Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 8 added, 0 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220606151504-2.jpeg||height=" 848" width="848"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 ... ... @@ -8,61 +8,87 @@ 8 8 9 9 10 10 11 -= 1. Introduction = 12 12 13 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 14 14 15 -((( 16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 -))) 18 18 19 -((( 20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 21 -))) 14 +**Table of Contents:** 22 22 23 -((( 24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 25 -))) 26 26 27 -((( 28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 29 -))) 30 30 18 + 19 + 20 + 21 += 1. Introduction = 22 + 23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 + 31 31 ((( 32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 -))) 26 + 34 34 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 35 35 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 + 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 + 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 + 36 + 37 +))) 38 + 36 36 [[image:1654503236291-817.png]] 37 37 38 38 39 -[[image:16545 03265560-120.png]]42 +[[image:1657245163077-232.png]] 40 40 41 41 42 42 43 43 == 1.2 Features == 44 44 45 - * LoRaWAN 1.0.3 Class A46 -* Ultra lowpower consumption48 + 49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 47 47 * Monitor Soil Moisture 48 48 * Monitor Soil Temperature 49 49 * Monitor Soil Conductivity 50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 51 * AT Commands to change parameters 52 52 * Uplink on periodically 53 53 * Downlink to change configure 54 54 * IP66 Waterproof Enclosure 55 -* 4000mAh or 8500mAh Battery for long term use 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 59 +* Micro SIM card slot for NB-IoT SIM 60 +* 8500mAh Battery for long term use 56 56 57 -== 1.3 Specification == 58 58 63 + 64 +== 1.3 Specification == 65 + 66 + 67 +(% style="color:#037691" %)**Common DC Characteristics:** 68 + 69 +* Supply Voltage: 2.1v ~~ 3.6v 70 +* Operating Temperature: -40 ~~ 85°C 71 + 72 + 73 +(% style="color:#037691" %)**NB-IoT Spec:** 74 + 75 +* - B1 @H-FDD: 2100MHz 76 +* - B3 @H-FDD: 1800MHz 77 +* - B8 @H-FDD: 900MHz 78 +* - B5 @H-FDD: 850MHz 79 +* - B20 @H-FDD: 800MHz 80 +* - B28 @H-FDD: 700MHz 81 + 82 + 83 +(% style="color:#037691" %)**Probe Specification:** 84 + 59 59 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 60 60 61 -[[image:image-20220 606162220-5.png]]87 +[[image:image-20220708101224-1.png]] 62 62 63 63 64 64 65 -== 1.4 Applications == 91 +== 1.4 Applications == 66 66 67 67 * Smart Agriculture 68 68 ... ... @@ -69,155 +69,310 @@ 69 69 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 70 70 71 71 72 -== 1.5 Firmware Changelog==98 +== 1.5 Pin Definitions == 73 73 74 74 75 - **LSE01v1.0 :** Release101 +[[image:1657246476176-652.png]] 76 76 77 77 78 78 79 -= 2. ConfigureLSE01 to connect toLoRaWANnetwork=105 += 2. Use NSE01 to communicate with IoT Server = 80 80 81 -== 2.1 How it works == 107 +== 2.1 How it works == 82 82 109 + 83 83 ((( 84 -The LSE01 isconfiguredasLoRaWANOTAAClass Amodebydefault.IthasOTAAkeystojoinLoRaWANnetwork.Toconnect a localLoRaWAN network,you need toinputtheOTAAkeysin theLoRaWANserverandpoweronthe LSE0150. It willautomaticallyjointhenetworkviaOTAA and starttosendthesensor value111 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 85 85 ))) 86 86 114 + 87 87 ((( 88 - In case you can’t set the OTAA keys in theLoRaWAN OTAA server,andyouhave tousethe keysfromtheserver, you can [[useAT Commands >>||anchor="H3.UsingtheATCommands"]].116 +The diagram below shows the working flow in default firmware of NSE01: 89 89 ))) 90 90 119 +[[image:image-20220708101605-2.png]] 91 91 121 +((( 122 + 123 +))) 92 92 93 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 94 94 95 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 96 96 127 +== 2.2 Configure the NSE01 == 97 97 98 - [[image:1654503992078-669.png]]129 +=== 2.2.1 Test Requirement === 99 99 100 100 101 -T heLG308 isalreadyset to connected to [[TTN network>>url:https://console.cloud.thethings.network/]],so whatweneedtonowis configuretheTTNserver.132 +To use NSE01 in your city, make sure meet below requirements: 102 102 134 +* Your local operator has already distributed a NB-IoT Network there. 