Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 27 added, 0 removed)
- 1654506634463-199.png
- 1654506665940-119.png
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220606171726-9.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220606151504-2.jpeg||height=" 848" width="848"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 ... ... @@ -8,993 +8,836 @@ 8 8 9 9 10 10 11 -= 1. Introduction = 12 12 13 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 14 14 13 + 14 +**Table of Contents:** 15 + 16 +{{toc/}} 17 + 18 + 19 + 20 + 21 + 22 + 23 + 24 += 1. Introduction = 25 + 26 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 27 + 15 15 ((( 16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 -))) 29 + 18 18 19 19 ((( 20 - Itdetects (% style="color:#4f81bd" %)**SoilMoisture**(%%),(%style="color:#4f81bd"%)**Soil Temperature**(%%)and(%style="color:#4f81bd"%)**SoilConductivity**(%%),anduploadsthevalueviawirelesstoLoRaWANIoT Server.32 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 21 21 ))) 22 22 23 23 ((( 24 - TheLoRawirelesstechnologyusedin LES01 allows devicetoend data andreachextremely longrangesatlowdata-rates. It provides ultra-longrangespreadspectrumcommunicationandhighinterferenceimmunitywhilst minimizing current consumption.36 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 25 25 ))) 26 26 27 27 ((( 28 - LES01is powered by (%style="color:#4f81bd"%)**4000mAor8500mAhLi-SOCI2battery**(%%),Itisdesignedfor long termuseup to10 years.40 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 29 29 ))) 30 30 31 31 ((( 32 - Each LES01ispre-loadwithasetfuniquekeys for LoRaWANregistrations,register thesekeys to localLoRaWANserver anditwill autoconnectafterpower on.44 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 33 33 ))) 34 34 47 + 48 +))) 35 35 36 36 [[image:1654503236291-817.png]] 37 37 38 38 39 -[[image:16545 03265560-120.png]]53 +[[image:1657245163077-232.png]] 40 40 41 41 42 42 43 -== 1.2 Features == 57 +== 1.2 Features == 44 44 45 -* LoRaWAN 1.0.3 Class A 46 -* Ultra low power consumption 59 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 47 47 * Monitor Soil Moisture 48 48 * Monitor Soil Temperature 49 49 * Monitor Soil Conductivity 50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 51 * AT Commands to change parameters 52 52 * Uplink on periodically 53 53 * Downlink to change configure 54 54 * IP66 Waterproof Enclosure 55 -* 4000mAh or 8500mAh Battery for long term use 67 +* Ultra-Low Power consumption 68 +* AT Commands to change parameters 69 +* Micro SIM card slot for NB-IoT SIM 70 +* 8500mAh Battery for long term use 56 56 57 -== 1.3 Specification == 58 58 59 - MeasureVolume:Baseon thecentra pin ofthe probe, a cylinder with 7cm diameter and10cm height.73 +== 1.3 Specification == 60 60 61 -[[image:image-20220606162220-5.png]] 62 62 76 +(% style="color:#037691" %)**Common DC Characteristics:** 63 63 78 +* Supply Voltage: 2.1v ~~ 3.6v 79 +* Operating Temperature: -40 ~~ 85°C 64 64 65 - ==1.4 Applications==81 +(% style="color:#037691" %)**NB-IoT Spec:** 66 66 67 -* Smart Agriculture 83 +* - B1 @H-FDD: 2100MHz 84 +* - B3 @H-FDD: 1800MHz 85 +* - B8 @H-FDD: 900MHz 86 +* - B5 @H-FDD: 850MHz 87 +* - B20 @H-FDD: 800MHz 88 +* - B28 @H-FDD: 700MHz 68 68 69 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 70 - 90 +Probe(% style="color:#037691" %)** Specification:** 71 71 72 - == 1.5 FirmwareChangelog==92 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 73 73 94 +[[image:image-20220708101224-1.png]] 74 74 75 -**LSE01 v1.0 :** Release 76 76 77 77 98 +== 1.4 Applications == 78 78 79 - =2. Configure LSE01toconnectto LoRaWAN network =100 +* Smart Agriculture 80 80 81 -== 2.1 How it works == 102 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 103 + 82 82 83 -((( 84 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 85 -))) 105 +== 1.5 Pin Definitions == 86 86 87 -((( 88 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 89 -))) 90 90 108 +[[image:1657246476176-652.png]] 91 91 92 92 93 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 94 94 95 - Followingisanexamplefor how to join the [[TTNv3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Belowis the network structure;we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]]as a LoRaWANgateway in thisexample.112 += 2. Use NSE01 to communicate with IoT Server = 96 96 114 +== 2.1 How it works == 97 97 98 -[[image:1654503992078-669.png]] 99 99 117 +((( 118 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 119 +))) 100 100 101 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 102 102 122 +((( 123 +The diagram below shows the working flow in default firmware of NSE01: 124 +))) 103 103 104 - **Step 1**: Createa device in TTN with the OTAA keys fromLSE01.126 +[[image:image-20220708101605-2.png]] 105 105 106 -Each LSE01 is shipped with a sticker with the