 +
803 +)))
925 925  
926 -(% style="color:#4f81bd" %)**Cause for this issue:**
805 += 8 Packing Info =
927 927  
928 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
807 +(((
808 +
929 929  
810 +(% style="color:#037691" %)**Package Includes**:
930 930  
931 -(% style="color:#4f81bd" %)**Solution: **
932 932  
933 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
813 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
814 +* External antenna x 1
815 +)))
934 934  
935 -[[image:1654500929571-736.png]]
817 +(((
818 +
936 936  
820 +(% style="color:#037691" %)**Dimension and weight**:
937 937  
938 -= 6. ​Order Info =
939 939  
940 -
941 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
942 -
943 -
944 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
945 -
946 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
947 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
948 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
949 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
950 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
951 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
952 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
953 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
954 -
955 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
956 -
957 -* (% style="color:red" %)**4**(%%): 4000mAh battery
958 -* (% style="color:red" %)**8**(%%): 8500mAh battery
959 -
960 -= 7. Packing Info =
961 -
962 -(((
963 -**Package Includes**:
823 +* Size: 195 x 125 x 55 mm
824 +* Weight:   420g
964 964  )))
965 965  
966 -* (((
967 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
968 -)))
969 -
970 970  (((
971 971  
972 -)))
973 973  
974 -(((
975 -**Dimension and weight**:
976 -)))
977 977  
978 -* (((
979 -Device Size: cm
831 +
980 980  )))
981 -* (((
982 -Device Weight: g
983 -)))
984 -* (((
985 -Package Size / pcs : cm
986 -)))
987 -* (((
988 -Weight / pcs : g
989 -)))
990 990  
991 -= 8. Support =
834 += 9.  Support =
992 992  
993 993  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
994 994  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
995 -
996 -
1654506634463-199.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1654506665940-119.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +423.3 KB
Content
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220606171726-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +171.0 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content