135 +* The local NB-IoT network used the band that NSE01 supports. 136 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 103 103 104 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 105 105 106 - EachLSE01isshippedwithasticker with the defaultdeviceEUIasbelow:139 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 107 107 108 -[[image:image-20220606163732-6.jpeg]] 109 109 110 - You canenter thiskey intheLoRaWAN Serverportal. Belowis TTN screen shot:142 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.gif]] 111 111 112 -**Add APP EUI in the application** 113 113 114 114 115 - [[image:1654504596150-405.png]]146 +=== 2.2.2 Insert SIM card === 116 116 148 +Insert the NB-IoT Card get from your provider. 117 117 118 118 119 - **AddAPPKEYandDEVEUI**151 +User need to take out the NB-IoT module and insert the SIM card like below: 120 120 121 -[[image:1654504683289-357.png]] 122 122 154 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.gif]] 123 123 124 124 125 - **Step2**:Poweron LSE01157 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 126 126 127 127 128 - Put aJumper onJP2topoweron the device.(TheJumpermustbeinFLASHposition).160 +User need to configure NSE01 via serial port to set the **(% style="color:blue" %)Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 129 129 130 -[[image:image-20220606163915-7.png]] 131 131 132 132 133 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 134 134 135 - [[image:1654504778294-788.png]]165 +Connection: 136 136 167 +USB TTL GND <~-~-~-~-> GND 137 137 169 +USB TTL TXD <~-~-~-~-> UART_RXD 138 138 171 +USB TTL RXD <~-~-~-~-> UART_TXD 172 + 173 + 174 + 175 +In the PC, use below serial tool settings: 176 + 177 +* Baud: **9600** 178 +* Data bits:** 8** 179 +* Stop bits: **1** 180 +* Parity: **None** 181 +* Flow Control: **None** 182 + 183 + 184 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the **password: 12345678** to access AT Command input. 185 + 186 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.jpg]] 187 + 188 +Note: the valid AT Commands can be found at: 189 + 190 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 191 + 192 + 193 +1. 194 +11. 195 +111. Use CoAP protocol to uplink data 196 + 197 + 198 +Note: if you don’t have CoAP server, you can refer this link to set up one: 199 + 200 +[[http:~~/~~/wiki.dragino.com/index.php?title=Set_up_CoAP_Server>>url:http://wiki.dragino.com/index.php?title=Set_up_CoAP_Server]] 201 + 202 + 203 +Use below commands: 204 + 205 +* **AT+PRO=1** ~/~/ Set to use CoAP protocol to uplink 206 +* **AT+SERVADDR=120.24.4.116,5683 **~/~/ to set CoAP server address and port 207 +* **AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" **~/~/Set COAP resource path 208 + 209 + 210 +For parameter description, please refer to AT command set 211 + 212 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.jpg]] 213 + 214 + 215 +After configure the server address and **reset the device** (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 216 + 217 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.jpg]] 218 + 219 +1. 220 +11. 221 +111. Use UDP protocol to uplink data(Default protocol) 222 + 223 + 224 +This feature is supported since firmware version v1.0.1 225 + 226 + 227 +* **AT+PRO=2 ** ~/~/ Set to use UDP protocol to uplink 228 +* **AT+SERVADDR=120.24.4.116,5601 **~/~/ to set UDP server address and port 229 +* **AT+CFM=1 **~/~/If the server does not respond, this command is unnecessary 230 + 231 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.jpg]] 232 + 233 + 234 + 235 + 236 + 237 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.jpg]] 238 + 239 + 240 +1. 241 +11. 242 +111. Use MQTT protocol to uplink data 243 + 244 + 245 +This feature is supported since firmware version v110 246 + 247 + 248 +* **AT+PRO=3 ** ~/~/Set to use MQTT protocol to uplink 249 +* **AT+SERVADDR=120.24.4.116,1883 **~/~/Set MQTT server address and port 250 +* **AT+CLIENT=CLIENT **~/~/Set up the CLIENT of MQTT 251 +* **AT+UNAME=UNAME **~/~/Set the username of MQTT 252 +* **AT+PWD=PWD **~/~/Set the password of MQTT 253 +* **AT+PUBTOPIC=NSE01_PUB **~/~/Set the sending topic of MQTT 254 +* **AT+SUBTOPIC=NSE01_SUB **~/~/Set the subscription topic of MQTT 255 + 256 + 257 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.gif]] 258 + 259 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.jpg]] 260 + 261 + 262 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 263 + 264 + 265 +1. 