default device EUI as below: 107 - 108 -[[image:image-20220606163732-6.jpeg]] 109 - 110 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 111 - 112 -**Add APP EUI in the application** 113 - 114 - 115 -[[image:1654504596150-405.png]] 116 - 117 - 118 - 119 -**Add APP KEY and DEV EUI** 120 - 121 -[[image:1654504683289-357.png]] 122 - 123 - 124 - 125 -**Step 2**: Power on LSE01 126 - 127 - 128 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 129 - 130 -[[image:image-20220606163915-7.png]] 131 - 132 - 133 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 134 - 135 -[[image:1654504778294-788.png]] 136 - 137 - 138 - 139 -== 2.3 Uplink Payload == 140 - 141 -=== 2.3.1 MOD~=0(Default Mode) === 142 - 143 -LSE01 will uplink payload via LoRaWAN with below payload format: 144 - 145 - 146 -Uplink payload includes in total 11 bytes. 128 +((( 147 147 148 - 149 -|((( 150 -**Size** 151 - 152 -**(bytes)** 153 -)))|**2**|**2**|**2**|**2**|**2**|**1** 154 -|**Value**|[[BAT>>path:#bat]]|((( 155 -Temperature 156 - 157 -(Reserve, Ignore now) 158 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|((( 159 -MOD & Digital Interrupt 160 - 161 -(Optional) 162 162 ))) 163 163 164 -[[image:1654504881641-514.png]] 165 165 166 166 134 +== 2.2 Configure the NSE01 == 167 167 168 -=== 2.3.2 MOD~=1(Original value) === 169 169 170 - Thismodecangettheoriginal AD value of moistureand original conductivity (with temperature drift compensation).137 +=== 2.2.1 Test Requirement === 171 171 172 -|((( 173 -**Size** 174 174 175 -**(bytes)** 176 -)))|**2**|**2**|**2**|**2**|**2**|**1** 177 -|**Value**|[[BAT>>path:#bat]]|((( 178 -Temperature 140 +((( 141 +To use NSE01 in your city, make sure meet below requirements: 142 +))) 179 179 180 - (Reserve,Ignorenow)181 - )))|[[SoilMoisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[SoilConductivity(EC)>>path:#EC]](raw)|(((182 - MOD&DigitalInterrupt144 +* Your local operator has already distributed a NB-IoT Network there. 145 +* The local NB-IoT network used the band that NSE01 supports. 146 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 183 183 184 -(Optional) 148 +((( 149 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 185 185 ))) 186 186 187 -[[image:1654504907647-967.png]] 188 188 153 +[[image:1657249419225-449.png]] 189 189 190 190 191 -=== 2.3.3 Battery Info === 192 192 193 - Checkthebattery voltageforLSE01.157 +=== 2.2.2 Insert SIM card === 194 194 195 -Ex1: 0x0B45 = 2885mV 159 +((( 160 +Insert the NB-IoT Card get from your provider. 161 +))) 196 196 197 -Ex2: 0x0B49 = 2889mV 163 +((( 164 +User need to take out the NB-IoT module and insert the SIM card like below: 165 +))) 198 198 199 199 168 +[[image:1657249468462-536.png]] 200 200 201 -=== 2.3.4 Soil Moisture === 202 202 203 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 204 204 205 - Forexample,ifthedatayougetfromtheregister is __0x050xDC__,themoisturecontentinthesoil is172 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 206 206 207 - 208 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 209 - 210 - 211 - 212 -=== 2.3.5 Soil Temperature === 213 - 214 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 215 - 216 -**Example**: 217 - 218 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 219 - 220 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 221 - 222 - 223 - 224 -=== 2.3.6 Soil Conductivity (EC) === 225 - 226 226 ((( 227 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 228 -))) 229 - 230 230 ((( 231 - For example,ifthedatayougetfromtheregister is 0x000xC8,the soilconductivityis00C8(H)=200(D)=200uS/cm.176 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 232 232 ))) 233 - 234 -((( 235 -Generally, the EC value of irrigation water is less than 800uS / cm. 236 236 ))) 237 237 238 -((( 239 - 240 -))) 241 241 242 -((( 243 - 244 -))) 181 +**Connection:** 245 245 246 -= ==2.3.7MOD===183 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 247 247 248 - Firmwareversionatst v2.1 supportschanging mode.185 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 249 249 250 - Forexample,bytes[10]=90187 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 251 251 252 -mod=(bytes[10]>>7)&0x01=1. 