266 +11. 267 +111. Use TCP protocol to uplink data 268 + 269 + 270 +This feature is supported since firmware version v110 271 + 272 + 273 +* **AT+PRO=4 ** ~/~/ Set to use TCP protocol to uplink 274 +* **AT+SERVADDR=120.24.4.116,5600 **~/~/ to set TCP server address and port 275 + 276 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.jpg]] 277 + 278 + 279 + 280 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]] 281 + 282 + 283 +1. 284 +11. 285 +111. Change Update Interval 286 + 287 +User can use below command to change the **uplink interval**. 288 + 289 +**~ AT+TDC=600 **~/~/ Set Update Interval to 600s 290 + 291 + 292 +**NOTE:** 293 + 294 +1. By default, the device will send an uplink message every 1 hour. 295 + 296 + 297 + 298 + 299 + 300 + 301 + 139 139 == 2.3 Uplink Payload == 140 140 304 + 141 141 === 2.3.1 MOD~=0(Default Mode) === 142 142 143 143 LSE01 will uplink payload via LoRaWAN with below payload format: 144 144 145 - 309 +((( 146 146 Uplink payload includes in total 11 bytes. 147 - 311 +))) 148 148 313 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 149 149 |((( 150 150 **Size** 151 151 152 152 **(bytes)** 153 153 )))|**2**|**2**|**2**|**2**|**2**|**1** 154 -|**Value**|[[BAT>> path:#bat]]|(((319 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 155 155 Temperature 156 156 157 157 (Reserve, Ignore now) 158 -)))|[[Soil Moisture>> path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((323 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 159 159 MOD & Digital Interrupt 160 160 161 161 (Optional) 162 162 ))) 163 163 164 -[[image:1654504881641-514.png]] 165 - 166 - 167 - 168 168 === 2.3.2 MOD~=1(Original value) === 169 169 170 170 This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 171 171 333 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 172 172 |((( 173 173 **Size** 174 174 175 175 **(bytes)** 176 176 )))|**2**|**2**|**2**|**2**|**2**|**1** 177 -|**Value**|[[BAT>> path:#bat]]|(((339 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 178 178 Temperature 179 179 180 180 (Reserve, Ignore now) 181 -)))|[[Soil Moisture>> path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((343 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 182 182 MOD & Digital Interrupt 183 183 184 184 (Optional) 185 185 ))) 186 186 187 -[[image:1654504907647-967.png]] 188 - 189 - 190 - 191 191 === 2.3.3 Battery Info === 192 192 351 +((( 193 193 Check the battery voltage for LSE01. 353 +))) 194 194 355 +((( 195 195 Ex1: 0x0B45 = 2885mV 357 +))) 196 196 359 +((( 197 197 Ex2: 0x0B49 = 2889mV 361 +))) 198 198 199 199 200 200 201 201 === 2.3.4 Soil Moisture === 202 202 367 +((( 203 203 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 369 +))) 204 204 371 +((( 205 205 For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 373 +))) 206 206 375 +((( 376 + 377 +))) 207 207 379 +((( 208 208 (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 381 +))) 209 209 210 210 211 211 212 212 === 2.3.5 Soil Temperature === 213 213 387 +((( 214 214 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 389 +))) 215 215 391 +((( 216 216 **Example**: 393 +))) 217 217 395 +((( 218 218 If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 397 +))) 219 219 399 +((( 220 220 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 401 +))) 221 221 222 222 223 223 ... ... @@ -252,7 +252,7 @@ 252 252 mod=(bytes[10]>>7)&0x01=1. 253 253 254 254 255 -Downlink Command: 436 +**Downlink Command:** 256 256 257 257 If payload = 0x0A00, workmode=0 258 258 ... ... @@ -267,19 +267,21 @@ 267 267 268 268 [[image:1654505570700-128.png]] 269 269 451 +((( 270 270 The payload decoder function for TTN is here: 453 +))) 271 271 272 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 455 +((( 456 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 457 +))) 273 273 274 274 275 275 == 2.4 Uplink Interval == 276 276 277 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: 462 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 278 278 279 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 280 280 281 281 282 - 283 283 == 2.5 Downlink Payload == 284 