253 253 190 +In the PC, use below serial tool settings: 254 254 255 -Downlink Command: 192 +* Baud: (% style="color:green" %)**9600** 193 +* Data bits:** (% style="color:green" %)8(%%)** 194 +* Stop bits: (% style="color:green" %)**1** 195 +* Parity: (% style="color:green" %)**None** 196 +* Flow Control: (% style="color:green" %)**None** 256 256 257 -If payload = 0x0A00, workmode=0 198 +((( 199 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 200 +))) 258 258 259 - If** **payload =** **0x0A01, workmode=1202 +[[image:image-20220708110657-3.png]] 260 260 204 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 261 261 262 262 263 -=== 2.3.8 Decode payload in The Things Network === 264 264 265 - WhileusingTTNnetwork,youcan add thepayload formattodecodethepayload.208 +=== 2.2.4 Use CoAP protocol to uplink data === 266 266 210 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 267 267 268 -[[image:1654505570700-128.png]] 269 269 270 - Thepayloaddecoder function for TTN ishere:213 +**Use below commands:** 271 271 272 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 215 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 216 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 217 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 273 273 219 +For parameter description, please refer to AT command set 274 274 275 - ==2.4Uplink Interval ==221 +[[image:1657249793983-486.png]] 276 276 277 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: 278 278 279 - [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]224 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 280 280 226 +[[image:1657249831934-534.png]] 281 281 282 282 283 -== 2.5 Downlink Payload == 284 284 285 - Bydefault,LSE50printsthe downlinkpayloadtonsoleport.230 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 286 286 287 - [[image:image-20220606165544-8.png]]232 +This feature is supported since firmware version v1.0.1 288 288 289 289 290 -**Examples:** 235 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 236 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 237 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 291 291 239 +[[image:1657249864775-321.png]] 292 292 293 -* **Set TDC** 294 294 295 - If the payload=0100003C,itmeans set the END Node’s TDC to 0x00003C=60(S), while type code is 01.242 +[[image:1657249930215-289.png]] 296 296 297 -Payload: 01 00 00 1E TDC=30S 298 298 299 -Payload: 01 00 00 3C TDC=60S 300 300 246 +=== 2.2.6 Use MQTT protocol to uplink data === 301 301 302 - ***Reset**248 +This feature is supported since firmware version v110 303 303 304 -If payload = 0x04FF, it will reset the LSE01 305 305 251 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 252 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 253 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 254 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 255 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 256 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 257 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 306 306 307 - * **CFM**259 +[[image:1657249978444-674.png]] 308 308 309 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 310 310 262 +[[image:1657249990869-686.png]] 311 311 312 312 313 -== 2.6 Show Data in DataCake IoT Server == 265 +((( 266 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 267 +))) 314 314 315 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 316 316 317 317 318 - **Step1**:Besurethatyour device isprogrammed and properlyconnectedtothenetwork atthis time.271 +=== 2.2.7 Use TCP protocol to uplink data === 319 319 320 - **Step 2**:ToconfiguretheApplication to forward data to DATACAKE you will needto addintegration. To add theDATACAKE integration,perform the following steps:273 +This feature is supported since firmware version v110 321 321 322 322 323 -[[image:1654505857935-743.png]] 276 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 277 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 324 324 279 +[[image:1657250217799-140.png]] 325 325 326 -[[image:1654505874829-548.png]] 327 327 328 - Step 3: Create an account or login Datacake.282 +[[image:1657250255956-604.png]] 329 329 330 -Step 4: Search the LSE01 and add DevEUI. 331 331 332 332 333 - [[image:1654505905236-553.png]]286 +=== 2.2.8 Change Update Interval === 334 334 288 +User can use below command to change the (% style="color:green" %)**uplink interval**. 335 335 336 - Afteradded,thesensordata arrive TTN,itwillalsoarriveandshow inMydevices.290 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 337 337 338 -[[image:1654505925508-181.png]] 292 +((( 293 +(% style="color:red" %)**NOTE:** 294 +))) 339 339 296 +((( 297 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 298 +))) 340 340 341 341 342 -== 2.7 Frequency Plans == 343 343 344 - TheLSE01uses OTAA mode and below frequencyplans by default. If user want to useit with differentfrequencyplan, please refer the AT commandsets.302 +== 2.3 Uplink Payload == 345 345 346 -1. 347 -11. 