284 285 285 By default, LSE50 prints the downlink payload to console port. ... ... @@ -287,24 +287,44 @@ 287 287 [[image:image-20220606165544-8.png]] 288 288 289 289 290 -**Examples:** 473 +((( 474 +(% style="color:blue" %)**Examples:** 475 +))) 291 291 477 +((( 478 + 479 +))) 292 292 293 -* **Set TDC** 481 +* ((( 482 +(% style="color:blue" %)**Set TDC** 483 +))) 294 294 485 +((( 295 295 If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 487 +))) 296 296 489 +((( 297 297 Payload: 01 00 00 1E TDC=30S 491 +))) 298 298 493 +((( 299 299 Payload: 01 00 00 3C TDC=60S 495 +))) 300 300 497 +((( 498 + 499 +))) 301 301 302 -* **Reset** 501 +* ((( 502 +(% style="color:blue" %)**Reset** 503 +))) 303 303 505 +((( 304 304 If payload = 0x04FF, it will reset the LSE01 507 +))) 305 305 306 306 307 -* **CFM** 510 +* (% style="color:blue" %)**CFM** 308 308 309 309 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 310 310 ... ... @@ -312,12 +312,21 @@ 312 312 313 313 == 2.6 Show Data in DataCake IoT Server == 314 314 518 +((( 315 315 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 520 +))) 316 316 522 +((( 523 + 524 +))) 317 317 318 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 526 +((( 527 +(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 528 +))) 319 319 320 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 530 +((( 531 +(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 532 +))) 321 321 322 322 323 323 [[image:1654505857935-743.png]] ... ... @@ -325,11 +325,12 @@ 325 325 326 326 [[image:1654505874829-548.png]] 327 327 328 -Step 3: Create an account or log in Datacake. 329 329 330 -Step 4:SearchtheLSE01andaddDevEUI.541 +(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 331 331 543 +(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 332 332 545 + 333 333 [[image:1654505905236-553.png]] 334 334 335 335 ... ... @@ -512,7 +512,7 @@ 512 512 513 513 === 2.7.5 AS920-923 & AS923-925 (AS923) === 514 514 515 -**Default Uplink channel:** 728 +(% style="color:#037691" %)**Default Uplink channel:** 516 516 517 517 923.2 - SF7BW125 to SF10BW125 518 518 ... ... @@ -519,11 +519,11 @@ 519 519 923.4 - SF7BW125 to SF10BW125 520 520 521 521 522 -**Additional Uplink Channel**: 735 +(% style="color:#037691" %)**Additional Uplink Channel**: 523 523 524 524 (OTAA mode, channel added by JoinAccept message) 525 525 526 -**AS920~~AS923 for Japan, Malaysia, Singapore**: 739 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 527 527 528 528 922.2 - SF7BW125 to SF10BW125 529 529 ... ... @@ -538,7 +538,7 @@ 538 538 922.0 - SF7BW125 to SF10BW125 539 539 540 540 541 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 754 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 542 542 543 543 923.6 - SF7BW125 to SF10BW125 544 544 ... ... @@ -553,18 +553,16 @@ 553 553 924.6 - SF7BW125 to SF10BW125 554 554 555 555 769 +(% style="color:#037691" %)** Downlink:** 556 556 557 -**Downlink:** 558 - 559 559 Uplink channels 1-8 (RX1) 560 560 561 561 923.2 - SF10BW125 (RX2) 562 562 563 563 564 -1. 565 -11. 566 -111. KR920-923 (KR920) 567 567 777 +=== 2.7.6 KR920-923 (KR920) === 778 + 568 568 Default channel: 569 569 570 570 922.1 - SF7BW125 to SF12BW125 ... ... @@ -574,7 +574,7 @@ 574 574 922.5 - SF7BW125 to SF12BW125 575 575 576 576 577 -Uplink: (OTAA mode, channel added by JoinAccept message) 788 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 578 578 579 579 922.1 - SF7BW125 to SF12BW125 580 580 ... ... @@ -591,7 +591,7 @@ 591 591 923.3 - SF7BW125 to SF12BW125 592 592 593 593 594 -Downlink: 805 +(% style="color:#037691" %)**Downlink:** 595 595 596 596 Uplink channels 1-7(RX1) 597 597 ... ... @@ -598,12 +598,11 @@ 598 598 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 599 599 600 600 601 -1. 602 -11. 603 -111. IN865-867 (IN865) 604 604 605 - Uplink:813 +=== 2.7.7 IN865-867 (IN865) === 606 606 815 +(% style="color:#037691" %)** Uplink:** 816 + 607 607 865.0625 - SF7BW125 to SF12BW125 608 608 609 609 865.4025 - SF7BW125 to SF12BW125 ... ... @@ -611,7 +611,7 @@ 611 611 865.9850 - SF7BW125 to SF12BW125 612 612 613 613 614 -Downlink: 824 +(% style="color:#037691" %) **Downlink:** 615 615 616 616 Uplink channels 1-3 (RX1) 617 617 ... ... @@ -618,110 +618,129 @@ 618 618 866.550 - SF10BW125 (RX2) 619 619 620 620 621 -1. 