348 -111. EU863-870 (EU868) 304 +In this mode, uplink payload includes in total 18 bytes 349 349 350 -Uplink: 306 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 307 +|=(% style="width: 50px;" %)((( 308 +**Size(bytes)** 309 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 310 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 351 351 352 - 868.1-SF7BW125to SF12BW125312 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 353 353 354 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 355 355 356 - 868.5-SF7BW125 to SF12BW125315 +[[image:image-20220708111918-4.png]] 357 357 358 -867.1 - SF7BW125 to SF12BW125 359 359 360 - 867.3-SF7BW125toSF12BW125318 +The payload is ASCII string, representative same HEX: 361 361 362 - 867.5- SF7BW125to SF12BW125320 +0x72403155615900640c7817075e0a8c02f900 where: 363 363 364 -867.7 - SF7BW125 to SF12BW125 322 +* Device ID: 0x 724031556159 = 724031556159 323 +* Version: 0x0064=100=1.0.0 365 365 366 -867.9 - SF7BW125 to SF12BW125 325 +* BAT: 0x0c78 = 3192 mV = 3.192V 326 +* Singal: 0x17 = 23 327 +* Soil Moisture: 0x075e= 1886 = 18.86 % 328 +* Soil Temperature:0x0a8c =2700=27 °C 329 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 330 +* Interrupt: 0x00 = 0 367 367 368 -868.8 - FSK 369 369 333 +== 2.4 Payload Explanation and Sensor Interface == 370 370 371 -Downlink: 372 372 373 - Uplinkchannels1-9(RX1)336 +=== 2.4.1 Device ID === 374 374 375 - 869.525 - SF9BW125(RX2downlinkonly)338 +By default, the Device ID equal to the last 6 bytes of IMEI. 376 376 340 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 377 377 378 -1. 379 -11. 380 -111. US902-928(US915) 342 +**Example:** 381 381 382 - Used in USA, Canada and South America.Default use CHE=2344 +AT+DEUI=A84041F15612 383 383 384 -Up link:346 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 385 385 386 -903.9 - SF7BW125 to SF10BW125 387 387 388 -904.1 - SF7BW125 to SF10BW125 389 389 390 - 904.3 - SF7BW125toSF10BW125350 +=== 2.4.2 Version Info === 391 391 392 - 904.5-SF7BW125toSF10BW125352 +Specify the software version: 0x64=100, means firmware version 1.00. 393 393 394 - 904.7-SF7BW125toSF10BW125354 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 395 395 396 -904.9 - SF7BW125 to SF10BW125 397 397 398 -905.1 - SF7BW125 to SF10BW125 399 399 400 - 905.3- SF7BW125toSF10BW125358 +=== 2.4.3 Battery Info === 401 401 360 +((( 361 +Check the battery voltage for LSE01. 362 +))) 402 402 403 -Downlink: 364 +((( 365 +Ex1: 0x0B45 = 2885mV 366 +))) 404 404 405 -923.3 - SF7BW500 to SF12BW500 368 +((( 369 +Ex2: 0x0B49 = 2889mV 370 +))) 406 406 407 -923.9 - SF7BW500 to SF12BW500 408 408 409 -924.5 - SF7BW500 to SF12BW500 410 410 411 - 925.1-SF7BW500toSF12BW500374 +=== 2.4.4 Signal Strength === 412 412 413 - 925.7-SF7BW500to SF12BW500376 +NB-IoT Network signal Strength. 414 414 415 - 926.3- SF7BW500toSF12BW500378 +**Ex1: 0x1d = 29** 416 416 417 - 926.9-SF7BW500toSF12BW500380 +(% style="color:blue" %)**0**(%%) -113dBm or less 418 418 419 - 927.5- SF7BW500toSF12BW500382 +(% style="color:blue" %)**1**(%%) -111dBm 420 420 421 - 923.3 -SF12BW500(RX2downlinkonly)384 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 422 422 386 +(% style="color:blue" %)**31** (%%) -51dBm or greater 423 423 424 -1. 425 -11. 426 -111. CN470-510 (CN470) 388 +(% style="color:blue" %)**99** (%%) Not known or not detectable 427 427 428 -Used in China, Default use CHE=1 429 429 430 -Uplink: 431 431 432 -4 86.3-SF7BW125toSF12BW125392 +=== 2.4.5 Soil Moisture === 433 433 434 -486.5 - SF7BW125 to SF12BW125 394 +((( 395 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 396 +))) 435 435 436 -486.7 - SF7BW125 to SF12BW125 398 +((( 399 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 400 +))) 437 437 438 -486.9 - SF7BW125 to SF12BW125 402 +((( 403 + 404 +))) 439 439 440 -487.1 - SF7BW125 to SF12BW125 406 +((( 407 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 408 +))) 441 441 442 -487.3 - SF7BW125 to SF12BW125 443 443 444 -487.5 - SF7BW125 to SF12BW125 445 445 446 -4 87.7-SF7BW125toSF12BW125412 +=== 2.4.6 Soil Temperature === 447 447 414 +((( 415 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 416 +))) 448 448 449 -Downlink: 418 +((( 419 +**Example**: 420 +))) 450 450 451 -506.7 - SF7BW125 to SF12BW125 422 +((( 423 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 424 +))) 452 452 453 -506.9 - SF7BW125 to SF12BW125 426 +((( 427 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 428 +))) 454 454 455 -507.1 - SF7BW125 to SF12BW125 456 456 457 -507.3 - SF7BW125 to SF12BW125 458 458 459 - 507.5-SF7BW125toSF12BW125432 +=== 2.4.7 Soil Conductivity (EC) === 460 460 461 -507.7 - SF7BW125 to SF12BW125 434 +((( 435 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 436 +))) 462 462 463 -507.9 - SF7BW125 to SF12BW125 438 +((( 439 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 440 +))) 464 464 465 -508.1 - SF7BW125 to SF12BW125 442 +((( 443 +Generally, the EC value of irrigation water is less than 800uS / cm. 444 +))) 466 466 467 -505.3 - SF12BW125 (RX2 downlink only) 446 +((( 447 + 448 +))) 468 468 450 +((( 451 + 452 +))) 469 469 470 -1. 471 -11. 472 -111. AU915-928(AU915) 454 +=== 2.4.8 Digital Interrupt === 473 473 474 -D efault useCHE=2456 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 475 475 476 - Uplink:458 +The command is: 477 477 478 - 916.8-SF7BW125to SF12BW125460 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 479 479 480 -917.0 - SF7BW125 to SF12BW125 481 481 482 - 917.2-SF7BW125toSF12BW125463 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 483 483 484 -917.4 - SF7BW125 to SF12BW125 485 485 486 - 917.6 - SF7BW125 to SF12BW125466 +Example: 487 487 488 - 917.8-SF7BW125to SF12BW125468 +0x(00): Normal uplink packet. 489 489 490 - 918.0- SF7BW125toSF12BW125470 +0x(01): Interrupt Uplink Packet. 491 491 492 -918.2 - SF7BW125 to SF12BW125 493 493 494 494 495 - Downlink:474 +=== 2.4.9 +5V Output === 496 496 497 - 923.3-SF7BW500toSF12BW500476 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 498 498 499 -923.9 - SF7BW500 to SF12BW500 500 500 501 - 924.5-SF7BW500toSF12BW500479 +The 5V output time can be controlled by AT Command. 502 502 503 - 925.1- SF7BW500toSF12BW500481 +(% style="color:blue" %)**AT+5VT=1000** 504 504 505 - 925.7-SF7BW500 toSF12BW500483 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 506 506 507 -926.3 - SF7BW500 to SF12BW500 508 508 509 -926.9 - SF7BW500 to SF12BW500 510 510 511 - 927.5-SF7BW500 toSF12BW500487 +== 2.5 Downlink Payload == 512 512 513 - 923.3-SF12BW500(RX2downlink only)489 +By default, NSE01 prints the downlink payload to console port. 514 514 515 -1. 516 -11. 517 -111. AS920-923 & AS923-925 (AS923) 491 +[[image:image-20220708133731-5.png]] 518 518 519 -**Default Uplink channel:** 520 520 521 -923.2 - SF7BW125 to SF10BW125 494 +((( 495 +(% style="color:blue" %)**Examples:** 496 +))) 522 522 523 -923.4 - SF7BW125 to SF10BW125 498 +((( 499 + 500 +))) 524 524 502 +* ((( 503 +(% style="color:blue" %)**Set TDC** 504 +))) 525 525 526 -**Additional Uplink Channel**: 506 +((( 507 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 508 +))) 527 527 528 -(OTAA mode, channel added by JoinAccept message) 510 +((( 511 +Payload: 01 00 00 1E TDC=30S 512 +))) 529 529 530 -**AS920~~AS923 for Japan, Malaysia, Singapore**: 514 +((( 515 +Payload: 01 00 00 3C TDC=60S 516 +))) 531 531 532 -922.2 - SF7BW125 to SF10BW125 518 +((( 519 + 520 +))) 533 533 534 -922.4 - SF7BW125 to SF10BW125 522 +* ((( 523 +(% style="color:blue" %)**Reset** 524 +))) 535 535 536 -922.6 - SF7BW125 to SF10BW125 526 +((( 527 +If payload = 0x04FF, it will reset the NSE01 528 +))) 537 537 538 -922.8 - SF7BW125 to SF10BW125 539 539 540 - 923.0-SF7BW125toSF10BW125531 +* (% style="color:blue" %)**INTMOD** 541 541 542 - 922.0-SF7BW125toSF10BW125533 +Downlink Payload: 06000003, Set AT+INTMOD=3 543 543 544 544 545 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 546 546 547 - 923.6-SF7BW125toSF10BW125537 +== 2.6 LED Indicator == 548 548 549 -923.8 - SF7BW125 to SF10BW125 539 +((( 540 +The NSE01 has an internal LED which is to show the status of different state. 550 550 551 -924.0 - SF7BW125 to SF10BW125 552 552 553 -924.2 - SF7BW125 to SF10BW125 543 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 544 +* Then the LED will be on for 1 second means device is boot normally. 545 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 546 +* For each uplink probe, LED will be on for 500ms. 547 +))) 554 554 555 -924.4 - SF7BW125 to SF10BW125 556 556 557 -924.6 - SF7BW125 to SF10BW125 558 558 559 559 552 +== 2.7 Installation in Soil == 560 560 561 -** Downlink:**554 +__**Measurement the soil surface**__ 562 562 563 - Uplink channels1-8(RX1)556 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 564 564 565 - 923.2- SF10BW125 (RX2)558 +[[image:1657259653666-883.png]] 566 566 567 567 568 -1. 569 -11. 570 -111. KR920-923 (KR920) 561 +((( 562 + 571 571 572 -Default channel: 573 - 574 -922.1 - SF7BW125 to SF12BW125 575 - 576 -922.3 - SF7BW125 to SF12BW125 577 - 578 -922.5 - SF7BW125 to SF12BW125 579 - 580 - 581 -Uplink: (OTAA mode, channel added by JoinAccept message) 582 - 583 -922.1 - SF7BW125 to SF12BW125 584 - 585 -922.3 - SF7BW125 to SF12BW125 586 - 587 -922.5 - SF7BW125 to SF12BW125 588 - 589 -922.7 - SF7BW125 to SF12BW125 590 - 591 -922.9 - SF7BW125 to SF12BW125 592 - 593 -923.1 - SF7BW125 to SF12BW125 594 - 595 -923.3 - SF7BW125 to SF12BW125 596 - 597 - 598 -Downlink: 599 - 600 -Uplink channels 1-7(RX1) 601 - 602 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 603 - 604 - 605 -1. 606 -11. 607 -111. IN865-867 (IN865) 608 - 609 -Uplink: 610 - 611 -865.0625 - SF7BW125 to SF12BW125 612 - 613 -865.4025 - SF7BW125 to SF12BW125 614 - 615 -865.9850 - SF7BW125 to SF12BW125 616 - 617 - 618 -Downlink: 619 - 620 -Uplink channels 1-3 (RX1) 621 - 622 -866.550 - SF10BW125 (RX2) 623 - 624 - 625 -1. 626 -11. LED Indicator 627 - 628 -The LSE01 has an internal LED which is to show the status of different state. 629 - 630 - 631 -* Blink once when device power on. 632 -* Solid ON for 5 seconds once device successful Join the network. 633 -* Blink once when device transmit a packet. 634 - 635 -1. 