622 -11. LED Indicator 623 623 624 -The LSE01 has an internal LED which is to show the status of different state. 625 625 833 +== 2.8 LED Indicator == 626 626 835 +The LSE01 has an internal LED which is to show the status of different state. 836 + 627 627 * Blink once when device power on. 628 628 * Solid ON for 5 seconds once device successful Join the network. 629 629 * Blink once when device transmit a packet. 630 630 631 -1. 632 -11. Installation in Soil 841 +== 2.9 Installation in Soil == 633 633 634 634 **Measurement the soil surface** 635 635 636 636 637 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] 846 +[[image:1654506634463-199.png]] 638 638 848 +((( 849 +((( 639 639 Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 851 +))) 852 +))) 640 640 641 641 642 642 856 +[[image:1654506665940-119.png]] 643 643 644 - 645 - 646 - 647 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]] 648 - 649 - 650 - 858 +((( 651 651 Dig a hole with diameter > 20CM. 860 +))) 652 652 862 +((( 653 653 Horizontal insert the probe to the soil and fill the hole for long term measurement. 864 +))) 654 654 655 655 867 +== 2.10 Firmware Change Log == 656 656 657 - 658 -1. 659 -11. Firmware Change Log 660 - 869 +((( 661 661 **Firmware download link:** 871 +))) 662 662 873 +((( 663 663 [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 875 +))) 664 664 877 +((( 878 + 879 +))) 665 665 666 -**Firmware Upgrade Method:** 881 +((( 882 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 883 +))) 667 667 668 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]] 885 +((( 886 + 887 +))) 669 669 670 - 889 +((( 671 671 **V1.0.** 891 +))) 672 672 893 +((( 673 673 Release 895 +))) 674 674 675 675 898 +== 2.11 Battery Analysis == 676 676 677 -1. 678 -11. Battery Analysis 679 -111. Battery Type 900 +=== 2.11.1 Battery Type === 680 680 902 +((( 681 681 The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 904 +))) 682 682 683 - 906 +((( 684 684 The battery is designed to last for more than 5 years for the LSN50. 908 +))) 685 685 910 +((( 911 +((( 912 +The battery-related documents are as below: 913 +))) 914 +))) 686 686 687 -The battery related documents as below: 688 - 689 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 690 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]] 691 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 692 - 693 -|((( 694 -JST-XH-2P connector 916 +* ((( 917 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 695 695 ))) 919 +* ((( 920 +[[Lithium-Thionyl Chloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 921 +))) 922 +* ((( 923 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]] 924 +))) 696 696 697 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]926 + [[image:image-20220610172436-1.png]] 698 698 699 699 700 700 701 -1. 702 -11. 703 -111. Battery Note 930 +=== 2.11.2 Battery Note === 704 704 932 +((( 705 705 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 934 +))) 706 706 707 707 708 -1. 709 -11. 710 -111. Replace the battery 711 711 938 +=== 2.11.3 Replace the battery === 939 + 940 +((( 712 712 If Battery is lower than 2.7v, user should replace the battery of LSE01. 942 +))) 713 713 714 - 944 +((( 715 715 You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 946 +))) 716 716 717 - 948 +((( 718 718 The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 950 +))) 719 719 720 720 721 721 722 - 723 - 724 - 725 725 = 3. Using the AT Commands = 726 726 727 727 == 3.1 Access AT Commands == ... ... @@ -729,13 +729,13 @@ 729 729 730 730 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 731 731 732 -[[image:1654501986557-872.png]] 961 +[[image:1654501986557-872.png||height="391" width="800"]] 733 733 734 734 735 735 Or if you have below board, use below connection: 736 736 737 737 738 -[[image:1654502005655-729.png]] 967 +[[image:1654502005655-729.png||height="503" width="801"]] 739 739 740 740 741 741 ... ... @@ -742,10 +742,10 @@ 742 742 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 743 743 744 744 745 - [[image:1654502050864-459.png]] 974 + [[image:1654502050864-459.png||height="564" width="806"]] 746 746 747 747 748 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>> url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]977 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 749 749 750 750 751 751 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> ... ... @@ -857,20 +857,38 @@ 857 857 858 858 == 4.1 How to change the LoRa Frequency Bands/Region? == 859 859 860 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]]. 1089 +((( 1090 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 861 861 When downloading the images, choose the required image file for download. 1092 +))) 862 862 1094 +((( 1095 + 1096 +))) 863 863 1098 +((( 864 864 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 1100 +))) 865 865 1102 +((( 1103 + 1104 +))) 866 866 1106 +((( 867 867 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 1108 +))) 868 868 1110 +((( 1111 + 1112 +))) 869 869 1114 +((( 870 870 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 1116 +))) 871 871 872 872 [[image:image-20220606154726-3.png]] 873 873 1120 + 874 874 When you use the TTN network, the US915 frequency bands use are: 875 875 876 876 * 903.9 - SF7BW125 to SF10BW125 ... ... @@ -883,37 +883,47 @@ 883 883 * 905.3 - SF7BW125 to SF10BW125 884 884 * 904.6 - SF8BW500 885 885 1133 +((( 886 886 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 887 887 888 -(% class="box infomessage" %) 889 -((( 890 -**AT+CHE=2** 1136 +* (% style="color:#037691" %)**AT+CHE=2** 1137 +* (% style="color:#037691" %)**ATZ** 891 891 ))) 892 892 893 -(% class="box infomessage" %) 894 894 ((( 895 -**ATZ** 896 -))) 1141 + 897 897 898 898 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 1144 +))) 899 899 1146 +((( 1147 + 1148 +))) 900 900 1150 +((( 901 901 The **AU915** band is similar. Below are the AU915 Uplink Channels. 1152 +))) 902 902 903 903 [[image:image-20220606154825-4.png]] 904 904 905 905 1157 +== 4.2 Can I calibrate LSE01 to different soil types? == 906 906 1159 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 1160 + 1161 + 907 907 = 5. Trouble Shooting = 908 908 909 -== 5.1 Why I can ’t join TTN in US915 / AU915 bands? ==1164 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 910 910 911 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. LoRaWANCommunication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.1166 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 912 912 913 913 914 -== 5.2 AT Command input doesn ’t work ==1169 +== 5.2 AT Command input doesn't work == 915 915 916 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1171 +((( 1172 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1173 +))) 917 917 918 918 919 919 == 5.3 Device rejoin in at the second uplink packet == ... ... @@ -925,7 +925,9 @@ 925 925 926 926 (% style="color:#4f81bd" %)**Cause for this issue:** 927 927 1185 +((( 928 928 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 1187 +))) 929 929 930 930 931 931 (% style="color:#4f81bd" %)**Solution: ** ... ... @@ -932,7 +932,7 @@ 932 932 933 933 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 934 934 935 -[[image:1654500929571-736.png]] 1194 +[[image:1654500929571-736.png||height="458" width="832"]] 936 936 937 937 938 938 = 6. Order Info = ... ... @@ -957,10 +957,17 @@ 957 957 * (% style="color:red" %)**4**(%%): 4000mAh battery 958 958 * (% style="color:red" %)**8**(%%): 8500mAh battery 959 959 1219 +(% class="wikigeneratedid" %) 1220 +((( 1221 + 1222 +))) 1223 + 960 960 = 7. Packing Info = 961 961 962 962 ((( 963 -**Package Includes**: 1227 + 1228 + 1229 +(% style="color:#037691" %)**Package Includes**: 964 964 ))) 965 965 966 966 * ((( ... ... @@ -969,10 +969,8 @@ 969 969 970 970 ((( 971 971 972 -))) 973 973 974 -((( 975 -**Dimension and weight**: 1239 +(% style="color:#037691" %)**Dimension and weight**: 976 976 ))) 977 977 978 978 * ((( ... ... @@ -986,6 +986,8 @@ 986 986 ))) 987 987 * ((( 988 988 Weight / pcs : g 1253 + 1254 + 989 989 ))) 990 990 991 991 = 8. Support = ... ... @@ -992,5 +992,3 @@ 992 992 993 993 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 994 994 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 995 - 996 -
- 1654506634463-199.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1654506665940-119.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +423.3 KB - Content
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- image-20220606171726-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +171.0 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content