636 -11. Installation in Soil 637 - 638 -**Measurement the soil surface** 639 - 640 - 641 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] 642 - 643 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 644 - 645 - 646 - 647 - 648 - 649 - 650 - 651 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]] 652 - 653 - 654 - 564 +((( 655 655 Dig a hole with diameter > 20CM. 566 +))) 656 656 568 +((( 657 657 Horizontal insert the probe to the soil and fill the hole for long term measurement. 570 +))) 571 +))) 658 658 573 +[[image:1654506665940-119.png]] 659 659 575 +((( 576 + 577 +))) 660 660 661 661 662 -1. 663 -11. Firmware Change Log 580 +== 2.8 Firmware Change Log == 664 664 665 -**Firmware download link:** 666 666 667 - [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]583 +Download URL & Firmware Change log 668 668 585 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 669 669 670 -**Firmware Upgrade Method:** 671 671 672 - [[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]588 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 673 673 674 674 675 -**V1.0.** 676 676 677 - Release592 +== 2.9 Battery Analysis == 678 678 594 +=== 2.9.1 Battery Type === 679 679 680 680 681 -1. 682 -11. Battery Analysis 683 -111. Battery Type 597 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 684 684 685 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 686 686 600 +The battery is designed to last for several years depends on the actually use environment and update interval. 687 687 688 -The battery is designed to last for more than 5 years for the LSN50. 689 689 690 - 691 691 The battery related documents as below: 692 692 693 -* [[Battery Dimension>> url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],694 -* [[Lithium-Thionyl Chloride Battery >>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]695 -* [[Lithium-ion Battery-Capacitor datasheet>> url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[TechSpec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]605 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 606 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 607 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 696 696 697 - |(((698 - JST-XH-2P connector609 +((( 610 +[[image:image-20220708140453-6.png]] 699 699 ))) 700 700 701 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]] 702 702 703 703 615 +=== 2.9.2 Power consumption Analyze === 704 704 705 - 1.706 - 11.707 - 111. Battery Note617 +((( 618 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 619 +))) 708 708 709 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 710 710 622 +((( 623 +Instruction to use as below: 624 +))) 711 711 712 - 1.713 -1 1.714 - 111. Replace the battery626 +((( 627 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 628 +))) 715 715 716 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 717 717 631 +((( 632 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 633 +))) 718 718 719 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 635 +* ((( 636 +Product Model 637 +))) 638 +* ((( 639 +Uplink Interval 640 +))) 641 +* ((( 642 +Working Mode 643 +))) 720 720 645 +((( 646 +And the Life expectation in difference case will be shown on the right. 647 +))) 721 721 722 - The default battery pack of LSE01includesaER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case.The SPC can enlarge the battery life for high frequency use (updateperiod below 5 minutes)649 +[[image:image-20220708141352-7.jpeg]] 723 723 724 724 725 725 653 +=== 2.9.3 Battery Note === 726 726 655 +((( 656 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 657 +))) 727 727 728 728 729 -= 3. Using the AT Commands = 730 730 731 -== 3.1AccessATCommands==661 +=== 2.9.4 Replace the battery === 732 732 663 +((( 664 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 665 +))) 733 733 734 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 735 735 736 -[[image:1654501986557-872.png]] 737 737 669 += 3. Access NB-IoT Module = 738 738 739 -Or if you have below board, use below connection: 671 +((( 672 +Users can directly access the AT command set of the NB-IoT module. 673 +))) 740 740 675 +((( 676 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 677 +))) 741 741 742 -[[image:165 4502005655-729.png]]679 +[[image:1657261278785-153.png]] 743 743 744 744 745 745 746 - InthePC, you need toset the serial baud rate to (% style="color:green"%)**9600**(%%)to access theserialconsole for LSE01. LSE01 will output systeminfo once power onasbelow:683 += 4. Using the AT Commands = 747 747 685 +== 4.1 Access AT Commands == 748 748 749 - [[ima ge:1654502050864-459.png]]687 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 750 750 751 751 752 - Belowaretheavailablecommands,amoredetailedATCommandmanualcanbefoundat[[ATCommandManual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]690 +AT+<CMD>? : Help on <CMD> 753 753 692 +AT+<CMD> : Run <CMD> 754 754 755 - (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>?**(%%)Helpon<CMD>694 +AT+<CMD>=<value> : Set the value 756 756 757 - (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>**(%%): Run <CMD>696 +AT+<CMD>=? : Get the value 758 758 759 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 760 760 761 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 762 - 763 - 764 764 (% style="color:#037691" %)**General Commands**(%%) 765 765 766 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention701 +AT : Attention 767 767 768 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help703 +AT? : Short Help 769 769 770 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset705 +ATZ : MCU Reset 771 771 772 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval707 +AT+TDC : Application Data Transmission Interval 773 773 709 +AT+CFG : Print all configurations 774 774 775 - (%style="color:#037691"%)**Keys,IDsand EUIs management**711 +AT+CFGMOD : Working mode selection 776 776 777 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI713 +AT+INTMOD : Set the trigger interrupt mode 778 778 779 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey715 +AT+5VT : Set extend the time of 5V power 780 780 781 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key717 +AT+PRO : Choose agreement 782 782 783 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress719 +AT+WEIGRE : Get weight or set weight to 0 784 784 785 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI721 +AT+WEIGAP : Get or Set the GapValue of weight 786 786 787 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)723 +AT+RXDL : Extend the sending and receiving time 788 788 789 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network725 +AT+CNTFAC : Get or set counting parameters 790 790 791 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode727 +AT+SERVADDR : Server Address 792 792 793 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 794 794 795 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network730 +(% style="color:#037691" %)**COAP Management** 796 796 797 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode732 +AT+URI : Resource parameters 798 798 799 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 800 800 801 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format735 +(% style="color:#037691" %)**UDP Management** 802 802 803 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat737 +AT+CFM : Upload confirmation mode (only valid for UDP) 804 804 805 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 806 806 807 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data740 +(% style="color:#037691" %)**MQTT Management** 808 808 742 +AT+CLIENT : Get or Set MQTT client 809 809 810 - (%style="color:#037691"%)**LoRaNetworkManagement**744 +AT+UNAME : Get or Set MQTT Username 811 811 812 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate746 +AT+PWD : Get or Set MQTT password 813 813 814 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA748 +AT+PUBTOPIC : Get or Set MQTT publish topic 815 815 816 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting750 +AT+SUBTOPIC : Get or Set MQTT subscription topic 817 817 818 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 819 819 820 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink753 +(% style="color:#037691" %)**Information** 821 821 822 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink755 +AT+FDR : Factory Data Reset 823 823 824 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1757 +AT+PWORD : Serial Access Password 825 825 826 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 827 827 828 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 829 829 830 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1761 += 5. FAQ = 831 831 832 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2763 +== 5.1 How to Upgrade Firmware == 833 833 834 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 835 835 836 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 766 +((( 767 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 768 +))) 837 837 838 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 839 - 840 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 841 - 842 - 843 -(% style="color:#037691" %)**Information** 844 - 845 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 846 - 847 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 848 - 849 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 850 - 851 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 852 - 853 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 854 - 855 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 856 - 857 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 858 - 859 - 860 -= 4. FAQ = 861 - 862 -== 4.1 How to change the LoRa Frequency Bands/Region? == 863 - 864 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]]. 865 -When downloading the images, choose the required image file for download. 866 - 867 - 868 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 869 - 870 - 871 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 872 - 873 - 874 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 875 - 876 -[[image:image-20220606154726-3.png]] 877 - 878 -When you use the TTN network, the US915 frequency bands use are: 879 - 880 -* 903.9 - SF7BW125 to SF10BW125 881 -* 904.1 - SF7BW125 to SF10BW125 882 -* 904.3 - SF7BW125 to SF10BW125 883 -* 904.5 - SF7BW125 to SF10BW125 884 -* 904.7 - SF7BW125 to SF10BW125 885 -* 904.9 - SF7BW125 to SF10BW125 886 -* 905.1 - SF7BW125 to SF10BW125 887 -* 905.3 - SF7BW125 to SF10BW125 888 -* 904.6 - SF8BW500 889 - 890 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 891 - 892 -(% class="box infomessage" %) 893 893 ((( 894 - **AT+CHE=2**771 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 895 895 ))) 896 896 897 -(% class="box infomessage" %) 898 898 ((( 899 - **ATZ**775 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 900 900 ))) 901 901 902 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 903 903 904 904 905 - The**AU915**band is similar. Beloware the AU915 UplinkChannels.780 += 6. Trouble Shooting = 906 906 907 - [[image:image-20220606154825-4.png]]782 +== 6.1 Connection problem when uploading firmware == 908 908 909 909 785 +(% class="wikigeneratedid" %) 786 +((( 787 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]] 788 +))) 910 910 911 -= 5. Trouble Shooting = 912 912 913 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 914 914 915 - Itis due to channel mapping.Please see the [[Eight Channel Mode>>doc:Main.LoRaWANCommunicationDebug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]sectionabove fordetails.792 +== 6.2 AT Command input doesn't work == 916 916 794 +((( 795 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 796 +))) 917 917 918 -== 5.2 AT Command input doesn’t work == 919 919 920 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 921 921 800 += 7. Order Info = 922 922 923 -== 5.3 Device rejoin in at the second uplink packet == 924 924 925 -(% style="color:#4f81bd" %)** Issue describe as below:**803 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 926 926 927 -[[image:1654500909990-784.png]] 928 928 806 +(% class="wikigeneratedid" %) 807 +((( 808 + 809 +))) 929 929 930 - (% style="color:#4f81bd"%)**Causeforthis issue:**811 += 8. Packing Info = 931 931 932 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 813 +((( 814 + 933 933 816 +(% style="color:#037691" %)**Package Includes**: 934 934 935 -(% style="color:#4f81bd" %)**Solution: ** 936 936 937 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 819 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 820 +* External antenna x 1 821 +))) 938 938 939 -[[image:1654500929571-736.png]] 823 +((( 824 + 940 940 826 +(% style="color:#037691" %)**Dimension and weight**: 941 941 942 -= 6. Order Info = 943 943 944 - 945 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 946 - 947 - 948 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 949 - 950 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 951 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 952 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 953 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 954 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 955 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 956 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 957 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 958 - 959 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 960 - 961 -* (% style="color:red" %)**4**(%%): 4000mAh battery 962 -* (% style="color:red" %)**8**(%%): 8500mAh battery 963 - 964 -= 7. Packing Info = 965 - 966 -((( 967 -**Package Includes**: 829 +* Size: 195 x 125 x 55 mm 830 +* Weight: 420g 968 968 ))) 969 969 970 -* ((( 971 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 972 -))) 973 - 974 974 ((( 975 975 976 -))) 977 977 978 -((( 979 -**Dimension and weight**: 980 -))) 981 981 982 -* ((( 983 -Device Size: cm 837 + 984 984 ))) 985 -* ((( 986 -Device Weight: g 987 -))) 988 -* ((( 989 -Package Size / pcs : cm 990 -))) 991 -* ((( 992 -Weight / pcs : g 993 -))) 994 994 995 -= 8. Support =840 += 9. Support = 996 996 997 997 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 998 998 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 999 - 1000 -
- 1654506634463-199.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1654506665940-119.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +423.3 KB - Content
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- image-20220606171726-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +171.0 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content